Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Dimethylated sulfur compounds in coral-reef ecosystems

Elisabeth Deschaseaux A B C , Graham Jones A and Hilton Swan A B
+ Author Affiliations
- Author Affiliations

A Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.

B Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.

C Corresponding author. Email: elisabeth.deschaseaux@scu.edu.au

Environmental Chemistry 13(2) 239-251 https://doi.org/10.1071/EN14258
Submitted: 8 December 2014  Accepted: 28 May 2015   Published: 8 October 2015

Environmental context. Dimethylated sulfur compounds can exert multiple biological and environmental effects including climate regulation. Climate change and other anthropogenic factors are predicted to affect coral-reef ecosystems where these sulfur compounds are particularly abundant. We review the processes that regulate the production of dimethylated sulfur compounds in coral reefs and the potential consequences of environmental changes on their biogenic cycle in such fragile ecosystems under future climate change scenarios.

Abstract. Dimethylsulfoniopropionate (DMSP) and its main breakdown products dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) are biogenic species in the marine environment. In coral reefs, these dimethylated sulfur compounds (DSCs) have been reported at greater concentrations than in other marine ecosystems, which is most likely attributable to the extraordinary large biodiversity of coral reef communities (e.g. corals, macroalgae, coralline algae, invertebrates) and to the unique ability of zooxanthellate corals to synthesise DMSP from both the animal host and algal symbionts. Besides the various biological functions that have been attributed to DSCs, including thermoregulation, osmoregulation, chemoattraction and antioxidant response, DMS is suspected to take part in a climate feedback loop that could help counteract global warming. Nowadays, anthropogenic effects such as pollution, overfishing, increased sedimentation and global climate change are imminently threatening the health of coral reef communities around the world, with possible consequences on the natural cycle of DSCs within these ecosystems. This review provides insight into the biogeochemistry of DSCs in coral reefs and discusses the implications of projected changes in DSC production in these increasingly stressed ecosystems under future climate change scenarios. It shows that DSC dynamics will incontestably be affected in the near future, with possible feedback consequences on local climate.


References

[1]  D. J. Hofmann, J. H. Butler, P. P. Tans, A new look at atmospheric carbon dioxide. Atmos. Environ. 2009, 43, 2084.
A new look at atmospheric carbon dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFegsbw%3D&md5=ab76fb17bea9d52ed9990e2f4462faf5CAS |

[2]  M. C. Serreze, Understanding recent climate change. Conserv. Biol. 2010, 24, 10.
Understanding recent climate change.Crossref | GoogleScholarGoogle Scholar | 20121837PubMed |

[3]  T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (Eds), Climate Change 2013The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013 (Cambridge University Press: Cambridge, UK, and New York).

[4]  C. R. Wilkinson, Status of Coral Reefs of the World 2004 (Cambridge University Press: Townsville, Qld).

[5]  S. V. Smith, Coral-reef area and contributions of reefs to processes and resources of worlds oceans. Nature 1978, 273, 225.
Coral-reef area and contributions of reefs to processes and resources of worlds oceans.Crossref | GoogleScholarGoogle Scholar |

[6]  O. Hoegh-Guldberg, Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 2011, 11, 215.
Coral reef ecosystems and anthropogenic climate change.Crossref | GoogleScholarGoogle Scholar |

[7]  P. L. Harrison, D. J. Booth, Coral reefs: naturally dynamic and increasingly disturbed ecosystems, in Marine Ecology (Eds S. D. Connell, B. M. Gillanders) 2007, pp. 316–377 (Oxford University Press: Melbourne).

[8]  R. W. Hill, J. W. H. Dacey, D. A. Krupp, Dimethylsulfoniopropionate in reef corals. Bull. Mar. Sci. 1995, 57, 489.

[9]  G. B. Jones, M. A. J. Curran, A. D. Broadbent, Dimethylsulfide in the South Pacific, in Recent Advances in Marine Science and Technology ’94, 6th Pacific Congress on Marine Science and Technology, 6 July 1994, Townsville, Qld, Australia (Eds O. C. Bellwood, H. Choa, N. Saxena) 1994, pp. 183–190 (Pacon International and James Cook University of North Queensland: Townsville, Qld).

[10]  H. B. Swan, G. B. Jones, E. S. M. Deschaseaux, Dimethylsulfide, climate and coral reef ecosystems, in Proceedings of the 12th International Coral Reef Symposium, 9–13 July 2012, Cairns, Qld, Australia 2012 (James Cook University: Townsville, Qld).

[11]  A. D. Broadbent, G. B. Jones, R. J. Jones, DMSP in corals and benthic algae from the Great Barrier Reef. Estuar. Coast. Shelf Sci. 2002, 55, 547.
DMSP in corals and benthic algae from the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Kmsbs%3D&md5=070e582236c54ed605e704f487a7d2d9CAS |

[12]  N. A. Kamenos, S. C. Strong, D. M. Shenoy, S. T. Wilson, A. D. Hatton, P. G. Moore, Red coralline algae as a source of marine biogenic dimethylsulphoniopropionate. Mar. Ecol. Prog. Ser. 2008, 372, 61.
Red coralline algae as a source of marine biogenic dimethylsulphoniopropionate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVyltro%3D&md5=35aa361a5a2830cc28dc009ed231e119CAS |

[13]  K. L. Van Alstyne, P. Schupp, M. Slattery, The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs 2006, 25, 321.
The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates.Crossref | GoogleScholarGoogle Scholar |

[14]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=c9a82baa2292d53380b59fe3e33c367cCAS | 22129724PubMed |

[15]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=24299dba1956a59c2726d9e91321070cCAS |

[16]  M. O. Andreae, P. J. Crutzen, Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 1997, 276, 1052.
Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt12ls7g%3D&md5=1a1463ae123bda06bd30873261344a24CAS |

[17]  P. S. Liss, A. D. Hatton, G. Malin, P. D. Nightingale, S. M. Turner, Marine sulphur emissions. Philos. Trans. R. Soc. Lond. – B Biol. Sci. 1997, 352, 159.
Marine sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12hsLk%3D&md5=5a3e54cffc058066e1c13d5e90290717CAS |

[18]  S. M. Turner, G. Malin, P. S. Liss, D. S. Harbour, P. M. Holligan, The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol. Oceanogr. 1988, 33, 364.
The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFygt7s%3D&md5=deae18f647e05dba7cb4a990e561c36dCAS |

[19]  A. D. Hatton, G. Malin, S. M. Turner, P. S. Liss, DMSO – a significant compound in the biogeochemical cycle of DMS in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, G. O. Kirst) 1996, pp. 405–412 (Plenum Press: New York).

