Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

A comparative study of long-term Hg and Pb sediment archives

Stephen A. Norton A E , George L. Jacobson B , Jiří Kopáček C and Tomáš Navrátil D
+ Author Affiliations
- Author Affiliations

A School of Earth and Climate Sciences and The Climate Change Institute, 314 Bryand Global Sciences Center, University of Maine, Orono, ME 04469-5790, USA.

B School of Biology and Ecology and The Climate Change Institute, 320 Bryand Global Sciences Center, University of Maine, Orono, ME 04469-5790, USA.

C Biology Centre, Czech Academy of Science, Institute of Hydrobiology, Na Sadkach 7, CZ-370 05, Ceske Budejovice, Czech Republic.

D Institute of Geology, Czech Academy of Science, Rozvojova 269, CZ-165 00 Prague 6, Czech Republic.

E Corresponding author. Email: norton@maine.edu

Environmental Chemistry 13(3) 517-527 https://doi.org/10.1071/EN15114
Submitted: 2 June 2015  Accepted: 7 September 2015   Published: 30 November 2015

Environmental context. Lead and mercury are toxic atmospheric pollutants emitted in large quantities since 1850. Accumulating lake and peat sediments capture the pollutants from the atmosphere and indirectly record changes in deposition through time. This study of four long-term sediment records addresses the questions, ‘What proportion of this atmospheric deposition is natural background?’ and ‘Does the archive faithfully represent true rates of atmospheric deposition?’

Abstract. Atmospheric phenomena have a large influence on the flux of mercury (Hg) and lead (Pb) to terrestrial and aquatic ecosystems. Some direct phenomena involve high-frequency variations in air movement; other indirect processes involve longer-term changes in climate and associated vegetation and hydrology. Here, we use evidence from sediment cores to explore how these atmospheric and landscape processes produced large natural variations in Hg and Pb deposition over thousands of years before industrial pollution. Cores from Sargent Mountain Pond, coastal Maine, USA (16 600 years), Plešné Lake, south-western Czech Republic (15 000 years), Lake Tulane, central Florida, USA (45 000 years), and Caribou Bog, Orono, Maine, USA (10 000 years) each illustrate how long-term local environmental changes influence the deposition and net retention of Hg and Pb. Important natural factors that emerge from comparisons among these four sites include forestation, changing groundwater hydrology, evolution of the watershed and lake system and (watershed area)/(lake area) ratio, all overlain by late-Holocene anthropogenic atmospheric pollution.

Additional keywords: bog sediment, lake sediment, lead, mercury, pollution archives.


References

[1]  J. Veselý, The history of metal recorded in the sediments of Bohemian Forest lakes: since the Bronze Age to the present. Silva Gabreta 2000, 4, 147.

[2]  O. Travnikov, Heavy metal pollution assessment within EMEP. Presentation to the EMEP Steering Body, Geneva, Switzerland 2012. Available at http://www.msceast.org/presentations/sb_hm_12.pdf [Verified 20 November 2015].

[3]  R. Bindler, M. Klarqvist, J. Klaminder, J. Förster, Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden. Global Biogeochem. Cycles 2004, 18, GB3020.
Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden.Crossref | GoogleScholarGoogle Scholar |

[4]  B. D. Blackwell, B. C. T. Driscoll, J. A. Maxwell, T. M. Holsen, Changing climate alters inputs and pathways of mercury deposition to forested ecosystems. Biogeochemistry 2014, 119, 215.
Changing climate alters inputs and pathways of mercury deposition to forested ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivF2rtb8%3D&md5=2efe2882841e808cce79a68e3d46b2b6CAS |

