Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Future changes in stratospheric quasi-stationary wave-1 in the extratropical southern hemisphere spring and summer as simulated by ACCESS-CCM

Kane A. Stone https://orcid.org/0000-0002-2721-8785 A B C E , Andrew R. Klekociuk https://orcid.org/0000-0003-3335-0034 A D and Robyn Schofield https://orcid.org/0000-0002-4230-717X A B
+ Author Affiliations
- Author Affiliations

A School of Geography, Earth, and Atmospheric Sciences, University of Melbourne, Melbourne, Australia.

B ARC Centre of Excellence for Climate System Science, Sydney, Australia.

C Present address: The Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.

D Australian Antarctic Division, Hobart, Australia.

E Corresponding author. Email: stonek@mit.edu

Journal of Southern Hemisphere Earth Systems Science 71(2) 181-193 https://doi.org/10.1071/ES21002
Submitted: 28 January 2021  Accepted: 13 July 2021   Published: 26 August 2021

Journal Compilation © BoM 2021 Open Access CC BY-NC-ND

Abstract

Seasonally dependent quasi-stationary planetary wave activity in the southern hemisphere influences the distribution of ozone within and near the equatorward edge of the stratospheric polar vortex. Accurate representation of this zonal asymmetry in ozone is important in the characterisation of stratospheric circulation and climate and their associated effects at the surface. In this study, we used the Australian Community and Climate Earth System Simulator-Chemistry Climate Model to investigate the influence of greenhouse gases (GHGs) and ozone depleting substances (ODSs) on the zonal asymmetry of total column ozone (TCO) and 10 hPa zonal wind between 50 and 70°S. Sensitivity simulations were used from 1960 to 2100 with fixed ODSs and GHGs at 1960 levels and a regression model that uses equivalent effective stratospheric chlorine and carbon dioxide equivalent radiative forcing as the regressors. The model simulates the spring and summer zonal wave-1 reasonably well, albeit with a slight bias in the phase and amplitude compared to observations. An eastward shift in the TCO and 10 hPa zonal wave-1 is associated with both decreasing ozone and increasing GHGs. Amplitude increases are associated with ozone decline and amplitude decreases with GHG increases. The influence of ODSs typically outweigh those by GHGs, partly due to the GHG influence on TCO phase at 50°S likely being hampered by the Andes. Therefore, over the 21st century, influence from ozone recovery causes a westward shift and a decrease in amplitude. An exception is at 70°S during spring, where the GHG influence is larger than that of ozone recovery, causing a continued eastward trend throughout the 21st century. Also, GHGs have the largest influence on the 10 hPa zonal wave-1 phase, but still only induce a small change in the wave-1 amplitude. Different local longitudes also experience different rates of ozone recovery due to the changes in phase of the zonal wave-1. The results from this study have important implications for understanding future ozone layer distribution in the Southern Hemisphere under changing GHG and ODS concentrations. Important future work would involve conducting a similar study using a large ensemble of models to gain more statistically significant results.

Keywords: ACCESS-CCM, climate, climate modelling, greenhouse gases, Multi Sensor Reanalysis, ozone depletion, ozone layer, quasi-stationary planetary wave, southern hemisphere, stratospheric circulation.


References

Brahmananda Rao, V., Fernandez, J. P. R., and Franchito, S. H. (2004). Quasi-stationary waves in the Southern Hemisphere during El Niño and La Niña events. Ann. Geophys. 22, 789–806.
Quasi-stationary waves in the Southern Hemisphere during El Niño and La Niña events.Crossref | GoogleScholarGoogle Scholar |

Brasseur, G., and Solomon, S. (2005). ‘Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere.’ (Springer Dordrecht: Netherlands)

Charney, J. G., and Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109.
Propagation of planetary-scale disturbances from the lower into the upper atmosphere.Crossref | GoogleScholarGoogle Scholar |

Covey, C., Lindzen, R. S., Fasullo, J., and Taylor, K. E. (2020). Quasi-stationary Planetary Scale Waves in Modern Climate Models. United States. 10.2172/1716593

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and sVitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137, 553–597.
The ERA-Interim reanalysis: Configuration and performance of the data assimilation system.Crossref | GoogleScholarGoogle Scholar |

Dennison, F. W., McDonald, A. J., and Morgenstern, O. (2015). The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling. J. Geophys. Res. Atmos. 120, 1–8.
The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling.Crossref | GoogleScholarGoogle Scholar |

Dennison, F., McDonald, A., and Morgenstern, O. (2017). The Evolution of Zonally Asymmetric Austral Ozone in a Chemistry Climate Model. Atmos. Chem. Phys. 17, 14075–14084.
The Evolution of Zonally Asymmetric Austral Ozone in a Chemistry Climate Model.Crossref | GoogleScholarGoogle Scholar |

Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., and Milinevsky, G. P. (2008). Total ozone and tropopause zonal asymmetry during the Antarctic spring. J. Geophys. Res. Atmos. 114, 1–12.
Total ozone and tropopause zonal asymmetry during the Antarctic spring.Crossref | GoogleScholarGoogle Scholar |

