Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Seasonal climate summary for the southern hemisphere (spring 2016): strong negative Indian Ocean Dipole ends, bringing second wettest September to Australia

Blair Trewin A B and Catherine Ganter A
+ Author Affiliations
- Author Affiliations

A Bureau of Meteorology, GPO Box 1289, Melbourne, Vic., Australia.

B Corresponding author. Email: blair.trewin@bom.gov.au

Journal of Southern Hemisphere Earth Systems Science 69(1) 273-289 https://doi.org/10.1071/ES19013
Submitted: 8 August 2019  Accepted: 7 October 2019   Published: 11 June 2020

Journal Compilation © BoM 2019 Open Access CC BY-NC-ND

Abstract

This summary looks at the southern hemisphere and equatorial climate patterns for spring 2016, with particular attention given to the Australasian and equatorial regions of the Pacific and Indian Ocean basins. Spring 2016 was marked by the later part of a strong negative phase of the Indian Ocean Dipole, alongside cool neutral El Niño–Southern Oscillation conditions. September was exceptionally wet over much of Australia, contributing to a wet spring with near-average temperatures. The spring was one of the warmest on record over the southern hemisphere as a whole, with Antarctic Sea ice extent dropping to record low levels for the season.


References

Blunden J. Arndt D. S. (2017). State of the climate in 2016. Bull. Am. Met. Soc. 98, S1–S277.
State of the climate in 2016.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2016). Record September rains continue wet period in much of Australia. Special Climate Statement 58. (Bureau of Meteorology: Melbourne, Vic., Australia.)

Donald, A., Meinke, H., Power, B., Wheeler, M., and Ribbe, J. (2004). Forecasting with the Madden–Julian Oscillation and the applications for risk management. 4th International Crop Science Congress, Brisbane, 26 September–1 October 2004.

Grose M. R. Black M. Risbey J. S. Uhe P. Hope P. K. Haustein K. Mitchell D. (2018). Severe frosts in Western Australia in September 2016. Bull. Am. Met. Soc. 99, S150–S154.
Severe frosts in Western Australia in September 2016.Crossref | GoogleScholarGoogle Scholar |

Hansen J. Ruedy R. Sato M. Lo K. (2010). Global surface temperature change. Rev. Geophys. 48, RG4004.
Global surface temperature change.Crossref | GoogleScholarGoogle Scholar |

Hendon H. Thompson D. W. J. Wheeler M. C. (2007). Australian rainfall and surface temperature variations associated with the southern hemisphere annular mode. J. Clim. 20, 2452–2467.
Australian rainfall and surface temperature variations associated with the southern hemisphere annular mode.Crossref | GoogleScholarGoogle Scholar |

Hope P. Lim E.-P. Hendon H. Wang G. (2018). The effect of increasing CO2 on the extreme September 2016 rainfall across southeastern Australia. Bull. Am. Met. Soc. 99, S133–S138.
The effect of increasing CO2 on the extreme September 2016 rainfall across southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Huang B. Thorne P. W. Banzon V. F. Boyer T. Chepurin G. Lawrimore J. H. Menne M. J. Smith T. M. Vose R. S. Zhang H.-M. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations and intercomparisons. J. Clim. 30, 8179–8205.
Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations and intercomparisons.Crossref | GoogleScholarGoogle Scholar |

Kanamitsu M. Ebisuzaki W. Woollen J. Yang S.-K. Hnilo J. J. Fiorino M. Potter G. L. (2002). NCEP-DOE AMIPII Reanalysis (R-2). Bull. Am. Met. Soc. 83, 1631–1643.
NCEP-DOE AMIPII Reanalysis (R-2).Crossref | GoogleScholarGoogle Scholar |

Kuleshov Y. Qi L. Fawcett R. Jones D. (2009). Improving preparedness to natural hazards: Tropical cyclone prediction for the Southern Hemisphere. Adv. Geosci. 12, 127–143.

Lim E.-P. Hendon H. H. (2017). Causes and predictability of the negative Indian Ocean Dipole and its impact on La Niña during 2016. Nat. Sci. Rep. 7, 12619.
Causes and predictability of the negative Indian Ocean Dipole and its impact on La Niña during 2016.Crossref | GoogleScholarGoogle Scholar |

Lim E.-P. Hendon H. H. Thompson D. W. J. (2018). Seasonal evolution of stratosphere-troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. J. Geophys. Res. Atmos. 123, 12002–12016.
Seasonal evolution of stratosphere-troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate.Crossref | GoogleScholarGoogle Scholar |

Madden R. A. Julian P. R. (1971). Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28, 702–708.
Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific.Crossref | GoogleScholarGoogle Scholar |