[5]  J. S. Kahl, S. Nelson, I. Fernandez, T. Haines, S. Norton, G. B. Wiersma, G. Jacobson, A. Amirbahman, K. Johnson, M. Schauffler, L. Rustad, K. Tonnessen, R. Lent, M. Bank, J. Elvir, J. Eckhoff, J. Caron, P. Ruck, J. Parker, J. Campbell, D. Manski, R. Breen, K. Sheehan, A. Grygo, Watershed nitrogen and mercury geochemical fluxes integrate landscape factors in long-term research watersheds at Acadia National Park, Maine, USA. Environ. Monit. Assess. 2007, 126, 9.
Watershed nitrogen and mercury geochemical fluxes integrate landscape factors in long-term research watersheds at Acadia National Park, Maine, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFSgs74%3D&md5=880389c92b53cea6e97b3e1391bf33e3CAS | 17180436PubMed |

[6]  K. B. Johnson, T. A. Haines, J. S. Kahl, S. A. Norton, A. Amirbahman, K. D. Sheehan, Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine. Environ. Monit. Assess. 2007, 126, 55.
Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFSgsrs%3D&md5=6c99277c60cd7b6ffbd7230cc1f63356CAS | 17057984PubMed |

[7]  S. Lindberg, R. Bullock, R. Ebinghaus, D. Engstrom, X. Feng, W. Fitzgerald, N. Pirrone, E. Prestbo, C. Seigneur, A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19.
A synthesis of progress and uncertainties in attributing the sources of mercury in deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSrsro%3D&md5=fe1aeae0fbd3d8b12660a11e551e45beCAS | 17408188PubMed |

[8]  A. Amirbahman, I. J. Fernandez, Mercury in soils, in Mercury in the Environment: Pattern and Process (Ed. M. S. Bank) 2012, pp. 99–118 (University of California Press: Berkeley, CA).

[9]  H. Biester, R. Bindler, A. Martinez-Cortizas, D. Engstrom, Modeling the past atmospheric deposition of mercury using natural archives. Environ. Sci. Technol. 2007, 41, 4851.
Modeling the past atmospheric deposition of mercury using natural archives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2lt7g%3D&md5=1c2f3c5f93f1850cd3f10476b8c14bc2CAS | 17711193PubMed |

[10]  R. Bindler, I. Renberg, J. Klaminder, Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J. Paleolimnol. 2008, 40, 755.
Bridging the gap between ancient metal pollution and contemporary biogeochemistry.Crossref | GoogleScholarGoogle Scholar |

[11]  D. R. Engstrom, W. F. Fitzgerald, C. A. Cooke, C. H. Lamborg, P. E. Drevnick, E. B. Swain, S. J. Balogh, P. H. Balcom, Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a re-evaluation from lake-sediment archives. Environ. Sci. Technol. 2014, 48, 6533.
Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a re-evaluation from lake-sediment archives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslOju7s%3D&md5=b726056834483f17bc77350a6b9475c4CAS | 24819278PubMed |

[12]  Y.-M. Hermanns, H. Biester, A 17 300-year record of mercury accumulation in a pristine lake in southern Chile. J. Paleolimnol. 2013, 49, 547.
A 17 300-year record of mercury accumulation in a pristine lake in southern Chile.Crossref | GoogleScholarGoogle Scholar |

[13]  W. T. Sturges, L. A. Barrie, Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions. Nature 1987, 329, 144.
Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXls1Smu78%3D&md5=fe955b8d2bfebde23a36843c7063aa98CAS |

[14]  W. H. Schroeder, J. Munthe, Atmospheric mercury – an overview. Atmos. Environ. 1998, 32, 809.
Atmospheric mercury – an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFOksbo%3D&md5=cd78f1af4640523f710327d0c6a2facbCAS |

[15]  E. Osterberg, P. Mayewski, D. A. Fisher, K. Kreutz, K. A. Maasch, S. B. Sneed, E. Kelsey, Ice core record of rising lead pollution in the North Pacific atmosphere. Geophys. Res. Lett. 2008, 35, L05810.
Ice core record of rising lead pollution in the North Pacific atmosphere.Crossref | GoogleScholarGoogle Scholar |

[16]  S. A. Norton, R. H. Perry, J. Saros, G. L. Jacobson, I. J. Fernandez, J. Kopáček, T. A. Wilson, M. SanClements, The controls on phosphorus availability in a boreal lake ecosystem since deglaciation. J. Paleolimnol. 2011, 46, 107.
The controls on phosphorus availability in a boreal lake ecosystem since deglaciation.Crossref | GoogleScholarGoogle Scholar |

