Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH FRONT (Open Access)

The Antarctic ozone hole during 2014

Paul B. Krummel A I , Andrew R. Klekociuk B C , Matthew B. Tully D , H. Peter Gies E , Simon P. Alexander B C , Paul J. Fraser A , Stuart I. Henderson E , Robyn Schofield F G , Jonathan D. Shanklin H and Kane A. Stone F G
+ Author Affiliations
- Author Affiliations

A Climate Science Centre, CSIRO Oceans and Atmosphere, Private Bag #1, Aspendale, Vic. 3195, Australia.

B Antarctica and the Global System, Australian Antarctic Division, Kingston, ACT, Australia.

C Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tas., Australia.

D Bureau of Meteorology, Melbourne, Vic., Australia.

E Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Vic., Australia.

F School of Earth Sciences, University of Melbourne, Melbourne, Vic., Australia.

G ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW, Australia.

H British Antarctic Survey, Cambridge, United Kingdom.

I Corresponding author. Email: Paul.Krummel@csiro.au

Journal of Southern Hemisphere Earth Systems Science 69(1) 1-15 https://doi.org/10.1071/ES19023
Submitted: 25 January 2018  Accepted: 29 May 2019   Published: 11 June 2020

Journal Compilation © BoM 2019 Open Access CC BY-NC-ND

Abstract

We review the 2014 Antarctic ozone hole, making use of a variety of ground-based and space-based measurements of ozone and ultra-violet radiation, supplemented by meteorological reanalyses. Although the polar vortex was relatively stable in 2014 and persisted some weeks longer into November than was the case in 2012 or 2013, the vortex temperature was close to the long-term mean in September and October with modest warming events occurring in both months, preventing severe depletion from taking place. Of the seven metrics reported here, all were close to their respective median values of the 1979–2014 record, being ranked between 16th and 21st of the 35 years for which adequate satellite observations exist.


References

Appenzeller C. Weiss A. K. Staehelin J. (2000). North Atlantic Oscillation modulates total ozone winter trends. Geophys. Res. Lett. 27, 1131–1134.
North Atlantic Oscillation modulates total ozone winter trends.Crossref | GoogleScholarGoogle Scholar |

Angell J. K. (1997). Estimated impact of Agung, El Chichon and Pinatubo volcanic eruptions on global and regional total ozone after adjustment for the QBO. Geophys. Res. Lett. 24, 647–650.
Estimated impact of Agung, El Chichon and Pinatubo volcanic eruptions on global and regional total ozone after adjustment for the QBO.Crossref | GoogleScholarGoogle Scholar |

Angell J. K. Korshover J. Planet W. G. (1985). Ground-based and satellite evidence for a pronounced ozone-minimum in early 1983 and responsible atmospheric layers. Mon. Wea. Rev. 113, 641–646.
Ground-based and satellite evidence for a pronounced ozone-minimum in early 1983 and responsible atmospheric layers.Crossref | GoogleScholarGoogle Scholar |

Aquila V. Oman, L. D. Stolarski, R. Douglass, A. R. Newman, P. A. (2013). The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at Southern and Northern Midlatitudes. J. Atmos. Sci. 70, 894–900.
The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at Southern and Northern Midlatitudes.Crossref | GoogleScholarGoogle Scholar |

Arblaster, J. M., Gillett, N. P. (Lead Authors), Calvo, N., Forster, P. M., Polvani, L. M., Son, S.-W., Waugh, D. W., and Young, P. J. (2014). Chapter 4: Stratospheric ozone changes and climate. In ‘Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55’. (World Meteorological Organization: Geneva, Switzerland.)

Baldwin M. P. Dunkerton T. J. (1998). Quasi-biennial modulations of the southern hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25, 3343–3346.
Quasi-biennial modulations of the southern hemisphere stratospheric polar vortex.Crossref | GoogleScholarGoogle Scholar |

BAS (British Antarctic Survey) (2019). Provisional Monthly Mean Ozone Values for Halley [online]. Available at https://legacy.bas.ac.uk/met/jds/ozone/index.html#data [Verified 15 May 2020].

