Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH FRONT (Open Access)

The Antarctic ozone hole during 2015 and 2016

Matthew B. Tully A , Andrew R. Klekociuk B C J , Paul B. Krummel D , H. Peter Gies E , Simon P. Alexander B C , Paul J. Fraser A , Stuart I. Henderson E , Robyn Schofield F G , Jonathon D. Shanklin H and Kane A. Stone I
+ Author Affiliations
- Author Affiliations

A Bureau of Meteorology, Melbourne, Vic., Australia.

B Antarctica and the Global System, Australian Antarctic Division, 203 Channel Highway, Kingston, Tas. 7050, Australia.

C Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tas., Australia.

D Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Vic., Australia.

E Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Vic., Australia.

F School of Earth Sciences, University of Melbourne, Melbourne, Vic., Australia.

G ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW, Australia.

H British Antarctic Survey, Cambridge, United Kingdom.

I Massachusetts Institute of Technology, Cambridge, MA, United States of America.

J Corresponding author. Email: Andrew.Klekociuk@aad.gov.au

Journal of Southern Hemisphere Earth Systems Science 69(1) 16-28 https://doi.org/10.1071/ES19021
Submitted: 22 January 2018  Accepted: 13 May 2019   Published: 11 June 2020

Journal Compilation © BoM 2019 Open Access CC BY-NC-ND

Abstract

We reviewed the 2015 and 2016 Antarctic ozone holes, making use of a variety of ground-based and space-based measurements of ozone and ultraviolet radiation, supplemented by meteorological reanalyses. The ozone hole of 2015 was one of the most severe on record with respect to maximum area and integrated deficit and was notably long-lasting, with many values above previous extremes in October, November and December. In contrast, all assessed metrics for the 2016 ozone hole were at or below their median values for the 37 ozone holes since 1979 for which adequate satellite observations exist. The 2015 ozone hole was influenced both by very cold conditions and enhanced ozone depletion caused by stratospheric aerosol resulting from the April 2015 volcanic eruption of Calbuco (Chile).


References

Baldwin, M. P., and Dunkerton, T. J. (1998). Quasi-biennial modulations of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25, 3343–3346.
Quasi-biennial modulations of the Southern Hemisphere stratospheric polar vortex.Crossref | GoogleScholarGoogle Scholar |

BAS (British Antarctic Survey) (2015). Provisional Monthly Mean Ozone Values for Halley [online]. Available at http://www.antarctica.ac.uk/met/jds/ozone/data/ZOZ5699.DAT [Verified 28 November 2015].

Douglass, A. R., Newman, P. A., and Solomon, S. (2014). The Antarctic ozone hole: an update. Phys. Today 67, 42–48.
The Antarctic ozone hole: an update.Crossref | GoogleScholarGoogle Scholar |

Fortuin, J. P. F., and Kelder, H. (1998). An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res. 103, 31709–31734.
An ozone climatology based on ozonesonde and satellite measurements.Crossref | GoogleScholarGoogle Scholar |

Fraser, P., Krummel, P., Steele, P., Trudinger, C., Etheridge, D., Derek, D., O’Doherty, S., Simmonds, P., Miller, B., Muhle, J., Weiss, R., Oram, D., Prinn, R., and Wang R. (2014). Equivalent effective stratospheric chlorine from Cape Grim Air Archive, Antarctic firn and AGAGE global measurements of ozone depleting substances. In ‘Baseline Atmospheric Program (Australia) 2009–2010’. (Eds N. Derek, P. Krummel, and S. Cleland.) pp. 17–23. (Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research: Melbourne, Vic., Australia.)