[17]  J. Kopáček, M. Marešová, J. Hejzlar, J. S. A. Norton, Natural inactivation of phosphorus by aluminum in pre-industrial lake sediments. Limnol. Oceanogr. 2007, 52, 1147.
Natural inactivation of phosphorus by aluminum in pre-industrial lake sediments.Crossref | GoogleScholarGoogle Scholar |

[18]  J. Kopáček, H. Fluksová, J. Hejzlar, J. Kaňa, P. Porcal, J. Turek, J. Žaloudík, Chemistry of tributaries to Plešné and Čertovo lakes during 1998–2012. Silva Gabreta 2013, 19, 1.

[19]  V. Jankovská, Late Glacial and Holocene history of Plešné Lake and its surrounding landscape based on pollen and palaeoalgological analyses. Biologia 2006, 61, S371.
Late Glacial and Holocene history of Plešné Lake and its surrounding landscape based on pollen and palaeoalgological analyses.Crossref | GoogleScholarGoogle Scholar |

[20]  M. Pražáková, J. Veselý, J. Fott, V. Majer, J. Kopáček, The long-term succession of cladoceran fauna and palaeoclimate forcing: a 14 600-year record from Plešné Lake, the Bohemian Forest. Biologia 2006, 61, S387.
The long-term succession of cladoceran fauna and palaeoclimate forcing: a 14 600-year record from Plešné Lake, the Bohemian Forest.Crossref | GoogleScholarGoogle Scholar |

[21]  F. Firbas, Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen I 1949, (Gustav Fischer, Allgemeine Waldgeschichte: Jena, Germany).

[22]  E. C. Grimm, W. A. Watts, G. L. Jacobson, B. C. S. Hansen, H. Almquist, A. C. Dieffenbacher-Krall, Evidence for warm wet Heinrich events in Florida. Quat. Sci. Rev. 2006, 25, 2197.
Evidence for warm wet Heinrich events in Florida.Crossref | GoogleScholarGoogle Scholar |

[23]  G. L. Jacobson, S. A. Norton, E. C. Grimm, T. Edgar, The influence of changing climate and sea level on mercury deposition in sediment over 60 000 years in subtropical Lake Tulane, Florida. Environ. Sci. Technol. 2012, 46, 11 710.
The influence of changing climate and sea level on mercury deposition in sediment over 60 000 years in subtropical Lake Tulane, Florida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOhsL7L&md5=e76f042ce525583044fda4cfdc9e033aCAS |

[24]  F. S. Hu, R. B. Davis, Post-glacial history of a Maine bog and paleoenvironmental implications. Can. J. Bot. 1995, 73, 638.
Post-glacial history of a Maine bog and paleoenvironmental implications.Crossref | GoogleScholarGoogle Scholar |

[25]  F. Roos-Barraclough, N. Givelet, W. Shotyk, S. A. Norton, Use of Br and Se in peat to reconstruct the natural and anthropogenic fluxes of atmospheric Hg: a ten-thousand year record from Caribou Bog, Maine, USA. Environ. Sci. Technol. 2006, 40, 3188.
Use of Br and Se in peat to reconstruct the natural and anthropogenic fluxes of atmospheric Hg: a ten-thousand year record from Caribou Bog, Maine, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFWrs7g%3D&md5=64f4382b9122b647b9523e1967a52658CAS | 16749680PubMed |

[26]  E. Perry, S. A. Norton, N. Kamman, P. Lorey, P. C. T. Driscoll, Deconstruction of historic mercury accumulation in lake sediments, north-eastern United States. Ecotoxic. 2005, 14, 85.
Deconstruction of historic mercury accumulation in lake sediments, north-eastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlOjtLs%3D&md5=cd7647d36ba06a06ff04802fd52b49b0CAS |

[27]  R. H. Perry, Post-glacial chemical weathering and landscape development at Sargent Mountain Pond, Maine, USA: a multi-scale investigation 2009, M.Sc. Thesis, University of Maine, Orono, ME, USA.