Blunden J. Arndt. D. S. (2015). State of the climate in 2014. Bull. Am. Meteor. Soc. 96, S1–S267.
State of the climate in 2014.Crossref | GoogleScholarGoogle Scholar |

Dameris, M. and Godin-Beekmann, S. (Lead Authors), Alexander, S., Braesicke, P., Chipperfield, M., de Laat, A. T. J., Orsolini, Y., Rex, M. and Santee, M. L. (2014). Chapter 3: Update on Polar ozone: past, present, and future. In ‘Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55’. (World Meteorological Organization: Geneva, Switzerland.)

Deshler T. Adriani A. Gobbi G. P. Hofmann D. J. DiDonfrancesco G. Johnson B. J. (1992). Volcanic aerosol and ozone depletion within the Antarctic polar vortex during the austral spring of 1991. Geophys. Res. Lett. 19, 1819–1822.
Volcanic aerosol and ozone depletion within the Antarctic polar vortex during the austral spring of 1991.Crossref | GoogleScholarGoogle Scholar |

Fogt R. L. Perlwitz J. Pawson S. Olsen M. A. (2009). Intra-annual relationships between polar ozone and the SAM. Geophys. Res. Lett. 36, L04707.
Intra-annual relationships between polar ozone and the SAM.Crossref | GoogleScholarGoogle Scholar |

Fortuin J. P. F. Kelder H. (1998). An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res. 103, 31709–31734.
An ozone climatology based on ozonesonde and satellite measurements.Crossref | GoogleScholarGoogle Scholar |

Fraser, P., Krummel, P., Steele, P., Trudinger, C., Etheridge, D., Derek, D., O’Doherty, S., Simmonds, P., Miller, B., Muhle, J., Weiss, R., Oram, D., Prinn, R., and Wang, R. (2014). Equivalent effective stratospheric chlorine from Cape Grim Air Archive, Antarctic firn and AGAGE global measurements of ozone depleting substances. In ‘Baseline Atmospheric Program (Australia) 2009–2010’. (Eds N. Derek, P. Krummel and S. Cleland) pp. 17–23. (Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research: Melbourne, Vic., Australia.)

Kanamitsu M. Ebisuzaki W. Woollen J. Yang S.-K. Hnilo J. J. Fiorino M. Potter G. L. (2002). NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1643.
NCEP-DEO AMIP-II Reanalysis (R-2).Crossref | GoogleScholarGoogle Scholar |

Klekociuk A. R. Tully M. B. Alexander S. P. Dargaville R. J. Deschamps L. L. Fraser P. J. Gies H. P. Henderson S. I. Javorniczky J. Krummel P. B. Petelina S. V. Shanklin J. D. Siddaway J. M. Stone K. A. (2011). The Antarctic ozone hole during 2010. Aust. Met. Oceanog. J. 61, 253–267.
The Antarctic ozone hole during 2010.Crossref | GoogleScholarGoogle Scholar |

Klekociuk A. R. Tully M. B. Krummel P. B. Gies H. P. Petelina S. V. Alexander S. P. Deschamps L. L. Fraser P. J. Henderson S. I. Javorniczky J. Shanklin J. D. Siddaway J. M. Stone K. A. (2014a). The Antarctic ozone hole during 2011. Aust. Met. Oceanog. J. 64, 293–311.
The Antarctic ozone hole during 2011.Crossref | GoogleScholarGoogle Scholar |

Klekociuk A. R. Tully M. B. Krummel P. B. Gies H. P. Alexander S. P. Fraser P. J. Henderson S. I. Javorniczky J. Petelina S. V. Shanklin J. D. Schofield R. Stone K. A. (2014b). The Antarctic ozone hole during 2012. Aust. Met. Oceanog. J. 64, 313–330.
The Antarctic ozone hole during 2012.Crossref | GoogleScholarGoogle Scholar |

Klekociuk A. R. Tully M. B. Krummel P. B. Gies H. P. Alexander S. P. Fraser P. J. Henderson S. I. Javorniczky J. Shanklin J. D. Schofield R. Stone K. A. (2015). The Antarctic ozone hole during 2013. Aust. Met. Oceanog. J. 65, 247–266.
The Antarctic ozone hole during 2013.Crossref | GoogleScholarGoogle Scholar |

Krummel, P. B., Fraser, P. J. and Derek, N. (2015). The 2014 Antarctic Ozone Hole and Ozone Science Summary: Final Report. iv, 26 pp. (Report prepared for the Australian Government Department of the Environment, CSIRO, Australia.). Available at http://www.environment.gov.au/protection/ozone/publications/antarctic-ozone-hole-summary-reports [Verified 30 April 2020].

