Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Ligand- and oxygen-isotope-exchange pathways of geochemical interest

William H. Casey
+ Author Affiliations
- Author Affiliations

Department of Chemistry and Department of Geology, University of California, 1 Shields Lane, Davis, CA 95616, USA. Email: whcasey@ucdavis.edu

Environmental Chemistry 12(1) 1-19 https://doi.org/10.1071/EN14043
Submitted: 28 February 2014  Accepted: 27 May 2014   Published: 7 January 2015

Environmental context. Most chemical processes in water are either ligand- or electron-exchange reactions. Here the general reactivity trends for ligand-exchange reactions in aqueous solutions are reviewed and it is shown that simple rules dominate the chemistry. These simple rules shed light on most molecular processes in water, including the uptake and degradation of pesticides, the sequestration of toxic metals and the corrosion of minerals.

Abstract. It is through ligand-exchange kinetics that environmental geochemists establish an understanding of molecular processes, particularly for insulating oxides where there are not explicit electron exchanges. The substitution of ligands for terminal functional groups is relatively insensitive to small changes in structure but are sensitive to bond strengths and acid–base chemistry. Ligand exchanges involving chelating organic molecules are separable into two classes: (i) ligand substitutions that are enhanced by the presence of the chelating ligand, called a ‘spectator’ ligand and (ii) chelation reactions themselves, which are controlled by the Lewis basicity of the attacking functional group and the rates of ring closure. In contrast to this relatively simple chemistry at terminal functional groups, substitutions at bridging oxygens are exquisitely sensitive to details of structure. Included in this class are oxygen-isotope exchange and mineral-dissolution reactions. In large nanometer-sized ions, metastable structures form as intermediates by detachment of a surface metal atom, often from a underlying, highly coordinated oxygen, such as μ4-oxo, by solvation forces. A metastable equilibrium is then established by concerted motion of many atoms in the structure. The newly undercoordinated metal in the intermediate adds a water or ligand from solution, and protons transfer to other oxygens in the metastable structure, giving rise to a characteristic broad amphoteric chemistry. These metastable structures have an appreciable lifetime and require charge separation, which is why counterions affect the rates. The number and character of these intermediate structures reflect the symmetry of the starting structure.


References

[1]  D. W. Margerum, G. R. Cayley, D. C. Weatherburn, G. K. Pagenkopf, Kinetics and mechanisms of complex formation and ligand exchange. ACS Mono. 1978, 174, 1.
| 1:CAS:528:DyaE1cXks1GqsbY%3D&md5=4758ec6d39fd3f71fb9c8e0608d31fdeCAS |

[2]  T. W. Swaddle, Ligand substitution dynamics in metal complexes, in Physical Inorganic Chemistry: Reactions, Processes and Applications (Ed. A. Bakac) 2010, pp. 339–393 (Wiley: Hoboken, NJ).

[3]  T. W. Swaddle, J. Rosenqvist, P. Yu, E. Bylaska, B. L. Phillips, W. H. Casey, Kinetic evidence for five-coordination in AlOH(aq)2+ ion. Science 2005, 308, 1450.
Kinetic evidence for five-coordination in AlOH(aq)2+ ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1eqsb0%3D&md5=c9bc3b4ad8a627bda562c5eff8fc67e7CAS | 15860592PubMed |

[4]  S. D. Kinrade, J. W. Del Nin, A. S. Schach, T. A. Sloan, K. L. Wilson, C. T. G. Knight, Stable five- and six-coordinated silicate anions in aqueous solution. Science 1999, 285, 1542.
Stable five- and six-coordinated silicate anions in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslOrsbg%3D&md5=e2522247948068c856d565b4bb47763eCAS | 10477513PubMed |

