Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH FRONT (Open Access)

The Antarctic ozone hole during 2017

Andrew R. Klekociuk A B N , Matthew B. Tully C , Paul B. Krummel D , Oleksandr Evtushevsky E , Volodymyr Kravchenko E , Stuart I. Henderson F , Simon P. Alexander A B , Richard R. Querel G , Sylvia Nichol H , Dan Smale G , Gennadi P. Milinevsky E I , Asen Grytsai E , Paul J. Fraser D , Zheng Xiangdong J , H. Peter Gies F , Robyn Schofield K L and Jonathan D. Shanklin M
+ Author Affiliations
- Author Affiliations

A Antarctica and the Global System, Australian Antarctic Division, 203 Channel Highway, Kingston, Tas. 7050, Australia.

B Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tas., Australia.

C Bureau of Meteorology, Melbourne, Vic., Australia.

D Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Vic., Australia.

E Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

F Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Vic., Australia.

G National Institute of Water and Atmospheric Research, Lauder, New Zealand.

H National Institute of Water and Atmospheric Research, Wellington, New Zealand.

I International Centre of Future Science, Jilin University, Changchun, China.

J Chinese Academy of Meteorological Sciences, Beijing, China.

K School of Earth Sciences, University of Melbourne, Melbourne, Vic., Australia.

L ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW, Australia.

M British Antarctic Survey, Cambridge, United Kingdom.

N Corresponding author. Email: Andrew.Klekociuk@aad.gov.au

Journal of Southern Hemisphere Earth Systems Science 69(1) 29-51 https://doi.org/10.1071/ES19019
Submitted: 27 February 2018  Accepted: 12 March 2019   Published: 11 June 2020

Journal Compilation © BoM 2019 Open Access CC BY-NC-ND

Abstract

We review the 2017 Antarctic ozone hole, making use of various meteorological reanalyses, and in-situ, satellite and ground-based measurements of ozone and related trace gases, and ground-based measurements of ultraviolet radiation. The 2017 ozone hole was associated with relatively high-ozone concentrations over the Antarctic region compared to other years, and our analysis ranked it in the smallest 25% of observed ozone holes in terms of size. The severity of stratospheric ozone loss was comparable with that which occurred in 2002 (when the stratospheric vortex exhibited an unprecedented major warming) and most years prior to 1989 (which were early in the development of the ozone hole). Disturbances to the polar vortex in August and September that were associated with intervals of anomalous planetary wave activity resulted in significant erosion of the polar vortex and the mitigation of the overall level of ozone depletion. The enhanced wave activity was favoured by below-average westerly winds at high southern latitudes during winter, and the prevailing easterly phase of the quasi-biennial oscillation (QBO). Using proxy information on the chemical make-up of the polar vortex based on the analysis of nitrous oxide and the likely influence of the QBO, we suggest that the concentration of inorganic chlorine, which plays a key role in ozone loss, was likely similar to that in 2014 and 2016, when the ozone hole was larger than that in 2017. Finally, we found that the overall severity of Antarctic ozone loss in 2017 was largely dictated by the timing of the disturbances to the polar vortex rather than interannual variability in the level of inorganic chlorine.


References

Anton, M., Vilaplana, J. M., Kroon, M., Serrano, A., Parias, M., Cancillo, M. L., and de la Morena, B. A. (2010). The empirically corrected EP-TOMS total ozone data against Brewer measurements at El Arenosillo (southwestern Spain). IEEE Trans. Geosci. Remote Sens. 48, 3039–3045.
The empirically corrected EP-TOMS total ozone data against Brewer measurements at El Arenosillo (southwestern Spain).Crossref | GoogleScholarGoogle Scholar |

Baldwin, M. P., and Dunkerton, T. J. (1998). Quasi-biennial modulations of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25, 3343–3346.
Quasi-biennial modulations of the Southern Hemisphere stratospheric polar vortex.Crossref | GoogleScholarGoogle Scholar |

Baldwin, M. P., and Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584.
Stratospheric harbingers of anomalous weather regimes.Crossref | GoogleScholarGoogle Scholar |

