Using global navigation satellite system data for real-time moisture analysis and forecasting over the Australian region I. The system
John Le Marshall A B E , Robert Norman B , David Howard A , Susan Rennie A , Michael Moore C , Jan Kaplon D , Yi Xiao A , Kefei Zhang B , Carl Wang C , Ara Cate B , Paul Lehmann A , Xiaoming Wang B , Peter Steinle A , Chris Tingwell A , Tan Le A , Witold Rohm D and Diandong Ren AA Bureau of Meteorology, GPO Box 1289, Melbourne, Vic. 3001, Australia.
B RMIT University, Melbourne, Vic., Australia.
C Geoscience Australia, Canberra, ACT, Australia.
D Wroclaw University, Wroclaw, Poland.
E Corresponding author. Email: john.lemarshall@bom.gov.au
Journal of Southern Hemisphere Earth Systems Science 69(1) 161-171 https://doi.org/10.1071/ES19009
Submitted: 11 December 2018 Accepted: 11 July 2019 Published: 11 June 2020
Journal Compilation © BoM 2019 Open Access CC BY-NC-ND
Abstract
The use of high spatial and temporal resolution data assimilation and forecasting around Australia’s capital cities and rural land provided an opportunity to improve moisture analysis and forecasting. To support this endeavour, RMIT University and Geoscience Australia worked with the Bureau of Meteorology (BoM) to provide real-time GNSS (global navigation satellite system) zenith total delay (ZTD) data over the Australian region, from which a high-resolution total water vapour field for SE Australia could be determined. The ZTD data could play an important role in high-resolution data assimilation by providing mesoscale moisture data coverage from existing GNSS surface stations over significant areas of the Australian continent. The data were used by the BoM’s high-resolution ACCESS-C3 capital city numerical weather prediction (NWP) systems, the ACCESS-G3 Global system and had been used by the ACCESS-R2-Regional NWP model. A description of the data collection and analysis system is provided. An example of the application of these local GNSS data for a heavy rainfall event over SE Australia/Victoria is shown using the 1.5-km resolution ACCESS-C3 model, which was being prepared for operational use. The results from the test were assessed qualitatively, synoptically and also examined quantitatively using the Fractions Skills Score which showed the reasonableness of the forecasts and demonstrated the potential for improving rainfall forecasts over south-eastern Australia by the inclusion of ZTD data in constructing the moisture field. These data have been accepted for operational use in NWP.
References
Beggs, H., Zhong, A., Warren, G., Alves, O., Brassington, G., and Pugh, T. (2011). RAMSSA—an operational, high-resolution, Regional Australian Multi-Sensor Sea surface temperature Analysis over the Australian region. Aust. Meteorol. Ocean 61, 1–22.| RAMSSA—an operational, high-resolution, Regional Australian Multi-Sensor Sea surface temperature Analysis over the Australian region.Crossref | GoogleScholarGoogle Scholar |
Bengtsson, L., Robinson, G., Anthes, R., Aonashi, K., Dodson, A., Elgered, G., Gendt, G., Gurney, R., Jietai, M., Mitchell, C., Mlaki, M., Rhodin, A., Silvestrin, P., Ware, R., Watson, R., and Wergen, W. (2003). The use of GPS measurements for water vapour determination. Bull. Amer. Meteor. Soc. 84, 1249–1258.
| The use of GPS measurements for water vapour determination.Crossref | GoogleScholarGoogle Scholar |
Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B. E., and Schlatter, T. W. (2010). Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev. 138, 1319–1343.
| Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR and mesonet observations via the RUC hourly assimilation cycle.Crossref | GoogleScholarGoogle Scholar |
Bennitt, G., and Jupp, A. (2012). Operational assimilation of GPS zenith total delay observations into the met office numerical weather prediction models. Mon. Wea. Rev. 140, 2706–2719.
| Operational assimilation of GPS zenith total delay observations into the met office numerical weather prediction models.Crossref | GoogleScholarGoogle Scholar |
Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., and Ware, R. (1992). GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res. 97, 15787–15801.
| GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System.Crossref | GoogleScholarGoogle Scholar |
Boniface, K., Ducrocq, V., Jaubert, G., Yan, X., Brousseau, P., Masson, F., Champollion, C., Chery, J., and Doerflinger, E. (2009). Impact of high resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting. Ann. Geophys. 27, 2739–2753.
| Impact of high resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting.Crossref | GoogleScholarGoogle Scholar |
Chen, G., and Herring, T. A. (1997). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. 102, 20489–20502.
| Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data.Crossref | GoogleScholarGoogle Scholar |
Cucurull, L., Vandenberghe, F., Barker, D., Vilaclara, E., and Rius, A. (2004). Three-dimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the 14 December 2001 storm event over the Western Mediterranean Sea. Mon. Wea. Rev. 132, 749–763.
| Three-dimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the 14 December 2001 storm event over the Western Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |
Dach, R., Hugentobler, U., Fridez, P., and Meindl M. (Ed.). (2007). Bernese GPS software version 5.0. In: ‘User Manual’. (Astronomical Institute, University of Bern.) Available at http://www.bernese.unibe.ch/docs50/DOCU50.pdf [Verified 21 April 2020].