Manney G. L. Daffer W. H. Zawodny J. M. Bernath P. F. Hoppel K. W. Walker K. A. Knosp B. W. Boone C. Remsberg E. E. Santee M. L. Harvey V. L. Pawson S. Jackson D. R. Deaver L. McElroy C. T. McLinden C. A. Drummond J. R. Pumphrey H. C. Lambert A. Schwartz M. J. Froidevaux L. McLeod S. Takacs L. L. Suarez M. J. Trepte C. R. Cuddy D. C. Livesey N. J. Harwood R. S. Waters J. W. (2007). Solar occultation satellite data and derived meteorological products: sampling issues and comparisons with Aura Microwave Limb Sounder. J. Geophys. Res. 112, D24S50.
Solar occultation satellite data and derived meteorological products: sampling issues and comparisons with Aura Microwave Limb Sounder.Crossref | GoogleScholarGoogle Scholar |

Marshall G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143.
Trends in the Southern Annular Mode from observations and reanalyses.Crossref | GoogleScholarGoogle Scholar |

Miyagawa K. Petropavlovskikh I. Evans R. D. Long C. Wild J. Manney G. L. Daffer W. H. (2014). Long-term changes in the upper stratospheric ozone at Syowa, Antarctica. Atmos. Chem. Phys. 14, 3945–3968.
Long-term changes in the upper stratospheric ozone at Syowa, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Nash E. R. Newman P. A. Rosenfield J. E. Schoeberl M. R. (1996). An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. 101, 9471–9478.
An objective determination of the polar vortex using Ertel’s potential vorticity.Crossref | GoogleScholarGoogle Scholar |

Schwartz M. J. Lambert A. Manney G. L. Read W. G. Livesey N. J. Froidevaux L. Ao C. O. Bernath P. F. Boone C. D. Cofield R. E. Daffer W. H. Drouin B. J. Fetzer E. J. Fuller R. A. Jarnot R. F. Jiang J. H. Jiang Y. B. Knosp B. W. Krüger K. R. Li J.-L. F. Mlynczak M. G. Pawson S. Russell J. M. Santee M. L. Snyder W. V. Stek P. C. Thurstans R. P. Tompkins A. M. Wagner P. A. Walker K. A. Waters J. W. Wu D. L. (2008). Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res. 113, D15S11.
Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements.Crossref | GoogleScholarGoogle Scholar |

Swinbank R. O’Neill A. A. (1994). Stratosphere-troposphere data assimilation system. Mon. Wea. Rev. 122, 686–702.
Stratosphere-troposphere data assimilation system.Crossref | GoogleScholarGoogle Scholar |

Thompson D. W. J. Baldwin M. P. Solomon S. (2005). Stratosphere-troposphere coupling in the southern hemisphere. J. Atmos. Sci. 62, 708–715.
Stratosphere-troposphere coupling in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar |

Tully M. B. Klekociuk A. R. Deschamps L. L. Henderson S. I. Krummel P. B. Fraser P. J. Shanklin J. D. Downey A. H. Gies H. P. Javorniczky J. (2008). The 2007 Antarctic ozone hole. Aust. Met. Mag. 57, 279–298.

Tully M. B. Klekociuk A. R. Alexander S. P. Dargaville R. J. Deschamps L. L. Fraser P. J. Gies H. P. Henderson S. I. Javorniczky J. Krummel P. B. Petelina S. V. Shanklin J. D. Siddaway J. M. Stone K. A. (2011). The Antarctic ozone hole during 2008 and 2009. Aust. Met. Oceanog. J. 61, 77–90.
The Antarctic ozone hole during 2008 and 2009.Crossref | GoogleScholarGoogle Scholar |

Watson P. A. G. Gray L. G. (2014). How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci. 71, 391–409.
How does the quasi-biennial oscillation affect the stratospheric polar vortex?Crossref | GoogleScholarGoogle Scholar |