[20]  W. R. McGillis, J. W. H. Dacey, N. M. Frew, E. J. Bock, R. K. Nelson, Water–air flux of dimethylsulfide. J. Geophys. Res. – Oceans 2000, 105, 1187.
Water–air flux of dimethylsulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlCnu7g%3D&md5=aece96280075961afc47b2790adea8b8CAS |

[21]  G. Malin, S. M. Turner, P. S. Liss, Sulfur – the plankton climate connection. J. Phycol. 1992, 28, 590.
Sulfur – the plankton climate connection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXislSmsQ%3D%3D&md5=367ae032751b35d50d4d340b1734af7dCAS |

[22]  M. O. Andreae, R. J. Ferek, F. Bermond, K. P. Byrd, R. T. Engstrom, S. Hardin, P. D. Houmere, F. Lemarrec, H. Raemdonck, R. B. Chatfield, Dimethyl sulphide in the marine atmosphere. J. Geophys. Res. Atmos. 1985, 90, 12 891.
Dimethyl sulphide in the marine atmosphere.Crossref | GoogleScholarGoogle Scholar |

[23]  L. N. Hawkins, L. Russell, Polysaccharides, proteins, and phytoplankton fragments: Four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy. Adv. Meteorol. 2010, 2010, 612 132.
Polysaccharides, proteins, and phytoplankton fragments: Four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy.Crossref | GoogleScholarGoogle Scholar |

[24]  G. E. Shaw, Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 1983, 5, 297.
Bio-controlled thermostasis involving the sulfur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVemsA%3D%3D&md5=afb1a909d161d1b453ca5fa6fd9f0438CAS |

[25]  M. O. Andreae, W. R. Barnard, J. M. Ammons, The biological production of dimethylsulfide in the ocean and its role in the global atmospheric sulfur budget. Ecol. Bull. 1983, 35, 167.
| 1:CAS:528:DyaL3sXksVejt70%3D&md5=6a6641d261009725947a7cfe1d72293aCAS |

[26]  N. Meskhidze, A. Nenes, Phytoplankton and cloudiness in the Southern Ocean. Science 2006, 314, 1419.
Phytoplankton and cloudiness in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CntrnO&md5=7ed708afa44302ec7c039851f1ab1214CAS | 17082422PubMed |

[27]  A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25, GB1004.
An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar |

[28]  J. Stefels, Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 2000, 43, 183.
Physiological aspects of the production and conversion of DMSP in marine algae and higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtb4%3D&md5=23897818cf9950bd364d15554611ea98CAS |

[29]  J.-B. Raina, D. M. Tapiolas, S. Foret, A. Lutz, D. Abrego, J. Ceh, F. O. Seneca, P. L. Clode, D. G. Bourne, B. L. Willis, C. A. Motti, DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 2013, 502, 677.
DMSP biosynthesis by an animal and its role in coral thermal stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12ksL%2FN&md5=54e55bace7bdd8180dd2edcf2cee3f33CAS | 24153189PubMed |

[30]  J. D. Todd, A. R. J. Curson, C. L. Dupont, P. Nicholson, A. W. B. Johnston, The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ. Microbiol. 2009, 11, 1376.
The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlSiurY%3D&md5=4a6aeb5f3307b109f585450e69652672CAS | 19220400PubMed |

[31]  M. Kirkwood, N. E. Le Brun, J. D. Todd, A. W. B. Johnston, The dddP gene of Roseovarius nubinhibens encodes a novel lyase that cleaves dimethylsulfoniopropionate into acrylate plus dimethylsulfide. Microbiology 2010, 156, 1900.
The dddP gene of Roseovarius nubinhibens encodes a novel lyase that cleaves dimethylsulfoniopropionate into acrylate plus dimethylsulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVehtr0%3D&md5=e753203af1ef1fccd4fc377a06e2a212CAS | 20378650PubMed |

[32]  J. D. Todd, R. Rogers, Y. G. Li, M. Wexler, P. L. Bond, L. Sun, A. R. J. Curson, G. Malin, M. Steinke, A. W. B. Johnston, Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 2007, 315, 666.
Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyisLg%3D&md5=7c9d1515fe458aabc26bff4d3b1e473eCAS | 17272727PubMed |

[33]  J. Stefels, L. Dijkhuizen, Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. Prog. Ser. 1996, 131, 307.
Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGksrg%3D&md5=93855c69f1750d5e0f87b746cb73d430CAS |

[34]  T. Niki, M. Kunugi, A. Otsuki, DMSP-lyase activity in five marine phytoplankton species: its potential importance in DMS production. Mar. Biol. 2000, 136, 759.
DMSP-lyase activity in five marine phytoplankton species: its potential importance in DMS production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFSitbg%3D&md5=643f940386df9eae764040688109f222CAS |

[35]  M. Steinke, G. O. Kirst, Enzymatic cleavage of dimethylsulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev, (Ulvales, Chlorophyta). J. Exp. Mar. Biol. Ecol. 1996, 201, 73.
Enzymatic cleavage of dimethylsulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev, (Ulvales, Chlorophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFWltr4%3D&md5=fa611b78d01ff0d63889f1ee9a7413d9CAS |

[36]  G. Malin, G. O. Kirst, Algal production of dimethylsulfide and its atmospheric role. J. Phycol. 1997, 33, 889.
Algal production of dimethylsulfide and its atmospheric role.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVykuw%3D%3D&md5=22a11004f2d8b654f262bf0166a82ec8CAS |

[37]  M. P. Desouza, D. C. Yoch, Comparative physiology of dimethylsulfide production by dimethylsulfoniopropionate lyase in Pseudomonas doudoroffii and Alcaligenes sp. strain M3A. Appl. Environ. Microbiol. 1995, 61, 3986.
| 1:CAS:528:DyaK2MXptFGgtLo%3D&md5=a31d3e8989b3766111b9e611c4795c76CAS |

[38]  M. K. Bacic, S. Y. Newell, D. C. Yoch, Release of dimethylsulfide from dimethylsulfoniopropionate by plant-associated salt marsh fungi. Appl. Environ. Microbiol. 1998, 64, 1484.
| 1:CAS:528:DyaK1cXitlCitrg%3D&md5=22b0cf0b1981404666a3cee2d831630eCAS | 16349548PubMed |

[39]  C. E. Spiese, D. J. Kieber, C. T. Nomura, Reduction of dimethylsulfoxide to dimethylsulfide by marine phytoplankton. Limnol. Oceanogr. 2009, 54, 560.
Reduction of dimethylsulfoxide to dimethylsulfide by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtr3I&md5=9867c3b9da640ef30be69e713626065fCAS |

[40]  P. Brimblecombe, D. Shooter, Photooxidation of dimethylsulfide in aqueous-solution. Mar. Chem. 1986, 19, 343.
Photooxidation of dimethylsulfide in aqueous-solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtFektbg%3D&md5=5ac34f8885cb9dcdc2e730c0df21c129CAS |

[41]  J. Zeyer, P. Eicher, S. G. Wakeham, R. P. Schwarzenbach, Oxidation of dimethyl sulfide to dimethylsulfoxide by phototrophic purple bacteria. Appl. Environ. Microbiol. 1987, 53, 2026.
| 1:CAS:528:DyaL2sXlsFSqtb8%3D&md5=8c1518ddb8dcf01d6f2f5d85cae45c27CAS | 16347425PubMed |

[42]  L. Zhang, I. Kuniyoshi, M. Hirai, M. Shoda, Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated from peat biofilter. Biotechnol. Lett. 1991, 13, 223.
Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated from peat biofilter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Gnsbg%3D&md5=47a86bf7c56a090eb7eafca75dcadd6bCAS |