Eyring, V., Arblaster, J. M., Cionni, I., Sedláček, J., Perlwitz, J., Young, P. J., Bekki, S., Bergmann, D., Cameron-Smith, P., Collins, W. J., Faluvegi, G., Gottschaldt, K. D., Horowitz, L. W., Kinnison, D. E., Lamarque, J. F., Marsh, D. R., Saint-Martin, D., Shindell, D. T., Sudo, K., Szopa, S., and Watanabe, S. (2013a). Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos. 118, 5029–5060.
Long-term ozone changes and associated climate impacts in CMIP5 simulations.Crossref | GoogleScholarGoogle Scholar |

Eyring, V., Lamarque, J.-F., Hess, P., Arfeuille, F., Bowman, K., Chipperfield, M. P., Duncan, B., Fiore, A., Gettelman, A., Giorgetta, M. A., Granier, C., Hegglin, M., Kinnison, D., Kunze, M., Langematz, U., Luo, B., Martin, R., Matthes, K., Newman, P. A., Peter, T., Robock, A., Ryerson, T., Saiz-Lopez, A., Salawitch, R., Schultz, M., Shepherd, T. G., Shindell, D., Stähelin, J., Tegtmeier, S., Thomason, L., Tilmes, S., Vernier, J.-P., Waugh, D. W., and Young, P. J. (2013b). Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments. SPARC Newsletter 40, 48–66.

Gabriel, A., Körnich, H., Lossow, S., Peters, D. H. W., Urban, J., and Murtagh, D. (2011). Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001–2010. Atmos. Chem. Phys. 11, 9865–9885.
Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001–2010.Crossref | GoogleScholarGoogle Scholar |

Gerber, E. P. (2012). Stratospheric versus Tropospheric Control of the Strength and Structure of the Brewer–Dobson Circulation. J. Atmos. Sci. 69, 2857–2877.
Stratospheric versus Tropospheric Control of the Strength and Structure of the Brewer–Dobson Circulation.Crossref | GoogleScholarGoogle Scholar |

Grytsai, A. V., Evtushevsky, O. M., Agapitov, O. V., Klekociuk, A. R., and Milinevsky, G. P. (2007a). Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys. 25, 361–374.
Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring.Crossref | GoogleScholarGoogle Scholar |

Grytsai, A. V., Evtushevsky, O. M., Milinevsky, G. P., and Agapitov, O. V. (2007b). Longitudinal position of the quasi-stationary wave extremes over the Antarctic region from the TOMS total ozone. Int. J. Remote Sens. 1161, 37–41.
Longitudinal position of the quasi-stationary wave extremes over the Antarctic region from the TOMS total ozone.Crossref | GoogleScholarGoogle Scholar |

Hartmann, D. L. (1977). Stationary planetary waves in the southern hemisphere. J. Geophys. Res. 82, 4930–4934.
Stationary planetary waves in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar |

Hoinka, K. P. (1998). Statistics of the Global Tropopause Pressure. Mon. Wea. Rev. 126, 3303–3325.
Statistics of the Global Tropopause Pressure.Crossref | GoogleScholarGoogle Scholar |

Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., and Kyrölä, E. (2012). Ozone zonal asymmetry and planetary wave characterization during Antarctic spring. Atmos. Chem. Phys. 12, 2603–2614.
Ozone zonal asymmetry and planetary wave characterization during Antarctic spring.Crossref | GoogleScholarGoogle Scholar |

Inatsu, M., and Hoskins, B. J. (2004). The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate 17, 4882–4892.
The zonal asymmetry of the Southern Hemisphere winter storm track.Crossref | GoogleScholarGoogle Scholar |

Karoly, D. J. (1985). An atmospheric climatology of the Southern Hemisphere based on ten years of daily numerical analyses (1972-82): II Standing wave climatology. Aust. Meteor. Mag. 33, 106–116.

Karoly D. J., Vincent D. G. (Eds) (1998). ‘Meteorology of the Southern Hemisphere.’ (American Meteorological Society: Boston, MA) 10.1007/978-1-935704-10-2

Kurzeja, R. J. (1984). Spatial Variability of Total Ozone at High Latitudes in Winter. J. Atmos. Sci. 41, 695–697.
Spatial Variability of Total Ozone at High Latitudes in Winter.Crossref | GoogleScholarGoogle Scholar |

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300.Crossref | GoogleScholarGoogle Scholar |

Morgenstern, O., Braesicke, P., O’Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A. (2009). Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere. Geosci. Model Dev. 2, 43–57.
Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere.Crossref | GoogleScholarGoogle Scholar |

Morgenstern, O., Zeng, G., Dean, S. M., Joshi, M., Abraham, N. L., and Osprey, A. (2014). Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases. Geophys. Res. Lett. 41, 9050–9057.
Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases.Crossref | GoogleScholarGoogle Scholar |

Morgenstern, O., Hegglin, M. I., Rozanov, E., O’Connor, F. M., Luke Abraham, N., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., and Zeng, G. (2017). Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671.
Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI).Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Daniel, J. S., Waugh, D. W., and Nash, E. R. (2007). A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys. 7, 4537–4552.
A new formulation of equivalent effective stratospheric chlorine (EESC).Crossref | GoogleScholarGoogle Scholar |

