Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastonite

Shuai Shao A , Charles T. Driscoll A E , Chris E. Johnson A , Timothy J. Fahey B , John J. Battles C and Joel D. Blum D
+ Author Affiliations
- Author Affiliations

A Department of Civil and Environmental Engineering, 151 Link Hall, Syracuse University, Syracuse, NY 13244, USA.

B Department of Natural Resources, G16 Fernow Hall, Cornell University, Ithaca, NY 14853, USA.

C Department of Environmental Science, Policy and Management, 137 Mulford Hall #3114, University of California, Berkeley, CA 94720, USA.

D Department of Earth and Environmental Sciences, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA.

E Corresponding author. Email: ctdrisco@syr.edu

Environmental Chemistry 13(3) 528-540 https://doi.org/10.1071/EN15113
Submitted: 2 June 2015  Accepted: 10 October 2015   Published: 18 December 2015

Environmental context. Calcium silicate was added to a forest watershed in New Hampshire, USA, to accelerate its recovery from acid rain. The acid–base status of soil and stream quality improved over the 12-year study, with the most pronounced response in the upper elevation and the upper soil of the watershed. A total of 95 % of the added calcium and 87 % of the added silica were retained in the watershed over the study period.

Abstract. In October 1999, 3450 kg ha–1 of wollastonite (CaSiO3) was applied to Watershed 1 at the Hubbard Brook Experimental Forest in New Hampshire, USA, with the objective of restoring calcium that had been depleted from soil-exchange sites by chronic inputs of acid deposition. After the treatment, the concentrations and fluxes of calcium and dissolved silica significantly increased in both soil solution and stream water throughout Watershed 1, as did the acid-neutralising capacity. The concentrations and fluxes of inorganic monomeric aluminium significantly decreased. The treatment improved the acid–base status and decreased the potential for aluminium toxicity in stream water, especially in the lower reaches of the watershed. Approximately 4.7 % of the added calcium and 17 % of the added silica from the wollastonite treatment was exported from Watershed 1 in stream water by the end of 2010. Meanwhile, ~1825 mmol m–2 of the added calcium and 2125 mmol m–2 of the added silica were either transported to lower mineral soil horizons – as particulate wollastonite, or as dissolved solutes (calcium 77.6 mmol m–2; silica 592.2 mmol m–2), thus contributing to increases in soil pools – or were taken up by vegetation and incorporated into internal calcium and silica cycles of the watershed ecosystem. This experimental wollastonite addition was an effective tool for mitigating the acidification of the ecosystem and restoring the calcium status and forest health of this base-poor watershed.


References

[1]  C. M. Lehmann, V. C. Bowersox, S. M. Larson, Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. Environ. Pollut. 2005, 135, 347.
Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2mtrg%3D&md5=182e22684d8789b84fc250866746a9acCAS | 15749533PubMed |

[2]  C. T. Driscoll, C. P. Cirmo, T. J. Fahey, V. L. Blette, P. A. Bukaveckas, D. J. Burns, C. P. Gubala, D. J. Leopold, R. M. Newton, D. J. Raynal, C. L. Schofield, J. B. Yavitt, D. B. Porcella, The experimental watershed liming study: comparison of lake and watershed neutralization strategies. Biogeochemistry 1996, 32, 143.
The experimental watershed liming study: comparison of lake and watershed neutralization strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGqs78%3D&md5=0f0aea680138dddcc298a448324950acCAS |

[3]  C. T. Driscoll, K. M. Driscoll, K. M. Roy, J. Dukett, Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Appl. Geochem. 2007, 22, 1181.
Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1yitro%3D&md5=5768288d11a5218bcc550a2a9b914e14CAS |

[4]  J. S. Kahl, J. L. Stoddard, R. Haeuber, S. G. Paulsen, R. Birnbaum, F. A. Deviney, J. R. Webb, D. R. DeWalle, W. Sharpe, C. T. Driscoll, A. T. Herlihy, J. H. Kellogg, P. S. Murdoch, K. Roy, K. E. Webster, N. S. Urquhart, Have US surface waters responded to the 1990 Clean Air Act Amendments? Environ. Sci. Technol. 2004, 38, 484A.
Have US surface waters responded to the 1990 Clean Air Act Amendments?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOnsbbJ&md5=972411f2a407d21c22703e51f612bc0cCAS | 15669297PubMed |