[43]  R. Simó, A. D. Hatton, G. Malin, P. S. Liss, Particulate dimethyl sulphoxide in seawater: production by microplankton. Mar. Ecol. Prog. Ser. 1998, 167, 291.
Particulate dimethyl sulphoxide in seawater: production by microplankton.Crossref | GoogleScholarGoogle Scholar |

[44]  P. A. Lee, S. J. de Mora, Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role. J. Phycol. 1999, 35,
Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role.Crossref | GoogleScholarGoogle Scholar |

[45]  W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=1bcaa8d9ca44d13d4f343901c31cbed2CAS | 12124622PubMed |

[46]  J. W. H. Dacey, N. V. Blough, Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophys. Res. Lett. 1987, 14, 1246.
Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtFynsL8%3D&md5=a709656cf5e02114ce536f39d0820874CAS |

[47]  R. Simó, J. O. Grimalt, J. Albaiges, Dissolved dimethylsulphide, dimethylsulphoniopropionate and dimethylsulphoxide in western Mediterranean waters. Deep Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 929.
Dissolved dimethylsulphide, dimethylsulphoniopropionate and dimethylsulphoxide in western Mediterranean waters.Crossref | GoogleScholarGoogle Scholar |

[48]  J. W. H. Dacey, S. G. Wakeham, Oceanic dimethylsulfide-production during zooplankton grazing on phytoplankton. Science 1986, 233, 1314.
Oceanic dimethylsulfide-production during zooplankton grazing on phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsFygu7c%3D&md5=05f3b25ed5af4f3abe50bc7f4c90ebfdCAS |

[49]  G. Bratbak, M. Levasseur, S. Michaud, G. Cantin, E. Fernandez, B. R. Heimdal, M. Heldal, Viral activity in relation to Emiliania huxleyi blooms: a mechanism of DMSP release? Mar. Ecol. Prog. Ser. 1995, 128, 133.
Viral activity in relation to Emiliania huxleyi blooms: a mechanism of DMSP release?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFKmtbs%3D&md5=3a6c00e24e8935bc623bfe05549dfd41CAS |

[50]  P. T. Visscher, M. R. Diaz, B. F. Taylor, Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Mar. Ecol. Prog. Ser. 1992, 89, 293.
Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea.Crossref | GoogleScholarGoogle Scholar |

[51]  K. M. Ledyard, J. W. H. Dacey, Kinetics of DMSP-lyase activity in coastal seawater, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, G. O. Kirst) 1996, pp. 325–335 (Plenum Press: New York).

[52]  A. Broadbent, G. Jones, Seasonal and diurnal cycles of dimethylsulfide, dimethylsulfoniopropionate and dimethylsulfoxide at One Tree Reef Lagoon. Environ. Chem. 2006, 3, 260.
Seasonal and diurnal cycles of dimethylsulfide, dimethylsulfoniopropionate and dimethylsulfoxide at One Tree Reef Lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptValu7g%3D&md5=4a282dd3a56c437d5055f4eb5717b556CAS |

[53]  J. A. E. Gibson, R. C. Garrick, H. R. Burton, A. R. McTaggart, Dimethylsufide and the algal Phaeocystis pouchetii in Antarctic coastal waters. Mar. Biol. 1990, 104, 339.
Dimethylsufide and the algal Phaeocystis pouchetii in Antarctic coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXovVWisw%3D%3D&md5=24c0810b84f6a51ab8c9d6f288ed7c5aCAS |

[54]  P. A. Lee, S. J. de Mora, A review of dimethylsulfoxide in aquatic environments. Atmos.-ocean 1999, 37, 439.
A review of dimethylsulfoxide in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlers7o%3D&md5=d3e451be35f9f3666ed44b6b680c38bcCAS |

[55]  P. A. Lee, S. J. DeMora, DMSP, DMS and DMSO concentrations and temporal trends in marine surface waters at Leigh, New Zealand, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, G. O. Kirst) 1996, pp. 391–404 (Plenum Press: New York).

[56]  A. D. Hatton, S. T. Wilson, Particulate dimethylsulphoxide and dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal waters. Aquat. Sci. 2007, 69, 330.
Particulate dimethylsulphoxide and dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrjM&md5=e0053968b8927b12cf82b4dc2332885cCAS |

[57]  S. H. Zinder, T. D. Brock, Dimethyl-sulfoxide reduction by microorganisms. J. Gen. Microbiol. 1978, 105, 335.
Dimethyl-sulfoxide reduction by microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksFKitb0%3D&md5=07bf256367c17e046f5efe5d143da304CAS | 347031PubMed |

[58]  H. M. Jonkers, M. van der Maarel, H. van Gemerden, T. A. Hansen, Dimethylsulfoxide reduction by marine sulfate-reducing bacteria. FEMS Microbiol. Lett. 1996, 136, 283.
Dimethylsulfoxide reduction by marine sulfate-reducing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslehtLs%3D&md5=5ae4bf24f6faf5182fe8485ca0f00093CAS |

[59]  S. A. Van Bergeijk, L. J. Stal, The role of oxygenic phototrophic microorganisms in production and conversion of dimethylsulfoniopropioniate and dimethylsulfide in microbial mats, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, G. O. Kirst) 1996, pp. 369–379 (Plenum Press: New York).

[60]  G. P. Ayers, J. M. Cainey, The CLAW hypothesis: a review of the major developments. Environ. Chem. 2007, 4, 366.
The CLAW hypothesis: a review of the major developments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVanurjK&md5=8fb7abf2c11e149dcea853d13983ff07CAS |

[61]  G. P. Ayers, J. P. Ivey, R. W. Gillett, Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air. Nature 1991, 349, 404.
Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVKhs7k%3D&md5=5601167ee69fead7a688104761f5b7aeCAS |

[62]  J. M. Prospero, D. L. Savoie, E. S. Saltzman, R. Larsen, Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica. Nature 1991, 350, 221.
Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1yhtr0%3D&md5=14845e52a5ee840b7e524ee0eb80082fCAS |

[63]  O. Hertel, J. Christensen, O. Hov, Modeling of the end-product of the chemical decomposition of DMS in the marine boundary-layer. Atmos. Environ. 1994, 28, 2431.
Modeling of the end-product of the chemical decomposition of DMS in the marine boundary-layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVGlsr0%3D&md5=e854dd1b2b35639408666c8b222a9c10CAS |

[64]  P. S. Liss, J. E. Lovelock, Climate change: the effect of DMS emissions. Environ. Chem. 2007, 4, 377.
Climate change: the effect of DMS emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVanurjM&md5=bb54dc527eb3977e6fc6ef2bde18b5c6CAS |

[65]  M. Vila-Costa, R. P. Kiene, R. Simó, Seasonal variability of the dynamics of dimethylated sulfur compounds in a coastal northwest Mediterranean site. Limnol. Oceanogr. 2008, 53, 198.
Seasonal variability of the dynamics of dimethylated sulfur compounds in a coastal northwest Mediterranean site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVGjs7g%3D&md5=500934abaea61df6f1b0b44b61a0ecbeCAS |

[66]  R. H. Reed, Measurements and osmotic significance of beta-dimethylsulphoniopropionate in marine macroalgae. Mar. Biol. Lett. 1983, 4, 173.
| 1:CAS:528:DyaL3sXktF2jtLw%3D&md5=3b04b147311e263b74ec85eb34157fe3CAS |