[28]  T. Navrátil, J. Shanley, J. Rohovec, V. Hojdová, J. Peníž, J. Buchtová, Distribution and pools of mercury in Czech forest soils. Water Air Soil Pollut. 2014, 225, 1829.
Distribution and pools of mercury in Czech forest soils.Crossref | GoogleScholarGoogle Scholar |

[29]  S. A. Norton, P. J. Dillon, R. D. Evans, G. Mierle, J. S. Kahl, The history of atmospheric pollution and deposition of Cd, Hg, and Pb, in North America, in Sources, Deposition, and Canopy Interactions (Eds S. E. Lindberg, A. L. Page, S. A. Norton) 1990, Vol. 3, Ch. 4, Advances in Environmental Science, Acidic Precipitation, pp. 73–102. (Springer-Verlag, New York).

[30]  J. B. Richardson, A. J. Friedland, J. M. Kaste, B. P. Jackson, Forest floor lead changes from 1980 to 2011 and subsequent accumulation in the mineral soil across the north-eastern United States. J. Environ. Qual. 2014, 43, 926.
Forest floor lead changes from 1980 to 2011 and subsequent accumulation in the mineral soil across the north-eastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGltb%2FK&md5=2407d92e30bbc4373b89ea6d92a4555cCAS | 25602821PubMed |

[31]  K. D. Sheehan, I. J. Fernandez, J. S. Kahl, A. Amirbahman, Litterfall mercury in two forested watersheds at Acadia National Park, Maine USA. Water Air Soil Pollut. 2006, 170, 249.
Litterfall mercury in two forested watersheds at Acadia National Park, Maine USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVKnur4%3D&md5=687a9f1fd5306d0773512f4cde3124edCAS |

[32]  S. A. Norton, G. C. Evans, S. A. Kahl, Comparison of Hg and Pb fluxes to hummocks and hollows of ombrotrophic Big Heath and to nearby Sargent Mountain Pond, Maine USA. Water Air Soil Pollut. 1997, 100, 271.
Comparison of Hg and Pb fluxes to hummocks and hollows of ombrotrophic Big Heath and to nearby Sargent Mountain Pond, Maine USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFI%3D&md5=b3a19f923e869fadcc0b5eb9940c65c2CAS |

[33]  R. C. Ferrier, A. Jenkins, D. A. Elston, The composition of rime ice as an indicator of the quality of winter deposition. Environ. Pollut. 1995, 87, 259.
The composition of rime ice as an indicator of the quality of winter deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFKrurk%3D&md5=d690f34b7ba1e935ba1aef5ffbbf09a6CAS | 15091575PubMed |

[34]  T. A. Douglas, M. Sturm, W. R. Simpson, J. D. Blum, L. Alvarez-Aviles, G. J. Keeler, D. K. Perovich, A. Biswas, K. Johnson, Influence of snow and ice-crystal formation and accumulation on mercury deposition to the Arctic. Environ. Sci. Technol. 2008, 42, 1542.
Influence of snow and ice-crystal formation and accumulation on mercury deposition to the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1emtb4%3D&md5=d8198528e2f2eb2129f239cb52cedf64CAS | 18441801PubMed |

[35]  M. Novák, G. L. Jacobson, S. A. Norton, M. Stepanova, E. C. Grimm, I. Jackova, F. Buzek, Variation in sulfur isotopes from continental and marine aerosols in a 60,000-year sediment core from Lake Tulane, central Florida, USA. Chem. Geol. 2013, 349–350, 110.
Variation in sulfur isotopes from continental and marine aerosols in a 60,000-year sediment core from Lake Tulane, central Florida, USA.Crossref | GoogleScholarGoogle Scholar |

[36]  S. A. Norton, J. Kopáček, I. J. Fernandez, Acidification and acid rain, in Treatise on Geochemistry, 2nd edn (Eds H. D. Holland, K. K. Turekian) 2014, Vol. 9, Ch. 10, pp. 379–414 (Elsevier Science: Philadelphia, PA, USA).