[5]  C. T. Driscoll, G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. Lambert, G. E. Likens, J. L. Stoddard, K. C. Weathers, Acidic deposition in the north-eastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 2001, 51, 180.
Acidic deposition in the north-eastern United States: sources and inputs, ecosystem effects, and management strategies.Crossref | GoogleScholarGoogle Scholar |

[6]  G. E. Likens, C. T. Driscoll, D. C. Buso, Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 1996, 272, 244.
Long-term effects of acid rain: response and recovery of a forest ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xit1Kqs7g%3D&md5=c4631e0241877ae319bea34923c957f9CAS |

[7]  R. A. F. Warby, C. E. Johnson, C. T. Driscoll, Chemical recovery of surface waters across the north-eastern United States from reduced inputs of acidic deposition: 1984–2001. Environ. Sci. Technol. 2005, 39, 6548.
Chemical recovery of surface waters across the north-eastern United States from reduced inputs of acidic deposition: 1984–2001.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVynsbw%3D&md5=ed3610c59ea732aa982601a62ed892e6CAS |

[8]  G. B. Lawrence, M. B. David, W. C. Shortle, A new mechanism for calcium loss in forest floor soils. Nature 1995, 378, 162.
A new mechanism for calcium loss in forest floor soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlSmt7c%3D&md5=cff3f957bd2f0714bce1d9b7c980142dCAS |

[9]  G. E. Likens, C. T. Driscoll, D. C. Buso, T. G. Siccama, C. E. Johnson, D. F. Ryan, G. M. Lovett, T. J. Fahey, W. A. Reiners, C. W. Martin, S. W. Bailey, The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 1998, 41, 89.
The biogeochemistry of calcium at Hubbard Brook.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFCqu7s%3D&md5=8693a1088933b0ebb4c0b978e14c960dCAS |

[10]  K. P. Hotopp, Land snails and soil calcium in central Appalachian mountain forest. Southeast. Nat. 2002, 1, 27.
Land snails and soil calcium in central Appalachian mountain forest.Crossref | GoogleScholarGoogle Scholar |

[11]  T. L. Greaver, T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. J. Cosby, M. E. Deerhake, R. L. Dennis, J.-J. B. Dubois, C. L. Goodale, A. T. Herlihy, G. B. Lawrence, L. Liu, J. A. Lynch, K. J. Novak, Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Front. Ecol. Environ 2012, 10, 365.
Ecological effects of nitrogen and sulfur air pollution in the US: what do we know?Crossref | GoogleScholarGoogle Scholar |

[12]  T. J. Fahey, P. H. Templer, B. T. Anderson, J. J. Battles, J. L. Campbell, C. T. Driscoll, A. J. Fusco, M. B. Green, K.-A. S. Kassam, N. L. Rodenhouse, L. Rustad, P. G. Schaberg, M. A. Vadeboncoeur, The promise and peril of intensive site-based ecological research: insights from the Hubbard Brook ecosystem study. Ecology 2015, 96, 885.
The promise and peril of intensive site-based ecological research: insights from the Hubbard Brook ecosystem study.Crossref | GoogleScholarGoogle Scholar | 26230010PubMed |

[13]  C. A. Nezat, J. D. Blum, A. Klaue, C. E. Johnson, T. G. Siccama, Influence of landscape position and vegetation on long-term weathering rates at Hubbard Brook, New Hampshire, USA. Geochim. Cosmochim. Acta 2004, 68, 3065.
Influence of landscape position and vegetation on long-term weathering rates at Hubbard Brook, New Hampshire, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyitb4%3D&md5=8f07f724fd073c3bbadc0b962a9ca982CAS |

[14]  S. M. Juice, T. J. Fahey, T. G. Siccama, C. T. Driscoll, E. G. Denny, C. Eagar, N. L. Cleavitt, R. Minocha, A. D. Richardson, Response of sugar maple to calcium addition to northern hardwood forest. Ecology 2006, 87, 1267.
Response of sugar maple to calcium addition to northern hardwood forest.Crossref | GoogleScholarGoogle Scholar | 16761605PubMed |