Charney, J. G., and Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109.
Propagation of planetary-scale disturbances from the lower into the upper atmosphere.Crossref | GoogleScholarGoogle Scholar |

Chipperfield, M. P., Bekki, S., Dhomse, S., Harris, N. R. P., Hassler, B., Hossaini, R., Steinbrecht, W., Thiéblemont, R., and Weber, M. (2017). Detecting recovery of the stratospheric ozone layer. Nature 549, 211–218.
Detecting recovery of the stratospheric ozone layer.Crossref | GoogleScholarGoogle Scholar |

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597.
The ERA-Interim reanalysis: configuration and performance of the data assimilation system.Crossref | GoogleScholarGoogle Scholar |

Edmon, H. J., Hoskins, B. J., and McIntyre, M. E. (1980). Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci. 37, 2600–2616.
Eliassen-Palm cross sections for the troposphere.Crossref | GoogleScholarGoogle Scholar |

Evtushevsky, O. M., Klekociuk, A. R., Kravchenko, V. O., Milinevsky, G. P., and Grytsai, A. V. (2019). The influence of large amplitude planetary waves on the Antarctic ozone hole of austral spring 2017. J. South. Hemisph. Earth Syst. Sci. 69, 57–64.
The influence of large amplitude planetary waves on the Antarctic ozone hole of austral spring 2017.Crossref | GoogleScholarGoogle Scholar |

Fortuin, J. P. F., and Kelder, H. (1998). An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res. 103, 31709–31734.
An ozone climatology based on ozonesonde and satellite measurements.Crossref | GoogleScholarGoogle Scholar |

Fraser, P., Krummel, P., Steele, P., Trudinger, C., Etheridge, D., Derek, D., O’Doherty, S., Simmonds, P., Miller, B., Muhle, J., Weiss, R., Oram, D., Prinn, R., and Wang R. (2014). Equivalent effective stratospheric chlorine from Cape Grim Air Archive, Antarctic firn and AGAGE global measurements of ozone depleting substances. In ‘Baseline Atmospheric Program (Australia) 2009–2010’. (Eds N. Derek, P. Krummel, and S. Cleland) pp. 17–23. (Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research: Melbourne, Vic., Australia.)

Harvey, V. L., Pierce, R. B., and Hitchman, M. H. (2002). A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res. 107, 4442.
A climatology of stratospheric polar vortices and anticyclones.Crossref | GoogleScholarGoogle Scholar |

Holton, J. R., and Tan, H.-C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 37, 2200–2208.
The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb.Crossref | GoogleScholarGoogle Scholar |

Huck, P. E., McDonald, A. J., Bodeker, G. E., and Struthers, H. (2005). Interannual variability in Antarctic ozone depletion controlled by planetary waves and polar temperature. Geophys. Res. Lett. 32, L13819.
Interannual variability in Antarctic ozone depletion controlled by planetary waves and polar temperature.Crossref | GoogleScholarGoogle Scholar |

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteor. Soc. 77, 437–471.
The NCEP/NCAR 40-Year Reanalysis Project.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Alexander, S. P., Dargaville, R. J., Deschamps, L. L., Fraser, P. J., Gies, H. P., Henderson, S. I., Javorniczky, J., Krummel, P. B., Petelina, S. V., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2011). The Antarctic ozone hole during 2010. Aust. Met. Oceanog. J. 61, 253–267.
The Antarctic ozone hole during 2010.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Petelina, S. V., Alexander, S. P., Deschamps, L. L., Fraser, P. J., Henderson, S. I., Javorniczky, J., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2014a). The Antarctic ozone hole during 2011. Aust. Met. Oceanog. J. 64, 293––311.
The Antarctic ozone hole during 2011.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Javorniczky, J., Petelina, S. V., Shanklin, J. D., Schofield, R., and Stone, K. A. (2014b). The Antarctic ozone hole during 2012. Aust. Met. Oceanog. J. 64, 313–330.
The Antarctic ozone hole during 2012.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Javorniczky, J., Shanklin, J. D., Schofield, R., and Stone, K. A. (2015). The Antarctic ozone hole during 2013. Aust. Met. Oceanog. J. 65, 247–266.
The Antarctic ozone hole during 2013.Crossref | GoogleScholarGoogle Scholar |

