Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Geochemical reaction mechanism discovery from molecular simulation

Andrew G. Stack A C and Paul R. C. Kent B
+ Author Affiliations
- Author Affiliations

A Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

B Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

C Corresponding author. Email: stackag@ornl.gov




Andrew G. Stack is a Senior R&D Staff Member in the Geochemistry and Interfacial Sciences Group, Chemical Sciences Division at Oak Ridge National Laboratory. He is a geochemist who specialises in understanding the kinetics and mechanisms of mineral reactions, and how these inherently molecular-level processes manifest themselves at larger scales. Reactions he has examined include mineral growth and dissolution, incorporation of impurities, electron transfer and ligand exchange. He studies these using a variety of computational, experimental and theoretical approaches. He is currently the Division Chair for the American Chemical Society, Geochemistry Division.



Paul R. C. Kent is a Senior R&D Staff Member at the Center for Nanophase Materials Sciences and the Computer Science and Mathematics Division at Oak Ridge National Laboratory. He is a physicist specialising in the atomistic simulation of materials, primarily using quantum mechanics-based methods. A particular focus is the development, implementation and optimisation of these methods on high performance computers. He is currently member at large of the Division of Computational Physics of the American Physical Society.

Environmental Chemistry 12(1) 20-32 https://doi.org/10.1071/EN14045
Submitted: 1 March 2014  Accepted: 2 August 2014   Published: 10 November 2014

Environmental context. Computational simulations are providing an increasingly useful way to isolate specific geochemical and environmental reactions and to test how important they are to the overall rate. In this review, we summarise a few ways that one can simulate a reaction and discuss each technique’s overall strengths and weaknesses. Selected case studies illustrate how these techniques have helped to improve our understanding for geochemical and environmental problems.

Abstract. Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. Some common methods are summarised that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and their strengths and weaknesses are also discussed. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineral surfaces, surface charging, crystal growth and dissolution, and electron transfer. The effect that molecular simulation has had on our understanding of geochemical reactivity is highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.


References

[1]  J. D. Rimstidt, Geochemical Rate Models 2014 (Cambridge University Press; New York).

[2]  A. G. Stack, Next generation models of carbonate mineral growth and dissolution. Greenhouse Gas. Sci. Technol. 2014, 4, 278.
Next generation models of carbonate mineral growth and dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvV2ks7w%3D&md5=b1c0e61ab77e6621193adc66b5ba2a72CAS |

[3]  C. Zhu, G. Anderson, Environmental Applications of Geochemical Modelling 2002 (Cambridge University Press: Cambridge, UK).

[4]  S. L. Brantley, J. D. Kubicki, A. F. White (Eds), Kinetics of Water–Rock Interaction 2008 (Springer: New York).

[5]  J. I. Drever, D. W. Clow, Weathering rates in catchments. Rev. Mineral. Geochem. 1995, 31, 463.
| 1:CAS:528:DyaK28Xjt1WktQ%3D%3D&md5=dd96b629ebb5fa11a46a05dafce74787CAS |

[6]  A. F. White, Quantitative approaches to characterizing natural chemical weathering rates, in Kinetics of Water–Rock Interaction (Eds S. L. Brantley, J. D. Kubicki, A. F. White) 2008 (Springer: New York).

[7]  S. L. Maher, C. I. Steefel, A. F. White, D. A. Stonestrom, The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz soil chronosequence, California. Geochim. Cosmochim. Acta 2009, 73, 2804.
The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz soil chronosequence, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltValsL8%3D&md5=6c2caa37381ac26a62dccb60e60f8caeCAS |

[8]  A. Putnis, G. Mauthe, The effect of pore size on cementation in porous rocks. Geofluids 2001, 1, 37.
The effect of pore size on cementation in porous rocks.Crossref | GoogleScholarGoogle Scholar |

[9]  S. Emmanuel, J. J. Ague, O. Walderhaug, Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone. Geochim. Cosmochim. Acta 2010, 74, 3539.
Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVCqtLY%3D&md5=35fa75cbe6ce8234868adcca7f0e98c3CAS |

[10]  A. G. Stack, A. Fernandez-Martinez, L. F. Allard, J. L. Bañuelos, G. Rother, L. M. Anovitz, D. R. Cole, G. A. Waychunas, Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry. Environ. Sci. Technol. 2014, 48, 6177.
Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslalu7w%3D&md5=54ed9cc8dda819511c9884575ab0202bCAS | 24815551PubMed |

[11]  J. N. Bracco, A. G. Stack, C. I. Steefel, Upscaling calcite growth rates from the meso- to the macro-scale. Environ. Sci. Technol. 2013, 47, 7555.
| 1:CAS:528:DC%2BC3sXot1Gks7c%3D&md5=0a0c16dd5f4c14a17381a2663daffef3CAS | 23713769PubMed |

[12]  R. S. Arvidson, I. E. Ertan, J. E. Amonette, A. Lüttge, Variation in calcite dissolution rates: a fundamental problem? Geochim. Cosmochim. Acta 2003, 67, 1623.
Variation in calcite dissolution rates: a fundamental problem?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVehtb0%3D&md5=e80196b43703423c5c172f7a34272107CAS |