Ivy, D. J., Solomon, S., Kinnison, D., Mills, M. J., Schmidt, A., and Neely, R. R. (2017). The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophys. Res. Lett. 44, 2556–2561.
The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model.Crossref | GoogleScholarGoogle Scholar |

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L. (2002). NCEP-DEO AMIP-II reanalysis (R-2). Bull. Am. Met. Soc. 83, 1631–1643.
NCEP-DEO AMIP-II reanalysis (R-2).Crossref | GoogleScholarGoogle Scholar |

Kirner, O., Müller, R., Ruhnke, R., and Fischer, H. (2015). Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring. Atmos. Chem. Phys. 15, 2019–2030.
Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Alexander, S. P., Dargaville, R. J., Deschamps, L. L., Fraser, P. J., Gies, H. P., Henderson, S. I., Javorniczky, J., Krummel, P. B., Petelina, S. V., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2011). The Antarctic Ozone hole during 2010. Aust. Met. Oceanog. J. 61, 253–267.
The Antarctic Ozone hole during 2010.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Petelina, S. V., Alexander, S. P., Deschamps, L. L., Fraser, P. J., Henderson, S. I., Javorniczky, J., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2014a). The Antarctic ozone hole during 2011. Aust. Met. Oceanog. J. 64, 293–311.
The Antarctic ozone hole during 2011.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Javorniczky, J., Petelina, S. V., Shanklin, J. D., Schofield, R., and Stone, K. A. (2014b). The Antarctic ozone hole during 2012. Aust. Met. Oceanog. J. 64, 313–330.
The Antarctic ozone hole during 2012.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Javorniczky, J., Shanklin, J. D., Schofield, R., and Stone, K. A. (2015). The Antarctic ozone hole during 2013. Aust. Met. Oceanog. J. 65, 247–266.
The Antarctic ozone hole during 2013.Crossref | GoogleScholarGoogle Scholar |

Krummel, P. B., Fraser, P. J. and Derek, N. (2016). The 2015 Antarctic ozone hole and ozone science summary: final report. (Report prepared for the Australian Government Department of the Environment, CSIRO: Australia.) iv, 27 pp. Available at http://www.environment.gov.au/protection/ozone/publications/antarctic-ozone-hole-summary-reports [Verified 21 April 2020].

Krummel, P. B., Fraser P. J. and Derek, N. (2017). The 2016 Antarctic ozone hole summary: final report. (Report prepared for the Australian Government Department of the Environment and Energy, CSIRO: Australia.) v, 28 pp. Available at http://www.environment.gov.au/protection/ozone/publications/antarctic-ozone-hole-summary-reports [Verified 21 April 2020].

Krummel, P. B., Klekociuk, A. R., Tully, M. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Schofield, R., Shanklin, J. D., and Stone, K. A. (2019). ozone hole during 2014. J. South. Hemisph. Earth Syst. Sci. 69, 1–15.
ozone hole during 2014.Crossref | GoogleScholarGoogle Scholar |

Langematz, U., Schmidt, F., Kunze, M., Bodeker, G. E., and Braesicke, P. (2016). Antarctic ozone depletion between 1960 and 1980 in observations and chemistry–climate model simulations. Atmos. Chem. Phys. 16, 15619–15627.
Antarctic ozone depletion between 1960 and 1980 in observations and chemistry–climate model simulations.Crossref | GoogleScholarGoogle Scholar |

Manney, G. L., Daffer, W. H., Zawodny, J. M., Bernath, P. F., Hoppel, K. W., Walker, K. A., Knosp, B. W., Boone, C., Remsberg, E. E., Santee, M. L., Harvey, V. L., Pawson, S., Jackson, D. R., Deaver, L., McElroy, C. T., McLinden, C. A., Drummond, J. R., Pumphrey, H. C., Lambert, A., Schwartz, M. J., Froidevaux, L., McLeod, S., Takacs, L. L., Suarez, M. J., Trepte, C. R., Cuddy, D. C., Livesey, N. J., Harwood, R. S., and Waters, (2007). Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder. J. Geophys. Res. 112, D24S50.
Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder.Crossref | GoogleScholarGoogle Scholar |

Marshall, G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143.
Trends in the Southern Annular Mode from observations and reanalyses.Crossref | GoogleScholarGoogle Scholar |

Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R. (1996). An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. 101, 9471–9478.
An objective determination of the polar vortex using Ertel’s potential vorticity.Crossref | GoogleScholarGoogle Scholar |

Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K. R., Li, J.-L. F., Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and Wu, D. L. (2008). Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res. 113, D15S11.
Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Haskins, J., Ivy, D. J., and Min, F. (2014). Fundamental differences between Arctic and Antarctic ozone depletion. Proc. Natl. Acad. Sci. USA 111, 6220–6225.
Fundamental differences between Arctic and Antarctic ozone depletion.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Kinnison, D., Bandoro, J., and Garcia, R. (2015). Simulation of polar ozone depletion: an update. J. Geophys. Res. Atmos 120, 7958–7974.
Simulation of polar ozone depletion: an update.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., and Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science 252, 269–274.
Emergence of healing in the Antarctic ozone layer.Crossref | GoogleScholarGoogle Scholar |

Stone, K. A., Solomon, S., Kinnison, D. E., Pitts, M. C., Poole, L. R., Mills, M. J., Schmidt, A., Neely, R. R., Ivy, D., Schwartz, M. J., Vernier, J.-P., Johnson, B. J., Tully, M. B., Klekociuk, A. R., König-Langlo, G., and Hagiya, S. (2017). the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015. J. Geophys. Res. 122, 11862–11879.
the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Douglass, A. R., Newman, P. A., and Steenrod, S. D. (2014). Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. J. Geophys. Res. Atmos. 119, 14098–14109.
Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Oman, L. D., Douglass, A. R., and Coy, L. (2015). Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophys. Res. Lett. 42, 4216–4223.
Modulation of Antarctic vortex composition by the quasi-biennial oscillation.Crossref | GoogleScholarGoogle Scholar |

Swinbank, R., and O’Neill, A. A. (1994). Stratosphere-troposphere data assimilation system. Mon. Wea. Rev. 122, 686–702.
Stratosphere-troposphere data assimilation system.Crossref | GoogleScholarGoogle Scholar |

Tully, M. B., Klekociuk, A. R., Deschamps, L. L., Henderson, S. I., Krummel, P. B., Fraser, P. J., Shanklin, J. D., Downey, A. H., Gies, H. P., and Javorniczky, J. (2008). The 2007 Antarctic ozone hole. Aust. Met. Mag. 57, 279–298.

Tully, M. B., Klekociuk, A. R., Alexander, S. P., Dargaville, R. J., Deschamps, L. L., Fraser, P. J., Gies, H. P., Henderson, S. I., Javorniczky, J., Krummel, P. B., Petelina, S. V., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2011). The Antarctic ozone hole during 2008 and 2009. Aust. Met. Oceanog. J. 61, 77–90.
The Antarctic ozone hole during 2008 and 2009.Crossref | GoogleScholarGoogle Scholar |

Watson, P. A. G., and Gray, L. G. (2014). How does the Quasi-Biennial Oscillation affect the stratospheric polar vortex. J. Atmos. Sci. 71, 391–409.
How does the Quasi-Biennial Oscillation affect the stratospheric polar vortex.Crossref | GoogleScholarGoogle Scholar |

Weber, M., Steinbrecht, W., Roth, C., Coldewey-Egbers, M., Degenstein, D., Fioletov, Y. E., Frith, S. M., Froidevaux, L., de Laat, J., Long, C. S., Loyola, D., and Wild, J. D. (2016). Stratospheric Ozone [in “State of the Climate in 2015”]. Bull. Am. Meteor. Soc. 97, S49–S51.

Weber, M., Steinbrecht, W., Frith, S. M., Tweedy, O., Coldewey-Egbers, M., Davis, S., Degenstein, D., Fioletov, Y. E., Froidevaux, L., de Laat, J., Long, C. S., Loyola, D., Roth, C., and Wild, J. D. (2017). Stratospheric ozone [in “State of the Climate in 2016”]. Bull. Am. Meteor. Soc. 98, S49–S51.
Stratospheric ozone [in “State of the Climate in 2016”].Crossref | GoogleScholarGoogle Scholar |

Zhu, Y., Toon, O. B., Pitts, M. C., Lambert, A., Bardeen, C., and Kinnison, D. E. (2017). Comparing simulated PSC optical properties with CALIPSO observations during the 2010 Antarctic winter. J. Geophys. Res. Atmos. 122, 1175–1202.
Comparing simulated PSC optical properties with CALIPSO observations during the 2010 Antarctic winter.Crossref | GoogleScholarGoogle Scholar |