Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH FRONT (Open Access)

Trends in Antarctic ozone hole metrics 2001–17

Matthew B. Tully A E , Paul B. Krummel B and Andrew R. Klekociuk C D
+ Author Affiliations
- Author Affiliations

A Bureau of Meteorology, GPO Box 1289, Melbourne, Vic. 3001, Australia.

B Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Vic., Australia.

C Antarctica and the Global System, Australian Antarctic Division, Kingston, ACT, Australia.

D Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tas., Australia.

E Corresponding author. Email: matt.tully@bom.gov.au

Journal of Southern Hemisphere Earth Systems Science 69(1) 52-56 https://doi.org/10.1071/ES19020
Submitted: 22 January 2018  Accepted: 13 May 2019   Published: 11 June 2020

Journal Compilation © BoM 2019 Open Access CC BY-NC-ND

Abstract

Linear trends over the years 2001–17 are reported of a number of standard metrics used to describe the severity of the Antarctic ozone hole, both with and without a simple adjustment to account for meteorological variability. The trends were compared to those from the years 1979–2001. All metrics considered showed a trend towards reduced ozone depletion since 2001, at significance levels ranging from 2.4 to 3.9 standard errors of the trend after the adjustment was performed. The adjustment for meteorological variability had little effect on the values of the trends but did substantially reduce the scatter and, therefore, uncertainty of the trends.


References

Bodeker, G. E. (2002). Dynamical containment of Antarctic ozone depletion. Geophys. Res. Lett. 29, 1098.
Dynamical containment of Antarctic ozone depletion.Crossref | GoogleScholarGoogle Scholar |

Chipperfield, M. P., Bekki, S., Dhomse, S., Harris, N. R. P., Hassler, B., Hossaini, R., Steinbrecht, W., Thiéblemont, R., and Weber, M. (2017). Detecting recovery of the stratospheric ozone layer. Nature 549, 211–218.
Detecting recovery of the stratospheric ozone layer.Crossref | GoogleScholarGoogle Scholar |

de Laat, A. T. J., van der, A, R. J., and van Weele, M. (2015). Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a “big data” approach to multivariate regressions. Atmos. Chem. Phys. 15, 79–97.
Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a “big data” approach to multivariate regressions.Crossref | GoogleScholarGoogle Scholar |

de Laat, A. T. J., van Weele, M., and van der, A, R. J. (2017). Onset of stratospheric ozone recovery in the Antarctic ozone hole in assimilated daily total ozone columns. J. Geophys. Res.: Atmos. 122, 11,880–11,899.
Onset of stratospheric ozone recovery in the Antarctic ozone hole in assimilated daily total ozone columns.Crossref | GoogleScholarGoogle Scholar |

Falk, S., Sinnhuber, B.-M., Krysztofiak, G., Jöckel, P., Graf, P., and Lennartz, S. T. (2017). Brominated VSLS and their influence on ozone under a changing climate. Atmos. Chem. Phys. 17, 2017–11329.
Brominated VSLS and their influence on ozone under a changing climate.Crossref | GoogleScholarGoogle Scholar |

Fernandez, R. P., Kinnison, D. E., Lamarque, J.-F., Tilmes, S., and Saiz-Lopez, A. (2017). Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century. Atmos. Chem. Phys. 17, 1673–1688.
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century.Crossref | GoogleScholarGoogle Scholar |

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R. H., Wargan, K., Coy, L., Cullather, R. I., Akella, S. R., Bachard, V., Conaty, A. L., da Silva, A., Gu, W., Koster, R. D., Lucchesi, R. A., Merkova, D., Partyka, G. S., Pawson, S., Putman, W. M., Rienecker, M. M, Schubert, S. D., Sienkiewicz, M. E., and Zhao, B. (2017). The modern-era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454.
The modern-era Retrospective analysis for Research and Applications, Version 2 (MERRA-2).Crossref | GoogleScholarGoogle Scholar |

Hossaini, R., Chipperfield, M. P., Montzka, S. A., Leeson, A. A., Dhomse, S. S., and Pyle, J. A. (2017). The increasing threat to stratospheric ozone from dichloromethane. Nat. Commun. 8, 15962.
The increasing threat to stratospheric ozone from dichloromethane.Crossref | GoogleScholarGoogle Scholar |