[13]  R. A. Berner, The role of magnesium in the crystal growth of calcite and aragonite from sea Water. Geochim. Cosmochim. Acta 1975, 39, 489.
The role of magnesium in the crystal growth of calcite and aragonite from sea Water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktFens7g%3D&md5=357c5b879ea00f9f67ad5c22bac5d541CAS |

[14]  L. C. Nielsen, D. J. DePaolo, J. J. DeYoreo, Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation. Geochim. Cosmochim. Acta 2012, 86, 166.
Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFegt7Y%3D&md5=8c1c414ec85388c6a465a70c48715a1bCAS |

[15]  J. L. Druhan, C. I. Steefel, K. H. Williams, D. J. DePaolo, Calcium isotope fractionation in groundwater: molecular scale processes influencing field scale behavior. Geochim. Cosmochim. Acta 2013, 119, 93.
Calcium isotope fractionation in groundwater: molecular scale processes influencing field scale behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGls7bL&md5=21e91bb2c541631a866b48a63c554a76CAS |

[16]  L. C. Nielsen, D. J. DePaolo, Ca isotope fractionation in a high-alkalinity lake system: Mono Lake, California. Geochim. Cosmochim. Acta 2013, 118, 276.
Ca isotope fractionation in a high-alkalinity lake system: Mono Lake, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CqurjN&md5=7386c41d7829636a3c3754a4ab1bbea5CAS |

[17]  C. X. Liu, J. Y. Shang, S. Kerisit, J. M. Zachara, W. H. Zhu, Scale-dependent rates of uranyl surface complexation reaction in sediments. Geochim. Cosmochim. Acta 2013, 105, 326.
Scale-dependent rates of uranyl surface complexation reaction in sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVKms70%3D&md5=fa57a1283a954ab359cfafdd25507534CAS |

[18]  M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids 1987 (Clarendon Press: New York).

[19]  R. T. Cygan, Molecular modeling in mineralogy and geochemistry. Rev. Mineral. Geochem. 2001, 42, 1.
Molecular modeling in mineralogy and geochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltl2gt7o%3D&md5=49d25563e7fa91042a1e1aaa2c22eb1cCAS |

[20]  J. D. Gale, Simulation the crystal structures and properties of ionic materials from interatomic potentials. Rev. Mineral. Geochem. 2001, 42, 37.
Simulation the crystal structures and properties of ionic materials from interatomic potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltl2gt7s%3D&md5=68455ef22f1d90696657dfe87f2de99aCAS |

[21]  A. A. Chialvo, J. Horita, Polarization behavior of water in extreme aqueous environments: A molecular dynamics study based on the Gaussian charge polarizable water model. J. Chem. Phys. 2010, 133, 074504.
Polarization behavior of water in extreme aqueous environments: A molecular dynamics study based on the Gaussian charge polarizable water model.Crossref | GoogleScholarGoogle Scholar | 20726649PubMed |

[22]  A. Pavese, M. Catti, S. C. Parker, A. Wall, Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3. Phys. Chem. Miner. 1996, 23, 89.
Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisV2jtrk%3D&md5=1f2d7270b73a5fc919a644a924ef266dCAS |

[23]  A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W. A. Goddard, ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 2003, 107, 3803.
ReaxFFSiO reactive force field for silicon and silicon oxide systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1eqt7s%3D&md5=7a3f363b7849848bd28dea2136624186CAS |

[24]  B. Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 2002, 101, 219.
A reappraisal of what we have learnt during three decades of computer simulations on water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVOmsb4%3D&md5=0797708f3552bfa8cee74d08b3536a28CAS |

[25]  C. Vega, J. L. F. Abascal, Simulating water with rigid non-polarizable models: a general perspective. Phys. Chem. Chem. Phys. 2011, 13, 19663.
Simulating water with rigid non-polarizable models: a general perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2htr%2FJ&md5=3c10cb7317f580b73358ca7045674b66CAS | 21927736PubMed |

[26]  M. Chaplin, Water Structure and Science 2014. Available at http://www1.lsbu.ac.uk/water/models.html [Verified 27 February 2014].

[27]  G. S. Fanourgakis, S. S. Xantheas, Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J. Chem. Phys. 2008, 128, 074506.
Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water.Crossref | GoogleScholarGoogle Scholar | 18298156PubMed |

[28]  A. Szabo, N. S. Ostlun, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory 1989 (Dover Publications, Inc.: Mineola, New York).

[29]  J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods 1996 (Gaussian, Inc.: Pittsburg, PA).