[15]  N. L. Cleavitt, T. J. Fahey, J. J. Battles, Regeneration ecology of sugar maple (Acer saccharum): seedling survival in relation to nutrition, site factors, and damage by insects and pathogens. Can. J. For. Res. 2011, 41, 235.
Regeneration ecology of sugar maple (Acer saccharum): seedling survival in relation to nutrition, site factors, and damage by insects and pathogens.Crossref | GoogleScholarGoogle Scholar |

[16]  J. J. Battles, T. J. Fahey, C. T. Driscoll, J. D. Blum, C. E. Johnson, Restoring soil calcium reverses forest decline. Environ. Sci. Technol. Lett. 2014, 1, 15.
Restoring soil calcium reverses forest decline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSgsLzI&md5=398683cefd3fe515243f47021255ad97CAS |

[17]  R. J. Geary, C. T. Driscoll, Forest soil solutions: acid/base chemistry and response to calcite treatment. Biogeochemistry 1996, 32, 195.
Forest soil solutions: acid/base chemistry and response to calcite treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGqs70%3D&md5=dba34120731acff0d9d8ae78419f645eCAS |

[18]  T. S. Traaen, T. Frogner, A. Hindar, E. Kleiven, A. Lande, R. F. Wright, Whole-catchment liming at Tjønnstrond, Norway: an 11-years record. Water Air Soil Pollut. 1997, 94, 163.
Whole-catchment liming at Tjønnstrond, Norway: an 11-years record.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVynurg%3D&md5=748400d5a50a5322e38bb6b73a856a79CAS |

[19]  A. Hindar, Whole-catchment application of dolomite to mitigate episodic acidification of streams induced by sea-salt deposition. Sci. Total Environ. 2005, 343, 35.
Whole-catchment application of dolomite to mitigate episodic acidification of streams induced by sea-salt deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvV2lt7g%3D&md5=7d8ee5b98db511c187918c87eca7587cCAS | 15862834PubMed |

[20]  V. L. Blette, R. M. Newton, Effects of watershed liming on the soil chemistry of Woods Lake, New York. Biogeochemistry 1996, 32, 175.
Effects of watershed liming on the soil chemistry of Woods Lake, New York.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGqs7w%3D&md5=a06e99094c16e45a5a074697ea33aaceCAS |

[21]  C. Huber, R. Baier, A. Gottlein, W. Weis, Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald, Germany. For. Ecol. Manage. 2006, 233, 11.
Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald, Germany.Crossref | GoogleScholarGoogle Scholar |

[22]  S. C. Peters, J. D. Blum, C. T. Driscoll, G. E. Likens, Dissolution of wollastonite during the experimental manipulation of Hubbard Brook Watershed 1. Biogeochemistry 2004, 67, 309.
Dissolution of wollastonite during the experimental manipulation of Hubbard Brook Watershed 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtF2qtbY%3D&md5=8ee60bf06c653fda8362337ef412db2fCAS |

[23]  Y. Cho, C. T. Driscoll, C. E. Johnson, T. G. Siccama, Chemical changes in soil and soil solution after calcium silicate addition to a northern hardwood forest. Biogeochemistry 2010, 100, 3.
Chemical changes in soil and soil solution after calcium silicate addition to a northern hardwood forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hu7zM&md5=df2ccb29f161d2a2338777de0f033967CAS |

[24]  C. E. Johnson, C. T. Driscoll, J. D. Blum, T. J. Fahey, J. J. Battles, Soil chemical dynamics after calcium silicate addition to a northern hardwood forest. Soil Sci. Soc. Am. J. 2014, 78, 1458.
Soil chemical dynamics after calcium silicate addition to a northern hardwood forest.Crossref | GoogleScholarGoogle Scholar |