Ivy, D. J., Solomon, S., Kinnison, D., Mills, M. J., Schmidt, A., and Neely, R. R. (2017). The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophys. Res. Lett. 44, 2556–2561.
The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model.Crossref | GoogleScholarGoogle Scholar |

Keeble, J., Brown, H., Abraham, N. L., Harris, N. R. P., and Pyle, J. A. (2017). On ozone trend detection: using coupled chemistry-climate simulations to investigate early signs of total column ozone recovery. Atmos. Chem. Phys. 18, 7625–7637.
On ozone trend detection: using coupled chemistry-climate simulations to investigate early signs of total column ozone recovery.Crossref | GoogleScholarGoogle Scholar |

Knibbe, J. S., van der, A, R. J., and de Laat, A. T. J. (2014). Spatial regression analysis on 32 years of total column ozone data. Atmos. Chem. Phys. 14, 8461–8482.
Spatial regression analysis on 32 years of total column ozone data.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Alexander, S. P., Dargaville, R. J., Deschamps, L. L., Fraser, P. J., Gies, H. P., Henderson, S. I., Javorniczky, J., Krummel, P. B., Petelina, S. V., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2011). The Antarctic ozone hole during 2010. Aust. Meteorol. Oceanogr. J. 61, 253–267.
The Antarctic ozone hole during 2010.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Petelina, S. V., Alexander, S. P., Deschamps, L. L., Fraser, P. J., Henderson, S. I., Javorniczky, J., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2014a). The Antarctic ozone hole during 2011. Aust. Meteorol. Oceanogr. J. 64, 293–311.
The Antarctic ozone hole during 2011.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Javorniczky, J., Petelina, S. V., Shanklin, J. D., Schofield, R., and Stone, K. A. (2014b). The Antarctic ozone hole during 2012. Austr. Meteorol. Oceanogr. J. 64, 313–330.
The Antarctic ozone hole during 2012.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Javorniczky, J., Shanklin, J. D., Schofield, R., and Stone, K. A. (2015). The Antarctic ozone hole during 2013. Austr. Meteorol. Oceanogr. J. 65, 247–266.
The Antarctic ozone hole during 2013.Crossref | GoogleScholarGoogle Scholar |

Kuttippurath, J., Lefèvre, F., Pommereau, J. -P., Roscoe, H. K., Goutail, F., Pazmiño, A., and Shanklin, J. D. (2013). Antarctic ozone loss in 1979-2010: first sign of ozone recovery. Atmos. Chem. Phys. 13, 1625–1635.
Antarctic ozone loss in 1979-2010: first sign of ozone recovery.Crossref | GoogleScholarGoogle Scholar |

Kuttippurath, J., and Nair, P. J. (2017). The signs of Antarctic ozone hole recovery. Sci. Rep. 7, 585.
The signs of Antarctic ozone hole recovery.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., and Nash, E. R. (2000). Quantifying the wave driving of the stratosphere. J. Geophys. Res.: Atmos. 105, 12485–12497.
Quantifying the wave driving of the stratosphere.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Kawa, S. R., and Nash, E. R. (2004). On the size of the Antarctic ozone hole. Geophys. Res. Lett. 31, L21104.
On the size of the Antarctic ozone hole.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., and Schauffler, S. M. (2006). When will the Antarctic ozone hole recover? Geophys. Res. Lett. 33, .
When will the Antarctic ozone hole recover?Crossref | GoogleScholarGoogle Scholar |

Oman, L. D., Douglass, A. R., Salawitch, R. J., Canty, T. P., Ziemke, J. R., and Manyin, M. (2016). The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone. Geophys. Res. Lett. 43, 9869–9876.
The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone.Crossref | GoogleScholarGoogle Scholar |

Pazmino, A., Godin-Beekmann, S., Hauchecorne, A., Claud, C., Khaykin, S., Goutail, F., Wolfram, E., Salvador, J., and Quel, E. (2017). Symptoms of total ozone recovery inside the Antarctic vortex during Austral spring. Atmos. Chem. Phys. 18, 2018–7572.
Symptoms of total ozone recovery inside the Antarctic vortex during Austral spring.Crossref | GoogleScholarGoogle Scholar |

Schoeberl, M. R., Douglass, A. R., Kawa, S. R., Dessler, A. E., Newman, P. A., Stolarski, R. S., Roche, A. E., Waters, J. W., and Russell, J. M. (1996). Development of the Antarctic ozone hole. J. Geophys. Res.: Atmos. 101, 20909–20924.
Development of the Antarctic ozone hole.Crossref | GoogleScholarGoogle Scholar |