[30]  J. Klimeš, A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 2012, 137, 120 901.
Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory.Crossref | GoogleScholarGoogle Scholar |

[31]  A. M. Chaka, G. A. E. Oxford, J. E. Stubbs, P. J. Eng, J. R. Bargar, Density-functional theory investigation of oxidative corrosion of UO2. Comp. Theor. Chem. 2012, 987, 90.
Density-functional theory investigation of oxidative corrosion of UO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFymtrk%3D&md5=aa9b4115a6643d23c898f0d50b2a759fCAS |

[32]  R. Atta-Fynn, D. F. Johnson, E. J. Bylaska, E. S. Ilton, G. K. Schenter, W. A. de John, Structure and hydrolysis of the U(IV), U(V), and U(VI) aqua ions from ab initio molecular simulations. Inorg. Chem. 2012, 51, 3016.
Structure and hydrolysis of the U(IV), U(V), and U(VI) aqua ions from ab initio molecular simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlOksL0%3D&md5=310fed07ac6e6a4173afe5c2b8c0000dCAS | 22339109PubMed |

[33]  W. M. C. Foulkes, L. Mitas, R. J. Needs, G. Rajagopal, Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 2001, 73, 33.
Quantum Monte Carlo simulations of solids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1ansrw%3D&md5=56dfacf12478e24f99b94ea1afea70b4CAS |

[34]  J. P. Larentzos, L. J. Criscenti, A Molecular dynamics study of alkaline earth metal-chloride complexation in aqueous solution. J. Phys. Chem. B 2008, 112, 14 243.
A Molecular dynamics study of alkaline earth metal-chloride complexation in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ors7zE&md5=1a31c2f3a92232108b8c97a545aa7a34CAS |

[35]  J. D. Kubicki, Transition state theory and molecular orbital calculations applied to rates and reaction mechanisms in geochemical kinetics, in Kinetics of Water–Rock Interaction (Eds S. L. Brantley, J. D. Kubicki, A. F. White) 2008, pp. 39–72 (Springer: New York).

[36]  J. Blotevogel, A. N. Mayeno, T. C. Sale, T. Borch, Prediction of contaminant persistence in aqueous phase: a quantum chemical approach. Environ. Sci. Technol. 2011, 45, 2236.
Prediction of contaminant persistence in aqueous phase: a quantum chemical approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFGhsb0%3D&md5=4e3d23b62c416995ffe0ba063ff47409CAS | 21332222PubMed |

[37]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford CT).

[38]  A. Klamt, G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1992, 5, 799.

[39]  M. Raju, A. C. T. van Duin, K. Fichthorn, Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics. Nano Lett. 2014, 14, 1836.
Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslCrtbo%3D&md5=24581352f1813d950e5480a3a5f42fc0CAS | 24601782PubMed |

[40]  G. Stirnemann, D. Laage, Communication: On the origin of the non-Arrhenius behavior in water reorientation dynamics. J. Chem. Phys. 2012, 137, 031101.
Communication: On the origin of the non-Arrhenius behavior in water reorientation dynamics.Crossref | GoogleScholarGoogle Scholar | 22830675PubMed |

[41]  A. G. Stack, J. R. Rustad, W. H. Casey, Modeling water exchange on an aluminum polyoxocation. J. Phys. Chem. B 2005, 109, 23 771.
Modeling water exchange on an aluminum polyoxocation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1emsb%2FI&md5=bf853b04fa5c2c483dbf5c09c6e019edCAS |

[42]  R. J. Evans, J. R. Rustad, W. H. Casey, Calculating geochemical reaction pathways – exploration of the inner-sphere water exchange mechanism in Al(H2O)63+(aq) + nH2O with ab Initio calculations and molecular dynamics. J. Phys. Chem. A 2008, 112, 4125.
Calculating geochemical reaction pathways – exploration of the inner-sphere water exchange mechanism in Al(H2O)63+(aq) + nH2O with ab Initio calculations and molecular dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslahtrw%3D&md5=a3e8db2adca4e0a886ed026728912525CAS | 18366199PubMed |

[43]  T. D. Perry, R. T. Cygan, R. Mitchell, Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces. Geochim. Cosmochim. Acta 2006, 70, 3508.
Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslSqtbk%3D&md5=980f77e4d910df1a9576bf605127158aCAS |

[44]  J. R. Rustad, J. S. Loring, W. H. Casey, Oxygen-exchange pathways in aluminum polyoxocations. Geochim. Cosmochim. Acta 2004, 68, 3011.
Oxygen-exchange pathways in aluminum polyoxocations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyitLg%3D&md5=39c6a4168cb1a16c230881f385b27d8fCAS |

[45]  A. Grossfield, An Implementation of WHAM: the Weighted Histogram Analysis Method 2014 Available at http://membrane.urmc.rochester.edu/content/wham [Verified 27 February 2014].