Niu, X., Frederick, J. E., Stein, M. L., and Tiao, G. C. (1992). Trends in Column Ozone Based on TOMS Data: Dependence on Month, Latitude, and Longitude. J. Geophys. Res. 97, 661–669.
Trends in Column Ozone Based on TOMS Data: Dependence on Month, Latitude, and Longitude.Crossref | GoogleScholarGoogle Scholar |

Quintanar, A. I., and Mechos, C. R. (1995). Quasi-Stationary Waves in the Southern Hemisphere. Part I: Observational Data. J. Climate 8, 2659–2672.
Quasi-Stationary Waves in the Southern Hemisphere. Part I: Observational Data.Crossref | GoogleScholarGoogle Scholar |

Randel, W. J. (1988). The Seasonal Evolution of Planetary-Waves in the Southern-Hemisphere Stratosphere and Troposphere. Quart. J. Roy. Meteor. Soc. 114, 1385–1409.
The Seasonal Evolution of Planetary-Waves in the Southern-Hemisphere Stratosphere and Troposphere.Crossref | GoogleScholarGoogle Scholar |

Rao, J., and Ren, R. (2020). Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO. Climate Dyn. 54, 2249–2266.
Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO.Crossref | GoogleScholarGoogle Scholar |

Rao, J., and Garfinkel, C. I. (2021). Projected changes of stratospheric final warmings in the Northern and Southern Hemispheres by CMIP5/6 models. Climate Dyn. 56, 3353–3371.
Projected changes of stratospheric final warmings in the Northern and Southern Hemispheres by CMIP5/6 models.Crossref | GoogleScholarGoogle Scholar |

Rao, J., Garfinkel, C. I., Chen, H., and White, I. P. (2019). The 2019 New Year Stratospheric Sudden Warming and Its Real-Time Predictions in Multiple S2S Models. J. Geophys. Res. Atmos. 124, 11155–11174.
The 2019 New Year Stratospheric Sudden Warming and Its Real-Time Predictions in Multiple S2S Models.Crossref | GoogleScholarGoogle Scholar |

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407.
Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.Crossref | GoogleScholarGoogle Scholar |

Reichler, T., Dameris, M., and Sausen, R. (2003). Determining the tropopause height from gridded data. Geophys. Res. Lett. 30, 2042.
Determining the tropopause height from gridded data.Crossref | GoogleScholarGoogle Scholar |

Stone K. A. (2015). Investigating stratospheric ozone change and associated impacts on circulation and climate. PhD Thesis, University of Melbourne. Available at http://hdl.handle.net/11343/91558

Stone, K. A., Morgenstern, O., Karoly, D. J., Klekociuk, A. R., French, W. J., Abraham, N. L., and Schofield, R. (2016). Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere. Atmos. Chem. Phys. 16, 2401–2415.
Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

Thompson, D. W. J., Solomon, S., and Baldwin, M. P. (2005). Stratosphere – Troposphere Coupling in the Southern Hemisphere. J. Atmos. Sci. 52, 708–715.
Stratosphere – Troposphere Coupling in the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

Van Der A, R. J., Allaart, M. A. F., and Eskes, H. J. (2015). Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012. Atmos. Meas. Tech. 8, 3021–3035.
Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012.Crossref | GoogleScholarGoogle Scholar |

van Loon, H., and Jenne, R. L. (1972). The zonal harmonic standing waves in the southern hemisphere. J. Geophys. Res. 77, 992–1003.
The zonal harmonic standing waves in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar |

Varotsos, C., Cartalis, C., Vlamakis, A., Tzanis, C., and Keramitsoglou, I. (2004). The long-term coupling between column ozone and tropopause properties. J. Climate 17, 3843–3854.
The long-term coupling between column ozone and tropopause properties.Crossref | GoogleScholarGoogle Scholar |

Wang, L., and Kushner, P. J. (2011). Diagnosing the stratosphere-troposphere stationary wave response to climate change in a general circulation model. J. Geophys. Res. Atmos. 116, 1–16.
Diagnosing the stratosphere-troposphere stationary wave response to climate change in a general circulation model.Crossref | GoogleScholarGoogle Scholar |

Wang, L., Kushner, P. J., and Waugh, D. W. (2013). Southern hemisphere stationary wave response to changes of ozone and greenhouse gases. J. Climate 26, 10205–10217.
Southern hemisphere stationary wave response to changes of ozone and greenhouse gases.Crossref | GoogleScholarGoogle Scholar |

Wilcox, L. J., and Charlton-Perez, A. J. (2013). Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models. J. Geophys. Res. Atmos. 118, 2535–2546.
Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models.Crossref | GoogleScholarGoogle Scholar |

Wirth, V. (1993). Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res. 98, 8873–8882.
Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature.Crossref | GoogleScholarGoogle Scholar |

WMO (2011). Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project–Report No 52 516.

WMO (2014). Scientific Assessment of Ozone Depletion: 2014. Global Ozone Research and Monitoring Project–Report No 55 516.