[5]  A. F. Panasci, C. A. Ohlin, S. J. Harley, W. H. Casey, Rates of water exchange on the [Fe4(OH)2(hpdta)2(H2O)4]0 molecule and its implications for geochemistry. Inorg. Chem. 2012, 51, 6731.
Rates of water exchange on the [Fe4(OH)2(hpdta)2(H2O)4]0 molecule and its implications for geochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGmur0%3D&md5=dc4ec9c70a8dd11721cce5ea384c8f08CAS | 22671440PubMed |

[6]  L. Helm, A. E. Merbach, Inorganic and bioinorganic solvent exchange mechanisms. Chem. Rev. 2005, 105, 1923.
Inorganic and bioinorganic solvent exchange mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivV2msrg%3D&md5=c660c623cfcd3a6c6af714895e17683dCAS | 15941206PubMed |

[7]  D. T. Richens, Ligand substitution reactions at inorganic centers. Chem. Rev. 2005, 105, 1961.
Ligand substitution reactions at inorganic centers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFartLo%3D&md5=b1266de00aeb6f46d83813b211882504CAS | 15941207PubMed |

[8]  D. T. Richens, The Chemistry of Aqua Ions 1997 (Wiley: New York).

[9]  L. Helm, G. M. Nicolle, A. E. Merbach, Water and proton exchange processes on metal ions. Adv. Inorg. Chem. 2005, 57, 327.
| 1:CAS:528:DC%2BD2MXktVSktbc%3D&md5=443d613c5c25bbcd02370122a39b6ce7CAS |

[10]  A. G. Stack, P. Raiteri, J. D. Gale, Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories. J. Am. Chem. Soc. 2012, 134, 11.
Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVSlurg%3D&md5=8e46f364a253e8f6ea1525f680d5a39bCAS | 21721566PubMed |

[11]  J. Wang, J. R. Rustad, W. H. Casey, Calculation of water-exchange rates on aqueous polynuclear clusters and at oxide-water interfaces. Inorg. Chem. 2007, 46, 2962.
Calculation of water-exchange rates on aqueous polynuclear clusters and at oxide-water interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislens7Y%3D&md5=755cc429f7fe98cfa567aae96a8f602bCAS | 17355130PubMed |

[12]  R. J. Evans, J. R. Rustad, W. H. Casey, Calculating geochemical reaction pathways – exploration of the inner-sphere water exchange mechanism in Al(H2O)63+(aq) + nH2O with ab initio calculations and molecular dynamics. J. Phys. Chem. A 2008, 112, 4125.
Calculating geochemical reaction pathways – exploration of the inner-sphere water exchange mechanism in Al(H2O)63+(aq) + nH2O with ab initio calculations and molecular dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslahtrw%3D&md5=cf7daaaf8e1fa675d0f62bb8ce8f048eCAS | 18366199PubMed |

[13]  F. P. Rotzinger, Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods. Chem. Rev. 2005, 105, 2003.
Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslKmu7o%3D&md5=8506b701bdae1c723e33ef18bc47e884CAS | 15941208PubMed |

[14]  E. Balogh, et al. Rates of ligand exchange between >FeIII-OH2 functional groups on a nanometer-size aqueous cluster and bulk solution. Inorg. Chem. 2007, 46, 7087.
Rates of ligand exchange between >FeIII-OH2 functional groups on a nanometer-size aqueous cluster and bulk solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ahtr8%3D&md5=5705965abf33b8945190a41a683e2d60CAS | 17661461PubMed |

[15]  D. Lieb, et al. Water exchange reactivity and stability of cobalt polyoxometalates under catalytically relevant pH conditions: insight into water oxidation catalysis. Inorg. Chem. 2011, 50, 9053.
Water exchange reactivity and stability of cobalt polyoxometalates under catalytically relevant pH conditions: insight into water oxidation catalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslWrsbs%3D&md5=7e881f911c5c4ac7aeb1fa2f2991206fCAS | 21809868PubMed |

[16]  C. A. Ohlin, et al. Rates of water exchange for two cobalt(II) heteropolyoxotungstate compounds in aqueous solution. Chemistry 2011, 17, 4408.
Rates of water exchange for two cobalt(II) heteropolyoxotungstate compounds in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFGktr8%3D&md5=f140857284f6d027f87b374df46633cfCAS | 21416515PubMed |