[46]  A. Laio, M. Parrinello, Computing free energies and accelerating rare events with metadynamics. Lect. Notes Phys. 2006, 703, 315.
Computing free energies and accelerating rare events with metadynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Shtg%3D%3D&md5=adb3cafbf8c409f7fe98d3f82ce555ebCAS |

[47]  M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broglia, M. Parrinello, PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 2009, 180, 1961.
PLUMED: a portable plugin for free-energy calculations with molecular dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2kt7fL&md5=1932fd117badee0cd3683964b7294d8bCAS |

[48]  A. Barducci, G. Bussi, M. Parrinello, Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008, 100, 020603.
Well-tempered metadynamics: a smoothly converging and tunable free-energy method.Crossref | GoogleScholarGoogle Scholar | 18232845PubMed |

[49]  P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, M. Parrinello, Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B 2006, 110, 3533.
Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGhsr3O&md5=81898c5568dac7c52138e1607e37e591CAS | 16494409PubMed |

[50]  P. Tiwary, M. Parrinello, From metadynamics to dynamics. Phys. Rev. Lett. 2013, 111, 230 602.
From metadynamics to dynamics.Crossref | GoogleScholarGoogle Scholar |

[51]  H. Eyring, The activated complex and the absolute rate of chemical reactions. Chem. Rev. 1935, 17, 65.
The activated complex and the absolute rate of chemical reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXlvFertA%3D%3D&md5=57f3e0ca9ac9ef9a510de9023869c2b9CAS |

[52]  D. Chandler, Barrier crossings: classical theory of rare but important events, in Classical and Quantum Dynamics in Condensed Phase Simulations (Eds B. J. Berne, G. Ciccotti, D. F. Coker) 1997, pp. 5–23 (World Scientific: Singapore).

[53]  A. A. Chialvo, P. T. Cummings, H. D. Cochran, J. D. Simonson, R. E. Mesmer, Na+–Cl– ion pair association in supercritical water. J. Chem. Phys. 1995, 103, 9379.
Na+–Cl ion pair association in supercritical water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFKltb8%3D&md5=e77b0d9bb0f8e856bfa8aba26772b10dCAS |

[54]  A. G. Stack, P. Raiteri, J. D. Gale, Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare event theories. J. Am. Chem. Soc. 2012, 134, 11.
Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare event theories.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVSlurg%3D&md5=d7760ed48164638e0f7eba3c0c9b763eCAS | 21721566PubMed |

[55]  K. Leung, L. J. Criscenti, Predicting the acidity constant of a goethite hydroxyl group from first principles. J. Phys. Condens. Matter 2012, 24, 124 105.
Predicting the acidity constant of a goethite hydroxyl group from first principles.Crossref | GoogleScholarGoogle Scholar |

[56]  J. Wang, J. R. Rustad, W. H. Casey, Calculation of water-exchange rates on aqueous polynuclear clusters and at oxide–water interfaces. Inorg. Chem. 2007, 46, 29620.

[57]  J. R. Rustad, A. G. Stack, Molecular dynamics calculation of the activation volume for water exchange on Li+. J. Am. Chem. Soc. 2006, 128, 14 778.
Molecular dynamics calculation of the activation volume for water exchange on Li+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeltrfF&md5=d3996308948a725855709bc25f74d2b5CAS |

[58]  W. H. Casey, C. Ludwig, Silicate mineral dissolution as a ligand-exchange reaction. Rev. Mineral. Geochem. 1995, 31, 87.
| 1:CAS:528:DyaK28Xjt1Wksw%3D%3D&md5=24f1b31d132f0388c56779573c36968dCAS |

[59]  A. G. Stack, M. C. Grantham, Growth rate of calcite steps as a function of aqueous calcium-to-carbonate ratio: independent attachment and detachment of calcium and carbonate ions. Cryst. Growth Des. 2010, 10, 1409.
Growth rate of calcite steps as a function of aqueous calcium-to-carbonate ratio: independent attachment and detachment of calcium and carbonate ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyjtrk%3D&md5=e45b96a62cb6d0d0e7040693ea5a5e21CAS |

[60]  D. T. Richens, The Chemistry of Aqua Ions 1997 (Wiley: New York).

[61]  A. G. Stack, J. D. Gale, P. Raiteri, Virtual probes of mineral–water interfaces: the more flops, the better!. Elements 2013, 9, 211.
Virtual probes of mineral–water interfaces: the more flops, the better!.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Cks7jK&md5=6c1c9197c248ada3be5a6d3ab354491aCAS |

[62]  F. P. Rotzinger, Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods. Chem. Rev. 2005, 105, 2003.
Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslKmu7o%3D&md5=3d021361e2f51596bb3c3d2db1d1ae9aCAS | 15941208PubMed |

[63]  J. R. Rustad, E. Wasserman, A. R. Felmy, Molecular modeling of the surface charging of hematite II. Optimal proton distribution and simulation of surface charge versus pH relationships. Surf. Sci. 1999, 424, 28.
Molecular modeling of the surface charging of hematite II. Optimal proton distribution and simulation of surface charge versus pH relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Gju74%3D&md5=16fed18ab4b20cd8b427066d7b5c2174CAS |

[64]  N. Kumar, P. R. C. Kent, A. V. Bandura, J. D. Kubicki, D. J. Wesolowski, D. R. Cole, J. O. Sofo, Faster proton dynamics of water on SnO2 compared to TiO2. J. Chem. Phys. 2011, 134, 044706.
Faster proton dynamics of water on SnO2 compared to TiO2.Crossref | GoogleScholarGoogle Scholar | 21280784PubMed |