[67]  A. Vairavamurthy, M. O. Andreae, R. L. Iverson, Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol. Oceanogr. 1985, 30, 59.
Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1ymtb4%3D&md5=7e07a599297641f3ec8a703fda2cc972CAS |

[68]  D. M. J. Dickson, G. O. Kirst, The role of beta-dimethylsulfoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 1986, 167, 536.
The role of beta-dimethylsulfoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Wns7g%3D&md5=6d05bcde62871ab305e53a6e37e916b0CAS |

[69]  G. O. Kirst, C. Thiel, H. Wolff, J. Nothnagel, M. Wanzek, R. Ulmke, Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role. Mar. Chem. 1991, 35, 381.
Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XotVSrsw%3D%3D&md5=8cd8f6c73fa42f1d9777928c0f375361CAS |

[70]  U. Karsten, C. Wiencke, G. O. Kirst, Dimethylsulfoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions – interactive effects of light versus salinity and light versus temperature. Polar Biol. 1992, 12, 603.
Dimethylsulfoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions – interactive effects of light versus salinity and light versus temperature.Crossref | GoogleScholarGoogle Scholar |

[71]  S. D. Archer, S. A. Kimmance, J. A. Stephens, F. E. Hopkins, R. G. J. Bellerby, K. G. Schulz, J. Piontek, A. Engel, Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences 2013, 10, 1893.
Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlCmtb4%3D&md5=5fb42e54ed4a844e08cfef86023a8e11CAS |

[72]  H. E. Arnold, P. Kerrison, M. Steinke, Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Glob. Change Biol. 2013, 19, 1007.
Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sjntlOrsg%3D%3D&md5=bb6c136545989141a7178a65d701c300CAS |

[73]  M. D. Keller, W. Korjeff-Bellows, Physiological aspects of the production of Dimethylsulfoniopropionate (DMSP) by marine phytoplankton, in Biological and Environmental Chemistry of the DMSP and Related Sulfonium Compounds (Ed. R. P. Kiene) 1996, pp. 131–142 (Springer US: New York).

[74]  D. Slezak, G. J. Herndl, Effects of ultraviolet and visible radiation on the cellular concentrations of dimethylsulfoniopropionate (DMSP) in Emiliania huxleyi (strain L). Mar. Ecol. Prog. Ser. 2003, 246, 61.
Effects of ultraviolet and visible radiation on the cellular concentrations of dimethylsulfoniopropionate (DMSP) in Emiliania huxleyi (strain L).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVCjsLs%3D&md5=722f3b42da5bb8c59a44133ebd383b83CAS |

[75]  G. V. Wolfe, M. Steinke, G. O. Kirst, Grazing-activated chemical defence in a unicellular marine alga. Nature 1997, 387, 894.
Grazing-activated chemical defence in a unicellular marine alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1Grtrc%3D&md5=afe2a841f024b4d1154274828fab1137CAS |

[76]  K. L. Van Alstyne, G. V. Wolfe, T. L. Freidenburg, A. Neill, C. Hicken, Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 2001, 213, 53.
Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFartrk%3D&md5=9e3f1b0c3dbd3f9ec733cd7788b1a964CAS |

[77]  K. L. Van Alstyne, L. T. Houser, Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar. Ecol. Prog. Ser. 2003, 250, 175.
Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1SgsbY%3D&md5=e0b986d3fdb3d99e26aa48369ecae13dCAS |

[78]  M. Garren, K. Son, J.-B. Raina, R. Rusconi, F. Menolascina, O. H. Shapiro, J. Tout, D. G. Bourne, J. R. Seymour, R. Stocker, A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014, 8, 999.
J. R. Seymour, R. Stocker, A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvV2htbg%3D&md5=5b7327783a485908fcfa92b4b150727fCAS | 24335830PubMed |

[79]  J. L. DeBose, S. C. Lema, G. A. Nevitt, Dimethylsulfoniopropionate as a foraging cue for reef fishes. Science 2008, 319, 1356.
Dimethylsulfoniopropionate as a foraging cue for reef fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislSktr8%3D&md5=26b026b08ed314a379f0597349cae940CAS | 18323445PubMed |

[80]  J. R. Seymour, R. Simó, T. Ahmed, R. Stocker, Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 2010, 329, 342.
Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2iu70%3D&md5=9160e8f0cec3e1f870bdb4bc1f5ff2baCAS | 20647471PubMed |

[81]  K. Knight, Hatchling loggerhead turtles pick up DMS. J. Exp. Biol. 2012, 215, 20.

[82]  S. F. Riseman, G. R. DiTullio, Particulate dimethylsulfoniopropionate and dimethylsulfoxide in relation to iron availability and algal community structure in the Peru Upwelling System. Can. J. Fish. Aquat. Sci. 2004, 61, 721.
Particulate dimethylsulfoniopropionate and dimethylsulfoxide in relation to iron availability and algal community structure in the Peru Upwelling System.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Sjs74%3D&md5=e7e0d5c17c3daf2e9fe55b03af4692f8CAS |

[83]  E. S. M. Deschaseaux, G. B. Jones, M. A. Deseo, K. M. Shepherd, R. P. Kiene, H. B. Swan, P. L. Harrison, B. D. Eyre, Effects of environmental factors on dimethylated sulphur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol. Oceanogr. 2014, 59, 758.
Effects of environmental factors on dimethylated sulphur compounds and their potential role in the antioxidant system of the coral holobiont.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKjt7zE&md5=b1629dff25674b8132acc86857455f2aCAS |

[84]  A. L. McLenon, G. R. DiTullio, Effects of increased temperature on dimethylsulfoniopropionate (DMSP) concentration and methionine synthase activity in Symbiodinium microadriaticum. Biogeochem. 2012, 110, 17.
Effects of increased temperature on dimethylsulfoniopropionate (DMSP) concentration and methionine synthase activity in Symbiodinium microadriaticum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7vM&md5=4cae2dc563bb78dd3c26126fa8ce435dCAS |

[85]  P. L. Harrison, Sexual reproduction of scleractinian corals, in Coral Reefs: an Ecosystem in Transition (Ed. Z. Dubinsky, N. Stambler) 2011, Part 3, pp. 59–85 (Springer Netherlands)10.1007/978-94-007-0114-4

[86]  R. K. Trench, Cell biology of plant-animal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1979, 30, 485.
Cell biology of plant-animal symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFWitb4%3D&md5=0a0c1ae507dc9cef78dbc1265f3ebd25CAS |

[87]  A. E. Douglas, Coral bleaching – how and why? Mar. Pollut. Bull. 2003, 46, 385.
Coral bleaching – how and why?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivV2gs74%3D&md5=e0b4900c8fbbcafa6a4f3d9076197610CAS | 12705909PubMed |

[88]  R. D. Gates, G. Baghdasarian, L. Muscatine, Temperature stress causes host-cell detachment in symbiotic cnidarians: Implications for coral bleaching. Biol. Bull. 1992, 182, 324.
Temperature stress causes host-cell detachment in symbiotic cnidarians: Implications for coral bleaching.Crossref | GoogleScholarGoogle Scholar |

[89]  W. K. Fitt, F. K. McFarland, M. E. Warner, G. C. Chilcoat, Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 2000, 45, 677.
Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsV2ltbg%3D&md5=c9ef7e1aa9492a1e79e8d02a99c35767CAS |