Madden R. A. Julian P. R. (1972). Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci. 29, 1109–1123.
Description of global-scale circulation cells in the tropics with a 40-50 day period.Crossref | GoogleScholarGoogle Scholar |

Madden R. A. Julian P. R. (1994). Observations of the 40-50 day tropical oscillation: a review. Mon. Wea. Rev. 122, 814–837.
Observations of the 40-50 day tropical oscillation: a review.Crossref | GoogleScholarGoogle Scholar |

Morice C. P. Kennedy J. J. Rayner N. A. Jones P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101.
Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset.Crossref | GoogleScholarGoogle Scholar |

Pepler, A. (2016). Seasonal climate summary southern hemisphere (summer 2015-16): strong El Niño peaks and begins to weaken. J. South. Hemisph. Earth Syst. Sci. 66, 361–37910.22499/3.6604.001.

Risbey J. S. Pook M. J. McIntosh P. C. Wheeler M. C. Hendon H. H. (2009). On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev. 137, 3233–3253.
On the remote drivers of rainfall variability in Australia.Crossref | GoogleScholarGoogle Scholar |

Rosemond K. Tobin S. (2018). Seasonal climate summary for the southern hemisphere (autumn 2016): El Niño slips into neutral and a negative Indian Ocean Dipole develops. J. South. Hem. Earth Syst. Sci. 68, 124–146.
Seasonal climate summary for the southern hemisphere (autumn 2016): El Niño slips into neutral and a negative Indian Ocean Dipole develops.Crossref | GoogleScholarGoogle Scholar |

Saji N. H. Goswami B. N. Vinayachandran P. N. Yamagata T. (1999). A dipole mode in the tropical Indian Ocean. Nature 401, 360–363.
A dipole mode in the tropical Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Saji N. H. Yamagata T. (2003). Structure of SST and surface wind variability during Indian Ocean Dipole Mode years: COADS observations. J. Clim. 16, 2735–2751.
Structure of SST and surface wind variability during Indian Ocean Dipole Mode years: COADS observations.Crossref | GoogleScholarGoogle Scholar |

Smith T. M. Reynolds R. W. (2005). A global merged land air and sea surface temperature reconstruction based on historical observations (1880–1997). J. Clim. 18, 2021–2036.
A global merged land air and sea surface temperature reconstruction based on historical observations (1880–1997).Crossref | GoogleScholarGoogle Scholar |

Trewin B. C. (2018). Seasonal climate summary for the southern hemisphere (winter 2016): a strong negative Indian Ocean Dipole brings wet conditions to Australia. J. South. Hem. Earth Syst. Sci. 68, 101–123.
Seasonal climate summary for the southern hemisphere (winter 2016): a strong negative Indian Ocean Dipole brings wet conditions to Australia.Crossref | GoogleScholarGoogle Scholar |

Troup A. (1965). The southern oscillation. Q. J. Royal Met. Soc. 91, 490–506.
The southern oscillation.Crossref | GoogleScholarGoogle Scholar |

Wang G. Hendon H. H. (2007). Sensitivity of Australian rainfall to inter-El Niño variations. J. Clim. 20, 4211–4226.
Sensitivity of Australian rainfall to inter-El Niño variations.Crossref | GoogleScholarGoogle Scholar |

Wang G. Hendon H. H. Arblaster J. M. Lim E.-P. Abhik S. van Rensch P. (2019). Compounding tropical and stratospheric forcing of the record low Antarctic sea ice in 2016. Nat. Commun. 10, 13.
Compounding tropical and stratospheric forcing of the record low Antarctic sea ice in 2016.Crossref | GoogleScholarGoogle Scholar |

Wheeler M. Hendon H. (2004). An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Wea. Rev. 132, 1917–1932.
An all-season real-time multivariate MJO index: development of an index for monitoring and prediction.Crossref | GoogleScholarGoogle Scholar |

Wheeler M. C. Hendon H. H. Cleland S. Mienke H. Donald A. (2009). Impacts of the Madden-Julian Oscillation on Australian rainfall and circulation. J. Clim. 22, 1482–1498.
Impacts of the Madden-Julian Oscillation on Australian rainfall and circulation.Crossref | GoogleScholarGoogle Scholar |

Wolter, K., and Timlin, M. S. (1993). Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteorology, University of Oklahoma, pp. 52–57.

Wolter K. Timlin M. S. (1998). Measuring the strength of ENSO – how does 1997/98 rank? Weather 53, 315–324.
Measuring the strength of ENSO – how does 1997/98 rank?Crossref | GoogleScholarGoogle Scholar |