[65]  D. Spångberg, R. Rey, J. T. Hynes, K. Hermansson, Rate and mechanisms for water exchange around Li+(aq) from MD simulations. J. Phys. Chem. B 2003, 107, 4470.
Rate and mechanisms for water exchange around Li+(aq) from MD simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVaqtLg%3D&md5=3dbc7ebd1bb132bd2772d816268d5bb7CAS |

[66]  S. Kerisit, S. C. Parker, Free energy of adsorption of water and metal ions on the {101̄4} calcite surface. J. Am. Chem. Soc. 2004, 126, 10 152.
Free energy of adsorption of water and metal ions on the {101̄4} calcite surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFantbg%3D&md5=efcfbb709a919cd440fafac9203e6409CAS |

[67]  A. G. Stack, J. R. Rustad, Structure and dynamics of water on aqueous barium ion and the {001} barite surface. J. Phys. Chem. C 2007, 111, 16 387.
Structure and dynamics of water on aqueous barium ion and the {001} barite surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOitLjF&md5=6eb945aef79b61a7b79ce6065d54655bCAS |

[68]  S. Kerisit, K. M. Rosso, Transition path sampling of water exchange rates and mechanisms around aqueous ions. J. Chem. Phys. 2009, 131, 114 512.
Transition path sampling of water exchange rates and mechanisms around aqueous ions.Crossref | GoogleScholarGoogle Scholar |

[69]  A. E. Hofmann, I. C. Bourg, D. J. DePaolo, Ion desolvation as a mechanism for kinetic isotope fractionation in aqueous systems. Proc. Natl. Acad. Sci. USA 2012, 109, 18 689.
Ion desolvation as a mechanism for kinetic isotope fractionation in aqueous systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2kur%2FE&md5=4f6bf113f0f2e05860c2f28d00b94d9bCAS |

[70]  J. Rosenqvist, W. H. Casey, The flux of oxygen from the basal surface of gibbsite (α-Al(OH)3) at equilibrium. Geochim. Cosmochim. Acta 2004, 68, 3547.
The flux of oxygen from the basal surface of gibbsite (α-Al(OH)3) at equilibrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVGis78%3D&md5=9424f21e06136d57d406f0da8d948318CAS |

[71]  M. L. Machesky, M. Předota, D. J. Wesolowski, L. Vlcek, P. T. Cummings, J. Rosenqvist, M. K. Ridley, J. D. Kubicki, A. V. Bandura, N. Kumar, J. O. Sofo, Surface protonation at the rutile (110) interface, explicit incorporation of solvation structure within the refined MUSIC model framework. Langmuir 2008, 24, 12 331.
Surface protonation at the rutile (110) interface, explicit incorporation of solvation structure within the refined MUSIC model framework.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ahs7rO&md5=418d74f4339c26e37f93b2111d38c87bCAS |

[72]  P. Fenter, S. Kerisit, P. Raiteri, J. D. Gale, Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X‐ray reflectivity data. J. Phys. Chem. C 2013, 117, 5028.
Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X‐ray reflectivity data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisV2iur4%3D&md5=7f1d4b21bb4a0622317241270dc7db4cCAS |

[73]  L. Vlcek, Z. Zhang, M. L. Machesky, P. Fenter, J. Rosenqvist, D. J. Wesolowski, L. M. Anovitz, M. Predota, P. T. Cummings, Electric double layer at metal oxide surfaces: static properties of the cassiterite–water interface. Langmuir 2007, 23, 4925.
Electric double layer at metal oxide surfaces: static properties of the cassiterite–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlClsbk%3D&md5=3f42a80dbfe8660bc1409dc50c9fba1aCAS | 17381142PubMed |

[74]  S. Parez, M. Předota, M. Machesky, Dielectric properties of water at rutile and graphite surfaces: effect of molecular structure. J. Phys. Chem. C. 2014, 118, 4818.
Dielectric properties of water at rutile and graphite surfaces: effect of molecular structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWgt7c%3D&md5=c1245a9e2b38feec3fba80f2969a09f4CAS |

[75]  M. Předota, Z. Zhang, P. Fenter, D. J. Wesolowski, P. T. Cummings, Electric double layer at the rutile (110) surface. 2. Adsorption of ions from molecular dynamics and X-ray experiments. J. Phys. Chem. B 2004, 108, 12 061.
Electric double layer at the rutile (110) surface. 2. Adsorption of ions from molecular dynamics and X-ray experiments.Crossref | GoogleScholarGoogle Scholar |

[76]  S. S. Lee, P. Fenter, C. Park, N. C. Sturchio, K. L. Nagy, Hydrated cation speciation at the muscovite (001)–water interface. Langmuir 2010, 26, 16 647.
Hydrated cation speciation at the muscovite (001)–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KhtrfJ&md5=b032050d5205c98729ec7fec3c841d09CAS |