Dach, R., and Walser, P. (2015). Bernese GNSS software version 5.2 tutorial. In: ‘Processing Example, Introductory Course, Terminal Session’. (Astronomical Institute, University of Bern.) Available at http://www.bernese.unibe.ch/docs/TUTORIAL.pdf [Verified 21 April 2020].
De Haan, S. (2013). Assimilation of GNSS ZTD and radar radial velocity for the benefit of very-short-range regional weather forecasts. Q. J. R. Meteorol. Soc. 139, 2097–2107.
| Assimilation of GNSS ZTD and radar radial velocity for the benefit of very-short-range regional weather forecasts.Crossref | GoogleScholarGoogle Scholar |
De Pondeca, M. S., and Zou, X. (2001). A case study of the variational assimilation of GPS zenith delay observations into a mesoscale model. J. Climate Appl. Meteor. 40, 1559–1576.
| A case study of the variational assimilation of GPS zenith delay observations into a mesoscale model.Crossref | GoogleScholarGoogle Scholar |
Dousa, J., and Bennitt, G. (2013). Estimation and evaluation of hourly updated global GPS zenith total delays over ten months. GPS Solut. 17, 453–464.
| Estimation and evaluation of hourly updated global GPS zenith total delays over ten months.Crossref | GoogleScholarGoogle Scholar |
Ducrocq, V., Ricard, D., Lafore, J. P., and Orain, F. (2002). Storm-scale numerical rainfall prediction for five precipitating events over France: on the importance of the initial humidity field. Wea. Forecasting 17, 1236–1256.
| Storm-scale numerical rainfall prediction for five precipitating events over France: on the importance of the initial humidity field.Crossref | GoogleScholarGoogle Scholar |
Faccani, C., Ferretia, R., Pacione, R., Paolucci, T., Vespe, F., and Cucurull, L. (2005). Impact of a high density GPS network on the operational forecast. Adv. Geosci. 2, 73–76.
| Impact of a high density GPS network on the operational forecast.Crossref | GoogleScholarGoogle Scholar |
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., and Xie, P. (2015). Algorithm Theoretical Basis Document (ATBD) version 4.5. In: ‘NASA Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)’. Available at https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf [Verified 14 May 2020].
Jones, D. A., Wang, W., and Fawcett, R. (2009). High-quality spatial climate data-sets for Australia. Aust. Met. Oceanogr. J. 58, 233–248.
| High-quality spatial climate data-sets for Australia.Crossref | GoogleScholarGoogle Scholar |
Le Marshall, J., Jung, J., Lee, J., Barnet, C., and Maddy, Eric S. (2014). Improving tropospheric and stratospheric moisture analysis with hyperspectral infrared radiances. Aust. Met. Oceanogr. J. 64, 283–288.
| Improving tropospheric and stratospheric moisture analysis with hyperspectral infrared radiances.Crossref | GoogleScholarGoogle Scholar |
Macpherson, S. R., De blonde, G., Aparicio, J., and Casati, B. (2008). Impact of NOAA ground-based GPS observations on the Canadian Regional Analysis and Forecast System. Mon. Wea. Rev. 136, 2727–2746.
| Impact of NOAA ground-based GPS observations on the Canadian Regional Analysis and Forecast System.Crossref | GoogleScholarGoogle Scholar |
Mittermaier, M., and Roberts, N. (2010). Intercomparison of spatial forecast verification methods: identifying skillful spatial scales using the fractions skill score. Wea. Forecasting 25, 343–354.
| Intercomparison of spatial forecast verification methods: identifying skillful spatial scales using the fractions skill score.Crossref | GoogleScholarGoogle Scholar |
Neill, A. E. (1996). Global mapping for the atmospheric delay at radio wavelengths. J. Geophys. Res. 111, 3227–3246.
| Global mapping for the atmospheric delay at radio wavelengths.Crossref | GoogleScholarGoogle Scholar |
Poli, P., Moll, P., Rabier, F., Desroziers, G., Chapnik, B., Berre, L., Healy, S. B., Andersson, E., and Guelai, F. Z. E. (2007). Forecast impact studies of zenith total delay data from European near real-time GPS stations in Meteo France 4DVAR. J. Geophys. Res. 112, 1–16.