Kohlhepp, R., Ruhnke, R., Chipperfield, M. P., De Mazière, M., Notholt, J., Barthlott, S., Batchelor, R. L., Blatherwick, R. D., Blumenstock, Th., Coffey, M. T., Demoulin, P., Fast, H., Feng, W., Goldman, A., Griffith, D. W. T., Hamann, K., Hannigan, J. W., Hase, F., Jones, N. B., Kagawa, A., Kaiser, I., Kasai, Y., Kirner, O., Kouker, W., Lindenmaier, R., Mahieu, E., Mittermeier, R. L., Monge-Sanz, B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Raffalski, U., Reddmann, Th., Rettinger, M., Rinsland, C. P., Rozanov, E., Schneider, M., Senten, C., Servais, C., Sinnhuber, B.-M., Smale, D., Strong, K., Sussmann, R., Taylor, J. R., Vanhaelewyn, G., Warneke, T., Whaley, C., Wiehle, M., and Wood, S. W. (2012). Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances. Atmos. Chem. Phys. 12, 3527–3556.
Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances.Crossref | GoogleScholarGoogle Scholar |

Kreuger, A. J., Stolarski, R. S., and Schoeberl, M. R. (1989). Formation of the 1988 Antarctic ozone hole. Geophys. Res. Lett. 16, 381–384.
Formation of the 1988 Antarctic ozone hole.Crossref | GoogleScholarGoogle Scholar |

Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., and Grytsai, Z. I. (2012). Quasi-stationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone. Atmos. Chem. Phys. 12, 2865–2879.
Quasi-stationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone.Crossref | GoogleScholarGoogle Scholar |

Krummel, P. B., Klekociuk, A. R., Tully, M. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Schofield, R., Shanklin, J. D., and Stone, K. A. (2019). The Antarctic ozone hole during 2014. J. South. Hemisph. Earth Syst. Sci. 69, 1–15.
The Antarctic ozone hole during 2014.Crossref | GoogleScholarGoogle Scholar |

Kurzeja, R. J. (1984). Spatial variability of total ozone at high latitudes in winter. J. Atmos. Sci. 41, 695–697.
Spatial variability of total ozone at high latitudes in winter.Crossref | GoogleScholarGoogle Scholar |

Kuttippurath, J., Kumar, P., Nair, P. J., and Chakraborty, A. (2018). Accuracy of satellite total column ozone measurements in polar vortex conditions: Comparison with ground-based observations in 1979–2013. Remote Sens. Environ. 209, 648–659.
Accuracy of satellite total column ozone measurements in polar vortex conditions: Comparison with ground-based observations in 1979–2013.Crossref | GoogleScholarGoogle Scholar |

McCormack, J. P., Miller, A. J., and Nagatini, R. (1998). Interannual variability in the spatial distribution of extratropical total ozone. Geophys. Res. Lett. 25, 2153–2156.
Interannual variability in the spatial distribution of extratropical total ozone.Crossref | GoogleScholarGoogle Scholar |

McPeters, R. D., Labow, G. J., and Johnson, B. J. (1997). A satellite-derived ozone climatology for balloonsonde estimation of total column ozone. J. Geophys. Res. 102, 8875–8885.
A satellite-derived ozone climatology for balloonsonde estimation of total column ozone.Crossref | GoogleScholarGoogle Scholar |

McPeters, R. D., Frith, S., and Labow, G. J. (2015). OMI total column ozone: extending the long-term data record. Atmos. Meas. Tech. 8, 4845–4850.
OMI total column ozone: extending the long-term data record.Crossref | GoogleScholarGoogle Scholar |

Manney, G. L., Daffer, W. H., Zawodny, J. M., Bernath, P. F., Hoppel, K. W., Walker, K. A., Knosp, B. W., Boone, C., Remsberg, E. E., Santee, M. L., Harvey, V. L., Pawson, S., Jackson, D. R., Deaver, L., McElroy, C. T., McLinden, C. A., Drummond, J. R., Pumphrey, H. C., Lambert, A., Schwartz, M. J., Froidevaux, L., McLeod, S., Takacs, L. L., Suarez, , Max, J., Trepte, C. R., Cuddy, , David, C., Livesey, N. J., Harwood, R. S., and Waters, J. W. (2007). Solar occultation satellite data and derived meteorological products: sampling issues and comparisons with Aura Microwave Limb Sounder. J. Geophys. Res. 112, D24S50.
Solar occultation satellite data and derived meteorological products: sampling issues and comparisons with Aura Microwave Limb Sounder.Crossref | GoogleScholarGoogle Scholar |