[77]  M. K. Ridley, T. Hiemstra, W. H. van Riemsdijk, M. L. Machesky, Inner-sphere complexation of cations at the rutile–water interface: a concise surface structural interpretation with the CD and MUSIC model. Geochim. Cosmochim. Acta 2009, 73, 1841.
Inner-sphere complexation of cations at the rutile–water interface: a concise surface structural interpretation with the CD and MUSIC model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFamsb8%3D&md5=379dfbe611040dbccca64ef66bd404c2CAS |

[78]  A. V. Bandura, J. D. Kubicki, J. O. Sofo, Comparisons of multilayer H2O adsorption onto the (110) surfaces of r-TiO2 and SnO2 as calculated with density functional theory. J. Phys. Chem. B 2008, 112, 11 616.
Comparisons of multilayer H2O adsorption onto the (110) surfaces of r-TiO2 and SnO2 as calculated with density functional theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSrtLnM&md5=b932cad31d2f01cb398894cbfa631bd0CAS |

[79]  L.-M. Liu, C. Zhang, G. Thornton, A. Michaelides, Structure and dynamics of liquid water on rutile TiO2 (110). Phys. Rev. B 2010, 82, 161 415.
Structure and dynamics of liquid water on rutile TiO2 (110).Crossref | GoogleScholarGoogle Scholar |

[80]  D. J. Wesolowski, J. O. Sofo, A. V. Bandura, Z. Zhang, E. Mamontov, M. Predota, N. Kumar, J. D. Kubicki, P. R. C. Kent, L. Vlcek, M. L. Machesky, P. A. Fenter, P. T. Cummings, L. M. Anovitz, A. A. Skelton, J. Rosenqvist, Comment on structure and dynamics of liquid water on rutile TiO2 (110). Phys. Rev. B 2012, 85, 167 401.
Comment on structure and dynamics of liquid water on rutile TiO2 (110).Crossref | GoogleScholarGoogle Scholar |

[81]  L.-M. Liu, C. Zhang, G. Thornton, A. Michaelides, Reply to ‘Comment on “Structure and dynamics of liquid water on rutile TiO2(11)”’. Phys. Rev. B 2012, 85, 167 402.
Reply to ‘Comment on “Structure and dynamics of liquid water on rutile TiO2(11)”’.Crossref | GoogleScholarGoogle Scholar |

[82]  N. Kumar, P. R. C. Kent, D. J. Wesolowski, J. D. Kubicki, Modeling water adsorption on rutile (110) using van der Waals density functional and DFT+U methods. J. Phys. Chem. C 2013, 117, 23 638.
Modeling water adsorption on rutile (110) using van der Waals density functional and DFT+U methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1amtL%2FL&md5=bc46aa5b3717d72d85d954580240dc6bCAS |

[83]  J. J. De Yoreo, L. A. Zepeda-Ruiz, R. W. Friddle, S. R. Qiu, L. E. Wasylenki, A. A. Chernov, G. H. Gilmer, P. M. Dove, Rethinking classical crystal growth models through molecular scale insights: consequences of kink-limited kinetics. Cryst. Growth Des. 2009, 9, 5135.
Rethinking classical crystal growth models through molecular scale insights: consequences of kink-limited kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSgtbbJ&md5=64c0c2d22ae90673de0b2a5be45995cfCAS |

[84]  U. Becker, P. Risthaus, D. Bosbach, A. Putnis, Selective attachment of monovalent background electrolyte ions and growth inhibitors to polar steps on sulfates as studied by molecular simulations and AFM observations. Mol. Simul. 2002, 28, 607.
Selective attachment of monovalent background electrolyte ions and growth inhibitors to polar steps on sulfates as studied by molecular simulations and AFM observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1yqsbY%3D&md5=3d0837061f096fadf87f15eb73a8a164CAS |

[85]  A. G. Stack, J. R. Rustad, J. J. De Yoreo, T. A. Land, W. H. Casey, The growth morphology of the {100} surface of KDP (archerite) on the molecular scale. J. Phys. Chem. B 2004, 108, 18 284.
The growth morphology of the {100} surface of KDP (archerite) on the molecular scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptF2ksLk%3D&md5=eae53aa23a5a4898dc6e7a790a75a2b4CAS |

[86]  A. G. Stack, Molecular dynamics simulations of solvation and kink site formation at the {001} barite–water interface. J. Phys. Chem. C 2009, 113, 2104.
Molecular dynamics simulations of solvation and kink site formation at the {001} barite–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlemtrjE&md5=d4db72f831b530f17cf99465043f3532CAS |

[87]  D. Spagnoli, S. Kerisit, S. C. Parker, Atomistic simulation of the free energies of dissolution of ions from flat and stepped calcite surfaces. J. Cryst. Growth 2006, 294, 103.
Atomistic simulation of the free energies of dissolution of ions from flat and stepped calcite surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslShu7k%3D&md5=41d632af5509643718c6f7ee551c728cCAS |