| Forecast impact studies of zenith total delay data from European near real-time GPS stations in Meteo France 4DVAR.Crossref | GoogleScholarGoogle Scholar |
Puri, K., Dietachmayer, G., Steinle, P., Dix, M., Rikus, L., Logan, L., Naughton, M., Tingwell, C., Xiao, Y., Barras, V., Bermous, I., Bowen, R., Deschamps, L., Franklin, C., Fraser, J., Glowacki, T., Harris, B., Lee, J., Le, T., Roff, G., Sulaiman, A., Sims, H., Sun, X., Sun, Z., Zhu, H., Chattopadhyay, M., and Engel, C. (2013). Implementation of the initial ACCESS Numerical Weather Prediction system. Aust. Met. Oceanogr. J. 63, 265–284.
| Implementation of the initial ACCESS Numerical Weather Prediction system.Crossref | GoogleScholarGoogle Scholar |
Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity, D., Lorenc, A., and Payne, T. J. (2007). The Met Office Global 4-dimensional data assimilation scheme. Q. J. R. Meteorol. Soc. 133, 347–362.
| The Met Office Global 4-dimensional data assimilation scheme.Crossref | GoogleScholarGoogle Scholar |
Roberts, N. M., and Lean, H. W. (2008). Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev. 136, 78–97.
| Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events.Crossref | GoogleScholarGoogle Scholar |
Saastamoinen, J. (1972). Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In: ‘Geophysical Monograph’, pp. 247–252. (American Geophysical Union: Washington, DC, USA.)
Sánchez-Arriola, J., and Navascués B. (2007). Report on surface moisture impact study. In: ‘EU-FP5 TOUGH Project Deliverable D31’.
Sánchez-Arriola, J., Lindskog, M., Thorsteinsson, S., and Bojarova, J. (2016). Variational bias correction of GNSS ZTD in the HARMONIE modeling system. J. Appl. Meteor. Climatol , .
| Variational bias correction of GNSS ZTD in the HARMONIE modeling system.Crossref | GoogleScholarGoogle Scholar |
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Benard, P., Bouttier, F., Lac, C., and Masson, V. (2011). The AROME-France convective-scale operational model. Mon. Wea. Rev. 139, 976–991.
| The AROME-France convective-scale operational model.Crossref | GoogleScholarGoogle Scholar |
Shoji, Y., Kunii, M., and Saito, K. (2011). Mesoscale data assimilation of Myanmar cyclone Nargis. Part II: Assimilation of GPS-derived precipitable water vapor. J. Meteorol. Soc. Japan 89, 67–88.
| Mesoscale data assimilation of Myanmar cyclone Nargis. Part II: Assimilation of GPS-derived precipitable water vapor.Crossref | GoogleScholarGoogle Scholar |
Thayer, G. D. (1974). An improved equation for the radio refractive of air. Radio Sci. 9, 803–807.
| An improved equation for the radio refractive of air.Crossref | GoogleScholarGoogle Scholar |
Vedel, H., and Huang, X.-Y. (2004). Impact of ground based GPS data on numerical weather prediction. J. Meteorol. Soc. Japan 82, 459–472.
| Impact of ground based GPS data on numerical weather prediction.Crossref | GoogleScholarGoogle Scholar |
Yan, X., Ducrocq, V., Poli1, P., Jaubert, G., and Walpersdorf, A. (2008). Mesoscale GPS zenith delay assimilation during a Mediterranean heavy precipitation event. Adv. Geosci. 17, 71–77.
| Mesoscale GPS zenith delay assimilation during a Mediterranean heavy precipitation event.Crossref | GoogleScholarGoogle Scholar |
Yan, X., Ducrocq, V., Poli, P., Hakam, M., Jaubert, G., and Walpersdorf, A. (2009a). Impact of GPS zenith delay assimilation on convective-scale prediction of Mediterranean heavy rainfall. J. Geophys. Res. 114, D03104.
| Impact of GPS zenith delay assimilation on convective-scale prediction of Mediterranean heavy rainfall.Crossref | GoogleScholarGoogle Scholar |
Yan, X., Ducrocq, V., Jaubert, G., Brousseau, P., Poli, P., Champollion, C., Flamant, C., and Boniface, K. (2009b). The benefit of GPS zenith delay assimilation to high resolution quantitative precipitation forecasts: a case-study from COPS IOP 9. Q. J. Roy. Meteor. Soc. 135, 1788–1800.
| The benefit of GPS zenith delay assimilation to high resolution quantitative precipitation forecasts: a case-study from COPS IOP 9.Crossref | GoogleScholarGoogle Scholar |