Marshall, G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143.
Trends in the Southern Annular Mode from observations and reanalyses.Crossref | GoogleScholarGoogle Scholar |

Martineau, P., and Son, S.-W. (2015). Onset of circulation anomalies during stratospheric vortex weakening events: the role of planetary-scale waves. J. Clim. 28, 7347–7370.
Onset of circulation anomalies during stratospheric vortex weakening events: the role of planetary-scale waves.Crossref | GoogleScholarGoogle Scholar |

Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R. (1996). An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. 101, 9471–9478.
An objective determination of the polar vortex using Ertel’s potential vorticity.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Nash, E. R., and Rosenfield, J. E. (2001). What controls the temperature in the Arctic stratosphere in the spring? J. Geophys. Res. 106, 19999–20010.
What controls the temperature in the Arctic stratosphere in the spring?Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., and Nash, E. R. (2005). The unusual Southern Hemisphere stratosphere winter of 2002. J. Atmos. Sci. 62, 614–628.
The unusual Southern Hemisphere stratosphere winter of 2002.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Kawa, S. R., and Nash, E. R. (2004). On the size of the Antarctic ozone hole. Geophys. Res. Lett. 31, L21104.
On the size of the Antarctic ozone hole.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Coy, L., Pawson, S., and Lait, L. R. (2016). The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett. 43, 8791–8797.
The anomalous change in the QBO in 2015–2016.Crossref | GoogleScholarGoogle Scholar |

Poli, P., Healy, S. B., and Dee, D. P. (2010). Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis. Q. J. R. Meteorol. Soc. 136, 1972–1990.
Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis.Crossref | GoogleScholarGoogle Scholar |

Polvani, L. M., and Waugh, D. W. (2004). Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Clim. 17, 3548–3554.
Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes.Crossref | GoogleScholarGoogle Scholar |

Portmann, R. W., Daniel, J. S., and Ravishankara, A. R. (2012). Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philos. Trans. R. Soc. B: Biol. Sci. 367, 1256–1264.
Stratospheric ozone depletion due to nitrous oxide: influences of other gases.Crossref | GoogleScholarGoogle Scholar |

Roscoe, H. K., Johnston, P. V ., Van Roozendael, M., Richter, A., Preston, K., Lambert, J. C., Hermans, C., de Kuyper, W., Dzenius, S., Winterath, T., Burrows, J., Sarkissian, A., Goutail, F., Pommereau, J. P., d’Almeida, E., Hottier, J., Coureul, C., Ramond, D., Pundt, I., Bartlet, L. M., Kerr, J. E., Elokhov, A., Giovanelli, G., Ravegnani, F., Premudan, M., Kostadinov, M., Erle, F., Wagner, T., Pfeilsticker, K., Kenntner, M., Marquand, L. C., Gil, M., Puentedura, O., Arlander, W., Kaastad-Hoiskar, B. A., Tellefsen, C. W., Heese, C. W., Jones, R. L., Aliwell, S. R., and Freshwater, R. A. (1999). Slant column measurements of O3 and NO2 during the NDSC intercomparison of zenith-sky UV visible spectrometers in June 1996. J. Atmos. Chem. 32, 281–314.
Slant column measurements of O3 and NO2 during the NDSC intercomparison of zenith-sky UV visible spectrometers in June 1996.Crossref | GoogleScholarGoogle Scholar |

Schauffler, S. M., Atlas, E. L., Donnelly, S. G., Andrews, A., Montzka, S. A., Elkins, J. W., Hurst, D. F., Romashkin, P. A., Dutton, G. S., and Stroud, V. (2003). Chlorine budget and partitioning during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE). J. Geophys. Res. 108, 4173.
Chlorine budget and partitioning during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE).Crossref | GoogleScholarGoogle Scholar |