[88]  J. R. A. Godinho, S. Piazolo, T. Balic-Zunic, Importance of surface structure on dissolution of fluorite: implications for surface dynamics and dissolution rates. Geochim. Cosmochim. Acta 2014, 126, 398.
Importance of surface structure on dissolution of fluorite: implications for surface dynamics and dissolution rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Gmug%3D%3D&md5=4789f57315481038dbca9c305b93843aCAS |

[89]  L.-M. Liu, A. Laio, A. Michaelides, Initial stages of salt crystal dissolution determined with ab initio molecular dynamics. Phys. Chem. Chem. Phys. 2011, 13, 13 162.
Initial stages of salt crystal dissolution determined with ab initio molecular dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslOnsbY%3D&md5=6c96131f04b06302ed1334d18f0d9c13CAS |

[90]  P. M. Dove, The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim. Cosmochim. Acta 1999, 63, 3715.
The dissolution kinetics of quartz in aqueous mixed cation solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSnur0%3D&md5=de00a63175fe324f9edcaf503e9a2a89CAS |

[91]  A. F. Wallace, G. V. Gibbs, P. M. Dove, Influence of ion-associated water on the hydrolysis of Si–O bonded interactions. J. Phys. Chem. A 2010, 114, 2534.
Influence of ion-associated water on the hydrolysis of Si–O bonded interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Knsrc%3D&md5=dabbbb8278a0dbe274b00a1b70648986CAS | 20108957PubMed |

[92]  J. D. Kubicki, J. O. Sofo, A. A. Skelton, A. V. A. Bandura, New hypothesis for the dissolution mechanism of silicates. J. Phys. Chem. C 2012, 116, 17479.
New hypothesis for the dissolution mechanism of silicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOjs7bL&md5=407234b35eef4c484d2821923d65ffc8CAS |

[93]  R. A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966.
On the theory of oxidation-reduction reactions involving electron transfer. I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XmtlWksw%3D%3D&md5=34bab0b2ba6dc7fd88b6a60e0715225cCAS |

[94]  A. Bengtson, D. Morgan, U. Becker, Spin state of iron in Fe3O4 magnetite and h-Fe3O4. Phys. Rev. B 2013, 87, 155141.
Spin state of iron in Fe3O4 magnetite and h-Fe3O4.Crossref | GoogleScholarGoogle Scholar |

[95]  M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A. de Jong, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477.
NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Cjur8%3D&md5=12392341d245ff0faf1a709d0154a738CAS |

[96]  S. F. Nelsen, S. C. Blackstock, Y. Kim, Estimation of inner shell marcus terms for amino nitrogen compounds by molecular orbital calculations. J. Am. Chem. Soc. 1987, 109, 677.
Estimation of inner shell marcus terms for amino nitrogen compounds by molecular orbital calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFCrtw%3D%3D&md5=927c888cd8c43157e91e593920f76720CAS |

[97]  K. M. Rosso, D. M. A. Smith, M. Dupuis, An ab initio model of electron transport in hematite (α-Fe2O3) basal planes. J. Chem. Phys. 2003, 118, 6455.
An ab initio model of electron transport in hematite (α-Fe2O3) basal planes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVyqsbk%3D&md5=95cf57d91207b7371cec34ea4d36b19dCAS |

[98]  V. Alexandrov, K. M. Rosso, Insights into the mechanism of Fe(II) adsorption and oxidation at Fe–Clay mineral surfaces from first-principles calculations. J. Phys. Chem. C 2013, 117, 22 880.
Insights into the mechanism of Fe(II) adsorption and oxidation at Fe–Clay mineral surfaces from first-principles calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGku7vJ&md5=bbf58a6acedc7e8040193252cb48eae0CAS |

[99]  A. G. Stack, C. M. Eggleston, M. H. Engelhard, Reaction of hydroquinone with hematite I. Electrochemical scanning tunneling microscopy and X-ray photoelectron spectroscopy. J. Colloid Interface Sci. 2004, 274, 433.
Reaction of hydroquinone with hematite I. Electrochemical scanning tunneling microscopy and X-ray photoelectron spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFOit7w%3D&md5=4fe13763338ba46a7eb2be60bf13a465CAS | 15144814PubMed |

[100]  A. G. Stack, K. M. Rosso, D. M. A. Smith, C. M. Eggleston, Reaction of hydroquinone with hematite II. Calculation of the electron transfer rate and comparison to the dissolution rate. J. Colloid Interface Sci. 2004, 274, 442.
Reaction of hydroquinone with hematite II. Calculation of the electron transfer rate and comparison to the dissolution rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFOit7o%3D&md5=5603a315717bbdced1c075184cc75566CAS | 15144815PubMed |

[101]  S. Kerisit, K. M. Rosso, Computer simulation of electron transfer at hematite surfaces. Geochim. Cosmochim. Acta 2006, 70, 1888.
Computer simulation of electron transfer at hematite surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVKitb8%3D&md5=b38de329c0b97000c3413d19a3b8a8e4CAS |