[90]  R. Rowan, D. A. Powers, A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science 1991, 251, 1348.
A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Gmsrs%3D&md5=83f40c521c5387d686dc94c8ae51e353CAS | 17816191PubMed |

[91]  X. Pochon, R. D. Gates, A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Mol. Phylogenet. Evol. 2010, 56, 492.
A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWgtbg%3D&md5=106e34156f4b47a1c5aef396e3824d94CAS | 20371383PubMed |

[92]  K. E. Ulstrup, M. J. H. Van Oppen, Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol. Ecol. 2003, 12, 3477.
Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks12jtg%3D%3D&md5=81c11914d8a6ed1c62eee152719f70d8CAS | 14629362PubMed |

[93]  R. Berkelmans, M. J. H. Van Oppen, The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. 2006, 273, 2305.
The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change.Crossref | GoogleScholarGoogle Scholar |

[94]  A. C. Baker, Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 661.
Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium.Crossref | GoogleScholarGoogle Scholar |

[95]  T. L. Goulet, Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 2006, 321, 1.
Most corals may not change their symbionts.Crossref | GoogleScholarGoogle Scholar |

[96]  M. Stat, W. K. W. Loh, T. C. LaJeunesse, O. Hoegh-Guldberg, D. A. Carter, Stability of coral endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 2009, 28, 709.
Stability of coral endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

[97]  R. W. Buddemeier, A. C. Baker, D. G. Fautin, J. R. Jacobs, The adaptive hypothesis of bleaching, in Coral Health and Disease (Eds E. Rosenberg, Y. Loya) 2004, pp. 427–444 (Springer: Berlin).

[98]  R. N. Silverstein, R. Cunning, A. C. Baker, Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 2015, 21, 236.
Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.Crossref | GoogleScholarGoogle Scholar |

[99]  D. Abrego, M. J. H. Van Oppen, B. L. Willis, Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol. Ecol. 2009, 18, 3532.
Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny.Crossref | GoogleScholarGoogle Scholar | 19627494PubMed |

[100]  R. A. Littman, D. G. Bourne, B. L. Willis, Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol. Ecol. 2010, 19, 1978.
Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Gitr8%3D&md5=9272a0005aa06e0cc7804317cf4fc7c0CAS | 20529072PubMed |

[101]  O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi, M. E. Hatziolos, Coral reefs under rapid climate change and ocean acidification. Science 2007, 318, 1737.
Coral reefs under rapid climate change and ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhu7fN&md5=e4ee540611a350f3756dece2916ea7adCAS | 18079392PubMed |

[102]  O. Hoegh-Guldberg, G. J. Smith, The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 1989, 129, 279.
The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana.Crossref | GoogleScholarGoogle Scholar |

[103]  T. F. Goreau, Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora. Science 1964, 145, 383.
Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvkt1ymsg%3D%3D&md5=a7fad126b300d052eae47b9e5d33737eCAS | 17816975PubMed |

[104]  A. Kushmaro, Y. Loya, M. Fine, E. Rosenberg, Bacterial infection and coral bleaching. Nature 1996, 380, 396.
Bacterial infection and coral bleaching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVKqtrY%3D&md5=5760e82d9fdac877240ca0027e1126e9CAS |

[105]  R. Iglesias-Prieto, J. L. Matta, W. A. Robins, R. K. Trench, Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. USA 1992, 89, 10 302.
Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls1Cmtw%3D%3D&md5=04331d96b89de531268926d54ba67189CAS |

[106]  B. Brown, Coral bleaching: causes and consequences. Coral Reefs 1997, 16, S129.
Coral bleaching: causes and consequences.Crossref | GoogleScholarGoogle Scholar |

[107]  O. Hoegh-Guldberg, Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwater Res. 1999, 50, 839.
Climate change, coral bleaching and the future of the world’s coral reefs.Crossref | GoogleScholarGoogle Scholar |

[108]  S. F. Perez, C. B. Cook, W. R. Brooks, The role of symbiotic dinoflagellates in the temperature induced bleaching response of the subtropical sea anemone Aiptasia pallida. J. Exp. Mar. Biol. Ecol. 2001, 256, 1.
The role of symbiotic dinoflagellates in the temperature induced bleaching response of the subtropical sea anemone Aiptasia pallida.Crossref | GoogleScholarGoogle Scholar | 11137501PubMed |

[109]  A. G. Mayer, The effects of temperature upon tropical marine animals. Carnegie Institution of Washington Publication 183 1914 (Tortugas Laboratory of the Carnegie Institution of Washington).

[110]  P. W. Glynn, Extensive bleaching and death of reef corals on the Pacific Coast of Panama. Environ. Conserv. 1983, 10, 149.
Extensive bleaching and death of reef corals on the Pacific Coast of Panama.Crossref | GoogleScholarGoogle Scholar |

[111]  M. P. Lesser, Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 1997, 16, 187.
Oxidative stress causes coral bleaching during exposure to elevated temperatures.Crossref | GoogleScholarGoogle Scholar |

[112]  L. A. Flores-Ramírez, M. A. Linan-Cabello, Relationships among thermal stress, bleaching and oxidative damage in the hermatypic coral, Pocillopora capitata. Comp. Biochem. Physiol. C – Toxicol. Pharmacol. 2007, 146, 194.
Relationships among thermal stress, bleaching and oxidative damage in the hermatypic coral, Pocillopora capitata.Crossref | GoogleScholarGoogle Scholar | 17240200PubMed |

[113]  M. P. Lesser, Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 1996, 41, 271.
Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1eru7k%3D&md5=abc6b0d26cb7ea3240e3926b6c3b3741CAS |

[114]  L. D. Mydlarz, R. S. Jacobs, An inducible release of reactive oxygen radicals in four species of gorgonian corals. Mar. Freshwat. Behav. Physiol. 2006, 39, 143.
An inducible release of reactive oxygen radicals in four species of gorgonian corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlWhur4%3D&md5=0ef139c376d6b84385a891c42dedaba9CAS |

[115]  G. W. Winston, Oxidants and antioxidants in aquatic animals. Comp. Biochem. Physiol. C – Toxicol. Pharmacol. 1991, 100, 173.
Oxidants and antioxidants in aquatic animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3Mzit12qtg%3D%3D&md5=b0d2975aa464c4b409c4dbcbfb9e0d03CAS |

[116]  J. L. Martindale, N. J. Holbrook, Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 2002, 192, 1.
Cellular response to oxidative stress: signaling for suicide and survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVGmurc%3D&md5=ba24020c3dd66f4ed09971f89da2a6ccCAS | 12115731PubMed |

[117]  M. P. Lesser, Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 2006, 68, 253.
Oxidative stress in marine environments: biochemistry and physiological ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWksrY%3D&md5=6d166404706e2dca551f8a0628e763afCAS | 16460273PubMed |

[118]  S. Richier, C. Sabourault, J. Courtiade, N. Zucchini, D. Allemand, P. Furla, Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J. 2006, 273, 4186.
Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqsrrK&md5=9fcadb0b52f41766161845d78ee28799CAS | 16907933PubMed |