Schoeberl, M. R., Douglass, A. R., Kawa, S. R., Dessler, A. E., Newman, P. A., Stolarski, R. S., Roche, A. E., Waters, J. W., and Russell, J. M. (1996). Development of the Antarctic ozone hole. J. Geophys. Res.: Atmos. 101, 20909–20924.
Development of the Antarctic ozone hole.Crossref | GoogleScholarGoogle Scholar |

Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K. R., Li, J.-L. F., Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and Wu, D. L. (2008). Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res. 113, D15S11.
Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Haskins, J., Ivy, D. J., and Min, F. (2014). Fundamental differences between Arctic and Antarctic ozone depletion. Proc. Natl. Acad. Sci. U.S.A. 111, 6220–6225.
Fundamental differences between Arctic and Antarctic ozone depletion.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., and Schmidt, A. (2016). Emergence of healing in the Antarctic ozone layer. Science 353, 269–274.
Emergence of healing in the Antarctic ozone layer.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Douglass, A. R., Newman, P. A., and Steenrod, S. D. (2014). Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. J. Geophys. Res. Atmos. 119, 14098–14109.
Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Oman, L. D., Douglass, A. R., and Coy, L. (2015). Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophys. Res. Lett. 42, 4216–4223.
Modulation of Antarctic vortex composition by the quasi-biennial oscillation.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., and Douglass, A. R. (2017). Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations. Geophys. Res. Lett. 44, .
Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations.Crossref | GoogleScholarGoogle Scholar |

Swinbank, R., and O’Neill, A. A. (1994). Stratosphere-troposphere data assimilation system. Mon. Wea. Rev. 122, 686–702.
Stratosphere-troposphere data assimilation system.Crossref | GoogleScholarGoogle Scholar |

Tully, M. B., Klekociuk, A. R., Deschamps, L. L., Henderson, S. I., Krummel, P. B., Fraser, P. J., Shanklin, J. D., Downey, A. H., Gies, H. P., and Javorniczky, J. (2008). The 2007 Antarctic ozone hole. Aust. Met. Mag. 57, 279–298.

Tully, M. B., Klekociuk, A. R., Alexander, S. P., Dargaville, R. J., Deschamps, L. L., Fraser, P. J., Gies, H. P., Henderson, S. I., Javorniczky, J., Krummel, P. B., Petelina, S. V., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2011). The Antarctic ozone hole during 2008 and 2009. Aust. Met. Oceanog. J. 61, 77–90.
The Antarctic ozone hole during 2008 and 2009.Crossref | GoogleScholarGoogle Scholar |

Tully, M. B., Klekociuk, A. R., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Schofield, R., Shanklin, J. D., and Stone, K. A. (2019a). The Antarctic ozone hole during 2015 and 2016. J. South. Hemisph. Earth Syst. Sci. 69, 16–28.
The Antarctic ozone hole during 2015 and 2016.Crossref | GoogleScholarGoogle Scholar |

Tully, M. B., Krummel, P. B., and Klekociuk, A. R. (2019b). Trends in Antarctic ozone hole metrics 2001–17. J. South. Hemisph. Earth Syst. Sci. 69, 52–56.
Trends in Antarctic ozone hole metrics 2001–17.Crossref | GoogleScholarGoogle Scholar |

Watson, P. A. G., and Gray, L. G. (2014). How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci. 71, 391–409.
How does the quasi-biennial oscillation affect the stratospheric polar vortex?Crossref | GoogleScholarGoogle Scholar |

WHO (World Health Organization) (2002). Global Solar UV Index: A Practical Guide. (WHO (World Health Organization): Geneva.)

Wirth, V. (1993). Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res. 98, 8873–8882.
Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature.Crossref | GoogleScholarGoogle Scholar |

Zhou, S., Miller, A. J., Wang, J., and Angell, J. K. (2002). Downward propagating temperature anomalies in the preconditioned polar stratosphere. J. Clim. 15, 781–792.
Downward propagating temperature anomalies in the preconditioned polar stratosphere.Crossref | GoogleScholarGoogle Scholar |