[102]  S. Kerisit, K. M. Rosso, Kinetic Monte Carlo model of charge transport in hematite (α-Fe2O3). J. Chem. Phys. 2007, 127, 124 706.
Kinetic Monte Carlo model of charge transport in hematite (α-Fe2O3).Crossref | GoogleScholarGoogle Scholar |

[103]  J. Wang, J. R. Rustad, A simple model for the effect of hydration on the distribution of ferrous iron at reduced hematite (012) surfaces. Geochim. Cosmochim. Acta 2006, 70, 5285.
A simple model for the effect of hydration on the distribution of ferrous iron at reduced hematite (012) surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFehs73J&md5=8bb141455484f8e27b980f863b0ee49bCAS |

[104]  L. Shi, K. M. Rosso, T. A. Clarke, D. J. Richardson, J. M. Zachara, J. K. Fredrickson, Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1. FMICB 2012, 3, 1.
Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1.Crossref | GoogleScholarGoogle Scholar |

[105]  A. L. Neal, K. M. Rosso, G. G. Geesey, Y. A. Gorby, B. J. Little, Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis. Geochim. Cosmochim. Acta 2003, 67, 4489.
Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCqu7w%3D&md5=38db9ee2a62bea2e7df4a4f384375a50CAS |

[106]  S. Kerisit, K. M. Rosso, M. Dupuis, M. Valiev, Molecular computational investigation of electron-transfer kinetics across cytochrome-iron oxide interfaces. J. Phys. Chem. C 2007, 111, 11 363.
Molecular computational investigation of electron-transfer kinetics across cytochrome-iron oxide interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Cktb0%3D&md5=d4640ac0272ee99f3bb42dfb1957518eCAS |

[107]  J. Hemminger, From Quanta to the Continuum: Opportunities for Mesoscale Science 2012 (US Department of Energy: Washington, DC). Available at http://science.energy.gov/bes/news-and-resources/reports/ [Verified 31 October 2014].

[108]  Y. Marcus, Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K. J. Chem. Soc., Faraday Trans. 1991, 87, 2995.
Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVWhsbc%3D&md5=15b26ddb5e71afe22851dbde6669f666CAS |

[109]  L. Vlcek, A. A. Chialvo, J. M. Simons, Correspondence between cluster-ion and bulk solution thermodynamic properties: on the validity of the cluster-pair-based approximation. J. Phys. Chem. A 2013, 117, 11 328.
Correspondence between cluster-ion and bulk solution thermodynamic properties: on the validity of the cluster-pair-based approximation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOju77P&md5=06a4555a0ed33421d407553dc8b3e37aCAS |

[110]  NIST. Standard Reference Database, 46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0 2004. Available at http://www.nist.gov/srd/nist46.cfm [Verified 8 June 2014].

[111]  J. L. Fulton, S. M. Heald, Y. S. Badyal, J. M. Simonson, Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solution. I. The perspective on local structure from EXAFS and XANES. J. Phys. Chem. A 2003, 107, 4688.
Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solution. I. The perspective on local structure from EXAFS and XANES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVahs7g%3D&md5=152ff8a746109a7b83feb6d50372e7e1CAS |

[112]  A. A. Chialvo, J. M. Simonson, Solvation and ion pair association in aqueous metal sulfates: interpretation of NDIS raw data by isobaric–isothermal molecular dynamics simulation. Collect. Czech. Chem. Commun. 2010, 75, 405.
Solvation and ion pair association in aqueous metal sulfates: interpretation of NDIS raw data by isobaric–isothermal molecular dynamics simulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlaru74%3D&md5=f66f67e2a6cb513199483c8a80397323CAS |

[113]  P. Fenter, S. S. Lee, A. A. Skelton, P. T. Cummings, Direct and quantitative comparison of pixelated density profiles with high-resolution X-ray reflectivity data. J. Synchrotron Radiat. 2011, 18, 257.
Direct and quantitative comparison of pixelated density profiles with high-resolution X-ray reflectivity data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVShtLs%3D&md5=cb577aa69da22fbde395f4d989c4c203CAS | 21335914PubMed |

[114]  CRC Handbook of Chemistry and Physics, 94th edn (Ed. W. M. Haynes), 2013 (CRC Press: Boca Raton, FL).

[115]  A. K. Soper, F. Bruni, M. A. Ricci, Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data. J. Chem. Phys. 1997, 106, 247.
Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1Kmtg%3D%3D&md5=08d15b61d7a77aaa52b7abb8309b4e6fCAS |

[116]  J. Teixeira, M.-C. Bellissent-Funel, S. H. Chen, A. J. Dianoux, Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys. Rev. A 1985, 31, 1913.
Experimental determination of the nature of diffusive motions of water molecules at low temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlyisbo%3D&md5=b5140bc66319871b381747cfe7ce8b21CAS | 9895699PubMed |

[117]  R. T. Shuey, Semiconducting Ore Minerals 1975 (Elsevier Scientific Publishing Company: Amsterdam).