[25]  C. E. Johnson, C. T. Driscoll, T. G. Siccama, G. E. Likens, Elemental fluxes and landscape position in a northern hardwood forest watershed ecosystem. Ecosystems 2000, 3, 159.
Elemental fluxes and landscape position in a northern hardwood forest watershed ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFGhtrc%3D&md5=61f893115fbe98f4df3fc47ef2eb206aCAS |

[26]  Y. Cho, C. T. Driscoll, C. E. Johnson, J. D. Blum, T. J. Fahey, Watershed-level responses to calcium silicate treatment in a northern hardwood forest. Ecosystems 2012, 15, 416.
Watershed-level responses to calcium silicate treatment in a northern hardwood forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWrt7c%3D&md5=e1f6a617c437aaca36024cf823839339CAS |

[27]  S. W. Bailey, D. C. Buso, G. E. Likens, Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecology 2003, 84, 471.
Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem.Crossref | GoogleScholarGoogle Scholar |

[28]  C. E. Johnson, A. H. Johnson, T. G. Huntington, T. G. Siccama, Whole-tree clear-cutting effects on soil horizons and organic-matter pools. Soil Sci. Soc. Am. J. 1991a, 55, 497.
Whole-tree clear-cutting effects on soil horizons and organic-matter pools.Crossref | GoogleScholarGoogle Scholar |

[29]  C. E. Johnson, A. H. Johnson, T. G. Siccama, Whole-tree clear-cutting effects on exchangeable cations and soil acidity. Soil Sci. Soc. Am. J. 1991b, 55, 502.
Whole-tree clear-cutting effects on exchangeable cations and soil acidity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Oqt7g%3D&md5=88e9668b88a646b9ad9ca1cac0e50f08CAS |

[30]  S. M. Palmer, C. T. Driscoll, C. E. Johnson, Long-term trends in soil solution and steam water chemistry at the Hubbard Brook Experimental Forest: relationship with landscape position. Biogeochemistry 2004, 68, 51.
Long-term trends in soil solution and steam water chemistry at the Hubbard Brook Experimental Forest: relationship with landscape position.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsV2nsbk%3D&md5=2a383ecca1efd8d73aa640e6daa85242CAS |

[31]  R. T. Holmes, Avian population and community processes in forest ecosystems: long-term research in the Hubbard Brook Experimental Forest. For. Ecol. Manage. 2011, 262, 20.
Avian population and community processes in forest ecosystems: long-term research in the Hubbard Brook Experimental Forest.Crossref | GoogleScholarGoogle Scholar |

[32]  C. T. Driscoll, A procedure for the fractionation of aqueous aluminium in dilute acidic water. Int. J. Environ. Anal. Chem. 1984, 16, 267.
A procedure for the fractionation of aqueous aluminium in dilute acidic water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFOms78%3D&md5=425c8c68872e4b822a813f80c2a2ac1fCAS |

[33]  Y. Cho, C. T. Driscoll, J. D. Blum, The effects of a whole-watershed calcium addition on the chemistry of stream storm events at the Hubbard Brook Experimental Forest in NH, USA. Sci. Total Environ. 2009, 407, 5392.
The effects of a whole-watershed calcium addition on the chemistry of stream storm events at the Hubbard Brook Experimental Forest in NH, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1WktLw%3D&md5=1c61e338be8e1efa150d9f21812e7ed3CAS | 19640565PubMed |

[34]  T. J. Fahey, J. W. Hughes, Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J. Ecol. 1994, 82, 533.
Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH.Crossref | GoogleScholarGoogle Scholar |

[35]  J. A. Dittman, C. T. Driscoll, P. M. Groffman, T. J. Fahey, Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook Experimental Forest. Ecology 2007, 88, 1153.
Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook Experimental Forest.Crossref | GoogleScholarGoogle Scholar | 17536402PubMed |

[36]  J. W. Hornbeck, C. W. Martin, C. Eagar, Summary of water yield experiments at Hubbard Brook Experimental Forest, New Hampshire. Can. J. For. Res. 1997, 27, 2043.