[119]  M. E. Warner, W. K. Fitt, G. W. Schmidt, The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ. 1996, 19, 291.
The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach.Crossref | GoogleScholarGoogle Scholar |

[120]  R. J. Jones, O. Hoegh-Guldberg, A. W. D. Larkum, U. Schreiber, Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 1998, 21, 1219.
Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1WmtrY%3D&md5=05bfe2c2eb70d8d4b9a068633b368df5CAS |

[121]  D. Tchernov, M. Y. Gorbunov, C. de Vargas, S. N. Yadav, A. J. Milligan, M. Haggblom, P. G. Falkowski, Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl. Acad. Sci. USA 2004, 101, 13 531.
Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFeiu7k%3D&md5=e2d4f7f38233280a246d2834b5f8df38CAS |

[122]  L. Wegley, Y. N. Yu, M. Breitbart, V. Casas, D. I. Kline, F. Rohwer, Coral-associated archaea. Mar. Ecol. Prog. Ser. 2004, 273, 89.
Coral-associated archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Krur0%3D&md5=44753a6aea04c2734839de42e403aae4CAS |

[123]  E. Rosenberg, O. Koren, L. Reshef, R. Efrony, I. Zilber-Rosenberg, The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 2007, 5, 355.
The role of microorganisms in coral health, disease and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Chsb4%3D&md5=996c222ae87efdfae55449936ee1e5ccCAS | 17384666PubMed |

[124]  K. L. Marhaver, R. A. Edwards, F. Rohwer, Viral communities associated with healthy and bleaching corals. Environ. Microbiol. 2008, 10, 2277.
Viral communities associated with healthy and bleaching corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSksLvN&md5=b81cd0c02b1de80590e089871ea74886CAS | 18479440PubMed |

[125]  L. Reshef, O. Koren, Y. Loya, I. Zilber-Rosenberg, E. Rosenberg, The coral probiotic hypothesis. Environ. Microbiol. 2006, 8, 2068.
The coral probiotic hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisl2itg%3D%3D&md5=f5aa2fef220077ea1276c5fbaf83b699CAS | 17107548PubMed |

[126]  D. Bourne, Y. Iida, S. Uthicke, C. Smith-Keune, Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008, 2, 350.
Changes in coral-associated microbial communities during a bleaching event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVGrtbo%3D&md5=647b96360f135d0da77e2baea7a62b8dCAS | 18059490PubMed |

[127]  D. G. Bourne, M. Garren, T. M. Work, E. Rosenberg, G. W. Smith, C. D. Harvell, Microbial disease and the coral holobiont. Trends Microbiol. 2009, 17, 554.
Microbial disease and the coral holobiont.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2gsrnN&md5=c9ae1a72b6d950e7a16ca5c157c73883CAS | 19822428PubMed |

[128]  E. K. Bigg, D. E. Turvey, Sources of atmospheric particles over Australia. Atmos. Environ. 1978, 12, 1643.
Sources of atmospheric particles over Australia.Crossref | GoogleScholarGoogle Scholar |

[129]  G. B. Jones, A. J. Trevena, The influence of coral reefs on atmospheric dimethylsulfide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismarck Seas. Mar. Freshwater Res. 2005, 56, 85.
The influence of coral reefs on atmospheric dimethylsulfide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismarck Seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslSkuw%3D%3D&md5=385f4b8b6e67598d6555d550f90cb934CAS |

[130]  A. Broadbent, The analysis of dimethylsuphoniopropionate in coral tissue: measurement and rates of production 1993, B.Sc.(Hons) thesis, James Cook University of North Queensland.

[131]  A. D. Broadbent, G. B. Jones, DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore water from coral reefs in the Great Barrier Reef. Mar. Freshwater Res. 2004, 55, 849.
DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore water from coral reefs in the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVens7jE&md5=74f3b38039bb5ef609d9ba545fa827e1CAS |

[132]  K. L. Van Alstyne, M. P. Puglisi, DMSP in marine macroalgae and macroinvertebrates: Distribution, function, and ecological impacts. Aquat. Sci. 2007, 69, 394.
DMSP in marine macroalgae and macroinvertebrates: Distribution, function, and ecological impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrnN&md5=8f9ac35f6896c911b6594170d0146411CAS |

[133]  H. L. Burdett, P. J. C. Donohue, A. D. Hatton, M. A. Alwany, N. A. Kamenos, Spatiotemporal variability of dimethylsulphoniopropionate on a fringing coral reef: the role of reefal carbonate chemistry and environmental variability. PLoS One 2013, 8, e64651.
Spatiotemporal variability of dimethylsulphoniopropionate on a fringing coral reef: the role of reefal carbonate chemistry and environmental variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVKrsr4%3D&md5=1ce2f8086a2a63b954089cd7461d453dCAS | 23724073PubMed |

[134]  E. Deschaseaux, G. Jones, B. Miljevic, Z. Ristovski, H. Swan, P. Vaattovaara, Can corals form aerosol particles through volatile sulphur compound emissions?, in Proceedings of the 12th International Coral Reef Symposium, 9–13 July 2012, Cairns, Qld, Australia 2012 (James Cook University: Townsville, Qld).

[135]  G. Jones, Z. Ristovski, Reef emissions affect climate. Australasian Science 2010, 31, 26.

[136]  E. Fischer, G. B. Jones, Atmospheric dimethylsulphide production from corals in the Great Barrier Reef and links to solar radiation, climate and coral bleaching. Biogeochem. 2012, 110, 31.
Atmospheric dimethylsulphide production from corals in the Great Barrier Reef and links to solar radiation, climate and coral bleaching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7vL&md5=25c19bb88d4f8f7e00a474089d70cbcdCAS |

[137]  M. Wirtz, M. Droux, Synthesis of the sulfur amino acids: cysteine and methionine. Photosynth. Res. 2005, 86, 345.
Synthesis of the sulfur amino acids: cysteine and methionine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFyg&md5=3b486f535fffa2a529411fc7933a8e61CAS | 16307301PubMed |

[138]  K. L. Van Alstyne, V. J. Dominique, G. Muller-Parker, Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone-zooxanthella symbiosis? Coral Reefs 2009, 28, 167.
Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone-zooxanthella symbiosis?Crossref | GoogleScholarGoogle Scholar |

[139]  D. M. Yost, R. Jones, C. L. Rowe, C. L. Mitchelmore, Quantification of total and particulate dimethylsulfoniopropionate (DMSP) in five Bermudian coral species across a depth gradient. Coral Reefs 2012, 31, 561.
Quantification of total and particulate dimethylsulfoniopropionate (DMSP) in five Bermudian coral species across a depth gradient.Crossref | GoogleScholarGoogle Scholar |

[140]  L. M. Fitzgerald, A. M. Szmant, Biosynthesis of ‘essential’ amino acids by scleractinian corals. Biochem. J. 1997, 322, 213.
Biosynthesis of ‘essential’ amino acids by scleractinian corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslKru74%3D&md5=7cc0c384af591668894717772e4edd24CAS | 9078264PubMed |

[141]  D. M. Yost, C. L. Mitchelmore, Dimethylsulfoniopropionate (DMSP) lyase activity in different strains of the symbiotic alga Symbiodinium microadriaticum. Mar. Ecol. Prog. Ser. 2009, 386, 61.
Dimethylsulfoniopropionate (DMSP) lyase activity in different strains of the symbiotic alga Symbiodinium microadriaticum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVClu7bO&md5=c662707482021a361c975f01e0c51842CAS |