Sinnhuber, B.-M., and Meul, S. (2015). Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends. Geophys. Res. Lett. 42, 2449–2456.
Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., and Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science 353, 269–274.
Emergence of healing in the Antarctic ozone layer.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Ivy, D., Gupta, M., Bandoro, J., Santer, B., Fu, Q., Lin, P., Garcia, R. R., Kinnison, D., and Mills, M. (2017). Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries. J. Geophys. Res.: Atmos. 122, 8940–8950.
Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries.Crossref | GoogleScholarGoogle Scholar |

Steinbrecht, W., Froidevaux, L., Fuller, R., Wang, R., Anderson, J., Roth, C., Bourassa, A., Degenstein, D., Damadeo, R., Zawodny, J., Frith, S., McPeters, R., Bhartia, P., Wild, J., Long, C., Davis, S., Rosenlof, K., Sofieva, V., Walker, K., Rahpoe, N., Rozanov, A., Weber, M., Laeng, A., von Clarmann, T., Stiller, G., Kramarova, N., Godin-Beekmann, S., Leblanc, T., Querel, R., Swart, D., Boyd, I., Hocke, K., Kämpfer, N., Maillard Barras, E., Moreira, L., Nedoluha, G., Vigouroux, C., Blumenstock, T., Schneider, M., García, O., Jones, N., Mahieu, E., Smale, D., Kotkamp, M., Robinson, J., Petropavlovskikh, I., Harris, N., Hassler, B., Hubert, D., and Tummon, F. (2017). An update on ozone profile trends for the period 2000 to 2016. Atmos. Chem. Phys. 17, 10675–10690.
An update on ozone profile trends for the period 2000 to 2016.Crossref | GoogleScholarGoogle Scholar |

Stone, K. A., Solomon, S., Kinnison, D. E., Pitts, M. C., Poole, L. R., Mills, M. J., Schmidt, A., Neely, R. R., Ivy, D., Schwartz, M. J., Vernier, J.-P., Johnson, B. J., Tully, M. B., Klekociuk, A. R., König-Langlo, G., and Hagiya, S. (2017). Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015. J. Geophys. Res.: Atmos. 122, 11862–11879.
Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Douglass, A. R., Newman, P. A., and Steenrod, S. D. (2014). Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. J. Geophys. Res.: Atmos. 119, 14098–14109.
Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Oman, L. D., Douglass, A. R., and Coy, L. (2015). Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophys. Res. Lett. 42, 4216–4223.
Modulation of Antarctic vortex composition by the quasi-biennial oscillation.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., and Douglass, A. R. (2018). Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from aura microwave limb sounder observations. Geophys. Res. Lett. 45, 382–390.
Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from aura microwave limb sounder observations.Crossref | GoogleScholarGoogle Scholar |

Tully, M. B., Klekociuk, A. R., Deschamps, L. L., Henderson, S. I., Krummel, P. B., Fraser, P. J., Shanklin, J. D., Downey, A. H., Gies, H. P., and Javorniczky, J. (2008). The 2007 Antarctic ozone hole. Austr. Meteorol. Mag. 57, 279–298.

Tully, M. B., Klekociuk, A. R., Alexander, S. P., Dargaville, R. J., Deschamps, L. L., Fraser, P. J., Gies, H. P., Henderson, S. I., Javorniczky, J., Krummel, P. B., Petelina, S. V., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2011). The Antarctic ozone hole during 2008 and 2009. Austr. Meteorol. Oceanogr. J. 61, 77–90.
The Antarctic ozone hole during 2008 and 2009.Crossref | GoogleScholarGoogle Scholar |

Yang, E. -S., Cunnold, D. M., Newchurch, M. J., Salawitch, R. J., McCormick, M. P., Russell, J. M., Zawodony, J. M., and Oltmans, S. J. (2008). First stage of Antarctic ozone recovery. J. Geophys. Res. 113, D20308.
First stage of Antarctic ozone recovery.Crossref | GoogleScholarGoogle Scholar |

Yang, X., Abraham, N. L., Archibald, A. T., Braesicke, P., Keeble, J., Telford, P. J., Warwick, N. J., and Pyle, J. A. (2014). How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons? Atmos. Chem. Phys. 14, 10431–10438.
How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?Crossref | GoogleScholarGoogle Scholar |