[37]  C. A. Nezat, J. D. Blum, C. T. Driscoll, Patterns of Ca/Sr and 87Sr/86Sr variation before and after a whole-watershed CaSiO3 addition at the Hubbard Brook Experimental Forest, USA. Geochim. Cosmochim. Acta 2010, 74, 3129.
Patterns of Ca/Sr and 87Sr/86Sr variation before and after a whole-watershed CaSiO3 addition at the Hubbard Brook Experimental Forest, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFKhtLY%3D&md5=b572b5c38baf62e280731498dc80984bCAS |

[38]  C. S. Cronan, D. F. Grigal, Use of calcium/aluminium ratios as indicators of stress in forest ecosystem. J. Environ. Qual. 1995, 24, 209.
Use of calcium/aluminium ratios as indicators of stress in forest ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1OhtLs%3D&md5=a466d278b058e12a7cfdf5face47fc50CAS |

[39]  J. O. Reuss, B. J. Cosby, R. F. Wright, Chemical processes governing soil and water acidification. Nature 1987, 329, 27.
Chemical processes governing soil and water acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXls1Smsbk%3D&md5=a93b8891cdb24fb6c746cfaabe6b41b8CAS |

[40]  H. Fakhraei, C. T. Driscoll, Proton and aluminium binding properties of organic acids in surface waters of the north-eastern US. Environ. Sci. Technol. 2015, 49, 2939.
Proton and aluminium binding properties of organic acids in surface waters of the north-eastern US.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFWmtLc%3D&md5=81b426e62567ed431d6395768f46c79cCAS | 25625501PubMed |

[41]  S. W. Bailey, C. T. Driscoll, J. W. Hornbeck, Acid-base chemistry and aluminium transport in an acidic watershed and pond in New Hampshire. Biogeochemistry 1995, 28, 69.
Acid-base chemistry and aluminium transport in an acidic watershed and pond in New Hampshire.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1ektLc%3D&md5=436abdd9f86bb9aae2c2c074befde3e0CAS |

[42]  A. A. Dasch, J. D. Blum, C. Eagar, T. J. Fahey, C. T. Driscoll, T. G. Siccama, The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition. Biogeochemistry 2006, 80, 21.
The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOntr4%3D&md5=59b00afc1e00afd0574f3bb90a3d076eCAS |

[43]  T. J. Fahey, J. D. Blum, Litter layers (Oie) as a calcium source of sugar maple seedlings in a northern hardwood forest. Can. J. For. Res. 2011, 41, 898.
Litter layers (Oie) as a calcium source of sugar maple seedlings in a northern hardwood forest.Crossref | GoogleScholarGoogle Scholar |

[44]  D. Beauchemin, Inductively coupled plasma mass spectrometry. Anal. Chem. 2008, 80, 4455.
Inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVSkuro%3D&md5=e2d69cfae0e1693dd038b0911df968d8CAS | 18489128PubMed |

[45]  M. Tabatabai, W. Dick, Simultaneous determination of nitrate, chloride, sulfate, and phosphate in natural waters by ion chromatography. J. Environ. Qual. 1983, 12, 209.
Simultaneous determination of nitrate, chloride, sulfate, and phosphate in natural waters by ion chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXit1Wms7o%3D&md5=3b3c326fa95d64ea5cc3f3dadde8be27CAS |

[46]  Standard Methods for the Examination of Water and Wastewater, 18th edn 1992 (American Public Health Association: Washington, DC).

[47]  G. Gran, Determination of the equivalence point in potentiometric titrations. Part II. Analyst (Lond.) 1952, 77, 661.
| 1:CAS:528:DyaG3sXlvFSm&md5=970f34a021627111a53055768d1c84a8CAS |

[48]  Dohrmann Operator Manual. Automated Laboratory Total Carbon Analyzer 1984 (Zertex Corporation: Santa Clara, CA, USA).

[49]  D. W. McAvoy, R. C. Santore, J. D. Shosa, C. T. Driscoll, Comparison between pyro-catechol violet and 8- hydroxyquinoline procedures for determining aluminium fractions. Soil Sci. Soc. Am. J. 1992, 56, 449.
Comparison between pyro-catechol violet and 8- hydroxyquinoline procedures for determining aluminium fractions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVOgtr4%3D&md5=a493012c43d29773820ce06d415f7d8fCAS |