[142]  M. Steinke, P. Brading, P. Kerrison, M. E. Warner, D. J. Suggett, Concentrations of dimethysulfoniopropionate and dimethylsulfide are strain-specific in symbiotic dinoflagellates (Symbiodinium sp., dinophyceae). J. Phycol. 2011, 47, 775.
Concentrations of dimethysulfoniopropionate and dimethylsulfide are strain-specific in symbiotic dinoflagellates (Symbiodinium sp., dinophyceae).Crossref | GoogleScholarGoogle Scholar |

[143]  E. S. M. Deschaseaux, V. H. Beltran, G. B. Jones, M. A. Deseo, H. B. Swan, P. L. Harrison, B. D. Eyre, Comparative response of DMS and DMSP concentrations in Symbiodinium clades C1 and D1 under thermal stress. J. Exp. Mar. Biol. Ecol. 2014, 459, 181.
Comparative response of DMS and DMSP concentrations in Symbiodinium clades C1 and D1 under thermal stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWgtrnN&md5=bcbd28f2f69e9c1dc342c5f29eee514dCAS |

[144]  J. B. Raina, D. Tapiolas, B. L. Willis, D. G. Bourne, Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 2009, 75, 3492.
Coral-associated bacteria and their role in the biogeochemical cycling of sulfur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlShu74%3D&md5=37f0d05badc8e1574e35f123606e5c60CAS | 19346350PubMed |

[145]  J. B. Raina, E. A. Dinsdale, B. L. Willis, D. G. Bourne, Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol. 2010, 18, 101.
Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVCksbs%3D&md5=bd9e73029ee5e8ff3fcd35a395a9f7feCAS | 20045332PubMed |

[146]  R. Staubes, H. W. Georgii, Measurements of atomospheric and seawater DMS concentrations in the Atlantic, the Arctic and Antarctic regions in Dimethylsulfide: Oceans, Atmosphere and Climate (Eds G. Restelli, G. Angeletti) 1993, pp. 95–102 (Kluwer Academic Publishers: Dordrecht, Netherlands).

[147]  G. Jones, M. Curran, A. Broadbent, S. King, E. Fischer, R. Jones, Factors affecting the cycling of dimethylsulfide and dimethylsulfoniopropionate in coral reef waters of the Great Barrier Reef. Environ. Chem. 2007, 4, 310.
| 1:CAS:528:DC%2BD2sXht1yiu7vM&md5=b9ee8a4a74978e1f181c11cef7446de9CAS |

[148]  D. M. Yost, R. J. Jones, C. L. Mitchelmore, Alterations in dimethylsulfoniopropionate (DMSP) levels in the coral Montastraea franksi in response to copper exposure. Aquat. Toxicol. 2010, 98, 367.
Alterations in dimethylsulfoniopropionate (DMSP) levels in the coral Montastraea franksi in response to copper exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVegtrw%3D&md5=502040f60fd24146627d6c679dc01876CAS | 20378188PubMed |

[149]  Y.-T. Lien, Y. Nakano, S. Plathong, H. Fukami, J.-T. Wang, C. A. Chen, Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities. Coral Reefs 2007, 26, 35.
Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities.Crossref | GoogleScholarGoogle Scholar |

[150]  C.-M. Hsu, S. Keshavmurthy, V. Denis, C.-Y. Kuo, J.-T. Wang, P.-J. Meng, C. A. Chen, Temporal and spatial variations in symbiont communities of catch bowl coral Isopora palifera (Scleractinia: Acroporidae) on reefs in Kenting National Park, Taiwan. Zool. Stud. 2012, 51, 1343.
| 1:CAS:528:DC%2BC3sXhsFeqs7nI&md5=bbd6993272f7f05fc65528aa7a547396CAS |

[151]  S. Keshavmurthy, P.-J. Meng, J.-T. Wang, C.-Y. Kuo, S.-Y. Yang, C.-M. Hsu, C. H. Gan, C. F. Dai, C. A. Chen, Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. PeerJ 2014, 2, e327.
Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input.Crossref | GoogleScholarGoogle Scholar | 24765567PubMed |

[152]  H. L. Burdett, M. Carruthers, P. J. C. Donohue, L. C. Wicks, S. J. Hennige, J. M. Roberts, N. A. Kamenos, Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa. Mar. Biol. 2014161, 1499.

[153]  E. M. Borell, M. Steinke, R. Horwitz, M. Fine, Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis. Ecol. Evol. 2014, 4, 441.
Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis.Crossref | GoogleScholarGoogle Scholar | 24634728PubMed |

[154]  H. L. Burdett, V. Keddie, N. MacArthur, L. McDowall, J. McLeish, E. Spielvogel, A. D. Hatton, N. A. Kamenos, Dynamic photoinhibition exhibited by red coralline algae in the red sea. BMC Plant Biol. 2014, 14, 139.
Dynamic photoinhibition exhibited by red coralline algae in the red sea.Crossref | GoogleScholarGoogle Scholar | 24885516PubMed |

[155]  P. Kerrison, D. J. Suggett, L. J. Hepburn, M. Steinke, Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae). Biogeochem. 2012, 110, 5.
Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7vI&md5=2ff93f201bf8005cd3790b1306e3c9e9CAS |

[156]  E. M. Borell, M. Steinke, M. Fine, Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea). Coral Reefs 2013, 32, 937.
Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea).Crossref | GoogleScholarGoogle Scholar |

[157]  E. S. M. Deschaseaux, R. P. Kiene, G. B. Jones, M. A. Deseo, H. B. Swan, L. Oswald, B. D. Eyre, Dimethylsulphoxide (DMSO) in biological samples: a comparison of the TiCl3 and NaBH4 reduction methods using headspace analysis. Mar. Chem. 2014, 164, 9.
Dimethylsulphoxide (DMSO) in biological samples: a comparison of the TiCl3 and NaBH4 reduction methods using headspace analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WjsLvK&md5=8afc8017d4a67436952ec5419c774ec4CAS |

[158]  T. P. Hughes, Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef. Science 1994, 265, 1547.
Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvjs1OjsA%3D%3D&md5=f48e1ed72c54f4bbfb0ec5973a428428CAS | 17801530PubMed |

[159]  G. B. Jones, E. Fischer, E. S. M. Deschaseaux, P. L. Harrison, The effect of coral bleaching on the cellular concentration of dimethylsulphoniopropionate in reef corals. J. Exp. Mar. Biol. Ecol. 2014, 460, 19.
The effect of coral bleaching on the cellular concentration of dimethylsulphoniopropionate in reef corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ensbzF&md5=d8a4bf603e1454ae99c8d59718611fcfCAS |

[160]  M. Fine, H. Gildor, A. Genin, A coral reef refuge in the Red Sea. Glob. Change Biol. 2013, 19, 3640.
A coral reef refuge in the Red Sea.Crossref | GoogleScholarGoogle Scholar |

[161]  J. A. Kleypas, G. Danabasoglu, J. M. Lough, Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophys. Res. Lett. 2008, 35, L03613.
Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events.Crossref | GoogleScholarGoogle Scholar |

[162]  R. L. Modini, Z. D. Ristovski, G. R. Johnson, C. He, N. Surawski, L. Morawska, T. Suni, M. Kulmala, New particle formation and growth at a remote, sub-tropical coastal location. Atmos. Chem. Phys. 2009, 9, 7607.
New particle formation and growth at a remote, sub-tropical coastal location.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhtr3J&md5=e0941ce7a7df40f7f68d6a1877c338b1CAS |

[163]  S. M. Leahy, M. J. Kingsford, C. R. Steinberg, Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale. PLoS One 2013, 8, e70400.
Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ert7rL&md5=924b46f367752030a92876f946101614CAS | 23894649PubMed |

[164]  P. A. Lee, S. J. DeMora, DMSP, DMS and DMSO concentrations and temporal trends in marine surface waters at Leigh, New Zealand, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds 1996, pp. 391–404 (Plenum Press: New York).

