Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Zm401p10, encoded by an anther-specific gene with short open reading frames, is essential for tapetum degeneration and anther development in maize

Dongxue Wang A B , Chengxia Li A C , Qian Zhao A , Linna Zhao A , Meizhen Wang A , Dengyun Zhu A , Guangming Ao A and Jingjuan Yu A D
+ Author Affiliations
- Author Affiliations

A State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China.

B Present address: Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.

C Present address: Department of Plant Sciences, University of California, Davis, CA 95616, USA.

D Corresponding author. Email: yujj@cau.edu.cn

Functional Plant Biology 36(1) 73-85 https://doi.org/10.1071/FP08154
Submitted: 22 May 2008  Accepted: 5 October 2008   Published: 7 January 2009

Abstract

In flowering plants, the tapetum is proposed to play a vital role in the early stages of pollen development. Disruptions to tapetum development and degeneration typically result in male sterility. The present study characterised a maize (Zea mays L.) anther-specific gene, Zm401, which only contains short open reading frames (sORFs). The longest ORF of the Zm401 gene encodes a small protein designated Zm401p10 that accumulates in the nucleus. Overexpression of Zm401p10 in maize retarded tapetal degeneration and caused microspore abnormalities. A microarray analysis identified 278 downregulated and 150 upregulated genes in anthers overexpressing Zm401p10. These results indicate that the Zm401 gene is one of the major components of the molecular network regulating maize anther development and male fertility, and that Zm401p10 is expressed from the longest ORF of the gene.

Additional keywords: microspore, Zea mays, Zm401.


Acknowledgements

We are grateful to Dr Zhen Su (China Agricultural University) for assisting with the Affymetrix GeneChip analysis; Dr Dawei Li, Dr De Ye, Dr Shuhua Yang (China Agricultural University) and Dr Wenying Xu (Chinese Academy of Sciences) for discussion and helpful suggestions; Dr Mao Wang (China Agricultural University) for assistance with the histology; Hongjing Hao (Chinese Academy of Agricultural Sciences) for assistance with the electron microscopy; Hong Yan (China Agriculture University) for assistance with the microarray analysis; and Professor Andrew O. Jackson. (Department of Plant and Microbial Biology, University of California at Berkeley) for critical reading of this manuscript. This work was supported by the National Science Foundation of China (Grant No. 30100014 and 30671124) and the Program for New Century Excellent Talents in University (NCET-05-0129).


References


Asad S, Fang Y, Wycoff KL, Hirsch AM (1994) Isolation and characterization of cDNA and genomic clones of MsENOD40; transcripts are detected in meristematic cells of alfalfa. Protoplasma 183, 10–23.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bedinger P (1992) The remarkable biology of pollen. The Plant Cell 4, 879–887.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bollag DM , Edelstein SJ (1996) ‘Protein method.’ (Wiley-Liss: New York)

Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. The Plant Cell 14, 1705–1721.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KLC, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K (2006) The POLARIS peptides of Arabidopsis regulate auxin transport and root growth via effects on ethylene signaling. The Plant Cell 18, 3058–3072.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Crespi MD, Jurkevitch E, Poiret M, d’Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A (1994) END40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. The EMBO Journal 13, 5099–5112.
CAS | PubMed |
open url image1

Dai XY, Yu JJ, Zhao Q, Zhu DY, Ao GM (2004) Non-coding RNA for ZM401, a pollen-specific gene of Zea mays. Acta Botanica Sinica 46, 497–504.
CAS |
open url image1

Dai XY, Yu JJ, Ao GM, Zhao Q (2007) Overexpression of Zm401, an mRNA-like RNA, has distinct effects on pollen development in maize. Plant Growth Regulation 52, 229–239.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Fernandez DE, Hegr GR, Perry SF, Patterson SF, Bleecker AB (2000) The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. The Plant Cell 12, 183–198.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ishimaru K, Takada K, Watanabe S, Kamada H, Ezura H (2006) Stable male sterility induced by the expression of mutated melon enthylene receptor genes in Nicotiana tabacum. Plant Science 171, 355–359.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. The Plant Cell 17, 2705–2722.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. The Plant Cell 14, 2353–2367.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kaul MLH (1988) ‘Male sterility in higher plants.’ (Springer-Verlag: Heidelberg)

Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant & Cell Physiology 47, 784–787.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Koes RE, van Blokland R, Quattrocchio F, van Tunen AJ, Mol JNM (1990) Chalcone synthase promoters in Petunia are active in pigmented and unpigmented cell types. The Plant Cell 2, 379–392.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16, 123–132.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. The Plant Cell 2, 1201–1224.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Li C, Liu J, Yu J, Zhao Q, Ao G (2001) Cloning and expression analysis of pollen-specific cDNA zm401 from Zea mays. Journal of Agricultural Biotechnology 9, 374–377. open url image1

Li N, Zhang D, Liu H, Yin C, Li X , et al. (2006) The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. The Plant Cell 18, 2999–3014.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Liu JQ, Seul U, Thompson R (1997) Cloning and characterization of a pollen-specific cDNA encoding a glutamic-acid-rich protein (GARP) from potato Solanum berthaultii. Plant Molecular Biology 33, 291–300.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Analytical Biochemistry 163, 16–20.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ma H (2005) Molecular genetics analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology 56, 393–434.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ma J, Zhao Q, Yu J, Ao G (2005) Ecotopic expression of a maize pollen specific gene, zm401, results in aberrant anther development in tobacco. Euphytica 144, 133–140.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Mascarenhas JP (1990) Gene activity during pollen development. Annual Review of Plant Physiology and Plant Molecular Biology 41, 317–338.
Crossref | GoogleScholarGoogle Scholar | open url image1

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15, 473–497.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Napoli CA, Fahy D, Wang H, Taylor LP (1999) white anther: a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiology 120, 615–622.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Papini A, Mosti S, Brighigna L (1999) Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207, 213–221.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29, e45.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pollak PE, Hansen K, Astwood IA, Taylor LP (1995) Conditional male fertility in maize. Sexual Plant Reproduction 8, 231–241.
Crossref | GoogleScholarGoogle Scholar | open url image1

Radchuk V, Borisjuk L, Radchuk R, Steinbiss HH, Rolletschek H, Broeders S, Wobus U (2006) Jekyll encodes a novel protein involved in the sexual reproduction of barley. The Plant Cell 18, 1652–1666.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proceedings of the National Academy of Sciences of the United States of America 99, 1915–1920.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America 81, 8014–8018.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sambrook J , Russell DW (2001) ‘Molecular cloning: a laboratory manual.’ 3rd edn. (Cold Spring Harbor Press: New York)

Sambrook J , Fritsch EF , Maniatis T (1989) ‘Molecular cloning: a laboratory manual.’ 2nd edn. (Cold Spring Harbor Press: New York)

Schreiber DN, Bantin J, Dresselhaus T (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiology 134, 1069–1079.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Smyth GK (2005) Limma: linear models for microarray data. In ‘Bioinformatics and computational biology solutions using R and Bioconductor’. (Eds R Gentleman, VJ Carey, W Huber, RA Irizarry, S Dudoit) pp. 397–420. (Springer-Verlag: New York)

Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. The Plant Journal 33, 413–423.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Visser RGF (1991) Regeneration and transformation of potato by Agrobacterium tumefaciens. In ‘Plant tissue culture manual: B5’. (Ed. K Lindsey) pp. 1–9. (Academic: Dordrecht)

Wang D, Zhao Q, Zhu D, Ao G, Yu J (2006) Particle-bombardment-mediated co-transformation of maize with a lysine rich protein gene (sb401) from potato. Euphytica 150, 75–85.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Wu HM, Cheun AY (2000) Programmed cell death in plant reproduction. Plant Molecular Biology 44, 267–281.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yu J, Ao G (1997) Isolation and sequencing of the 10 kd sulfur-rich prolamin gene from rice seeds. Acta Botanica Sinica 39, 329–334.
CAS |
open url image1

Zheng Z, Xia Q, Dauk M, Shen W, Swlvaraj G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bond glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differential and male fertility. The Plant Cell 15, 1872–1887.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1