[165]  R. Simó, C. Pedros-Alio, G. Malin, J. O. Grimalt, Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters. Mar. Ecol. Prog. Ser. 2000, 203, 1.
Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters.Crossref | GoogleScholarGoogle Scholar |

[166]  D. Slezak, D. G. J. Herndl, Effects of ultraviolet and visible radiation on the cellular concentrations of dimethylsulfoniopropionate (DMSP) in Emiliania huxleyi (strain L). Mar. Ecol. Prog. Ser. 2003, 246, 61.
Effects of ultraviolet and visible radiation on the cellular concentrations of dimethylsulfoniopropionate (DMSP) in Emiliania huxleyi (strain L).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVCjsLs%3D&md5=722f3b42da5bb8c59a44133ebd383b83CAS |

[167]  S. D. Archer, F. J. Gilbert, P. D. Nightingale, M. V. Zubkov, A. H. Taylor, G. C. Smith, P. H. Burkill, Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 3067.
Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKntLc%3D&md5=9baa8ff855928d1a475a2b88be5cfde5CAS |

[168]  S. Besiktepe, K. W. Tang, M. Vila, R. Simó, Dimethylated sulfur compounds in seawater, seston and mesozooplankton in the seas around Turkey. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 1179.
Dimethylated sulfur compounds in seawater, seston and mesozooplankton in the seas around Turkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlSjs70%3D&md5=ac17b6d49b7b62ea69e43fbafc0cde0dCAS |

[169]  G.-P. Yang, W.-W. Jing, L. Li, Z. Q. Kang, G.-S. Song, Distribution of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring. J. Mar. Syst. 2006, 62, 22.
Distribution of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring.Crossref | GoogleScholarGoogle Scholar |

[170]  H.-H. Zhang, G.-P. Yang, T. Zhu, Distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer of the Yellow Sea, China, in spring. Cont. Shelf Res. 2008, 28, 2417.
Distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer of the Yellow Sea, China, in spring.Crossref | GoogleScholarGoogle Scholar |

[171]  M. Galí, C. Ruiz-González, T. Lefort, J. M. Gasol, C. Cardelús, C. Romera-Castillo, R. Simó, Spectral irradiance dependence of sunlight effects on plankton dimethylsulfide production. Limnol. Oceanogr. 2013, 58, 489.

[172]  M. Wang, H.-H. Zhang, G.-P. Yang, Distribution of dimethylsulfoxide (DMSO) in the surface water of the Yellow Sea and the Bohai Sea. Huanjing Kexue. Environ. Sci. 2013, 31, 45.

[173]  R. P. Kiene, S. K. Service, Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. Mar. Ecol. Prog. Ser. 1991, 76, 1.
Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlyjsQ%3D%3D&md5=38533c6df3fed1c0ac8a7a69a5eeef5dCAS |

[174]  R. P. Kiene, G. Gerard, Determination of trace levels of dimethylsulfoxide (DMSO) in seawater and rainwater. Mar. Chem. 1994, 47, 1.
Determination of trace levels of dimethylsulfoxide (DMSO) in seawater and rainwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFansbY%3D&md5=6e5583c0197f409bf1655332763d15e3CAS |

[175]  T. W. Andreae, M. O. Andreae, G. Schebeske, Biogenic sulfur emissions and aerosols over the tropical South-Atlantic. 1. Dimethylsulfide in seawater and in theatmospheric boundary-layer. J. Geophys. Res., D, Atmospheres 1994, 99, 22 819.
Biogenic sulfur emissions and aerosols over the tropical South-Atlantic. 1. Dimethylsulfide in seawater and in theatmospheric boundary-layer.Crossref | GoogleScholarGoogle Scholar |

[176]  A. J. Trevena, G. B. Jones, S. W. Wright, R. L. Van Den Enden, Profiles of dimethylsulphoniopropionate (DMSP), algal pigments, nutrients, and salinity in the fast ice of Prydz Bay, Antarctica. J. Geophys. Res. 2003, 108, 3145.
Profiles of dimethylsulphoniopropionate (DMSP), algal pigments, nutrients, and salinity in the fast ice of Prydz Bay, Antarctica.Crossref | GoogleScholarGoogle Scholar |

[177]  A. J. Trevena, G. B. Jones, Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting. Mar. Chem. 2006, 98, 210.
Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsF2mug%3D%3D&md5=9a1388ba8539c3a25aa7968a1477c8c4CAS |

[178]  S. Michaud, M. Levasseur, G. Cantin, Seasonal variations in dimethylsulfoniopropionate and dimethylsulfide concentrations in relation to the plankton community in the St. Lawrence Estuary. Estuar. Coast. Shelf Sci. 2007, 71, 741.
Seasonal variations in dimethylsulfoniopropionate and dimethylsulfide concentrations in relation to the plankton community in the St. Lawrence Estuary.Crossref | GoogleScholarGoogle Scholar |

[179]  J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245.
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7s%3D&md5=e41afa264a0a44bd66f7dcc3f8a02455CAS |

[180]  A. N. Rellinger, R. P. Kiene, D. A. Del Valle, D. J. Kieber, D. Slezak, H. Harada, J. Bisgrove, J. Brinkley, Occurrence and turnover of DMSP and DMS in deep waters of the Ross Sea, Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 686.
Occurrence and turnover of DMSP and DMS in deep waters of the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVCnsb8%3D&md5=d4d26f8b58b307fa86716c84ed5c3bf7CAS |

[181]  J. L. Tison, F. Brabant, I. Dumont, J. Stefels, High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica. J. Geophys. Res. 2010, 115, G04044.
High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar |

[182]  E. C. Asher, J. W. H. Dacey, M. M. Mills, K. R. Arrigo, P. D. Tortell, High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophys. Res. Lett. 2011, 38, L23609.
High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice.Crossref | GoogleScholarGoogle Scholar |

[183]  D. Nomura, N. Kasamatsu, K. Tateyama, K. S. Kudoh, M. Fukuchi, DMSP and DMS in coastal fast ice and under-ice water of Lutzow-Holm Bay, eastern Antarctica. Cont. Shelf Res. 2011, 31, 1377.
DMSP and DMS in coastal fast ice and under-ice water of Lutzow-Holm Bay, eastern Antarctica.Crossref | GoogleScholarGoogle Scholar |