[17]  T. W. Swaddle, A. E. Merbach, High-pressure oxygen-17 Fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution. Inorg. Chem. 1981, 20, 4212.
High-pressure oxygen-17 Fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSntrs%3D&md5=f15ca6a3212948c4f4b229a0ad5241f2CAS |

[18]  S. F. Lincoln, D. T. Richens, A. G. Sykes, Metal aqua ions. Compr. Coordin. Chem. II 2004, 1, 515.
Metal aqua ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXit1GltA%3D%3D&md5=322e9121a2aacbc3a08d893ae6a4e408CAS |

[19]  L. Spiccia, W. H. Casey, Synthesis of experimental models for molecular inorganic geochemistry – a review with examples. Geochim. Cosmochim. Acta 2007, 71, 5590.
Synthesis of experimental models for molecular inorganic geochemistry – a review with examples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWnsr3M&md5=a200363e950b847d734e997d8079e896CAS |

[20]  L. Spiccia, Homopolynuclear and heteropolynuclear Rh(III) aqua ions – a review. Inorg. Chim. Acta 2004, 357, 2799.
Homopolynuclear and heteropolynuclear Rh(III) aqua ions – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslKhu7k%3D&md5=e7f4c9083f9a59291792d119a5ef8364CAS |

[21]  S. J. Crimp, et al. Synthesis and characterization of rhodium(III)-chromium(III) heterotrinuclear aqua ions. J. Chem. Soc., Dalton Trans. 1998, 375.
Synthesis and characterization of rhodium(III)-chromium(III) heterotrinuclear aqua ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFWlsLk%3D&md5=508f26a2571cab341a744531d8f099cdCAS |

[22]  L. Spiccia, et al. Hydrolytic polymerization of rhodium(III). Characterization of various forms of a trinuclear aqua ion. J. Chem. Soc., Dalton Trans. 1997, 4603.
Hydrolytic polymerization of rhodium(III). Characterization of various forms of a trinuclear aqua ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFenu7Y%3D&md5=c005a1ff6263dd256a015c052a5328fbCAS |

[23]  A. Drljaca, et al. Kinetics of water exchange on the hydrolytic doubly hydroxo-bridged rhodium(III) dimer. Inorg. Chem. 1996, 35, 985.
Kinetics of water exchange on the hydrolytic doubly hydroxo-bridged rhodium(III) dimer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFeisQ%3D%3D&md5=f02df832edf4ca7fe5db5e85aa3b5bb4CAS | 11666274PubMed |

[24]  A. Drljaca, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution – XII. Kinetics of cleavage of the trimer and tetramer in acidic solution. Polyhedron 1996, 15, 4373.
Early stages of the hydrolysis of chromium(III) in aqueous solution – XII. Kinetics of cleavage of the trimer and tetramer in acidic solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCqs7Y%3D&md5=bb68ad6da49e2a81dab7a5d7768971ccCAS |

[25]  A. Drljaca, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution-XI. Kinetics of formation of hexamer from trimer and tetramer from monomer and trimer. Polyhedron 1996, 15, 2875.
Early stages of the hydrolysis of chromium(III) in aqueous solution-XI. Kinetics of formation of hexamer from trimer and tetramer from monomer and trimer.Crossref | GoogleScholarGoogle Scholar |

[26]  S. J. Crimp, L. Spiccia, Kinetic and thermodynamic studies of intramolecular rearrangement and cleavage of the heterobinuclear aqua ion, [(H2O)4Rh(μ-OH)2Cr(OH2)4]4+. J. Chem. Soc., Dalton Trans. 1996, 1051.
Kinetic and thermodynamic studies of intramolecular rearrangement and cleavage of the heterobinuclear aqua ion, [(H2O)4Rh(μ-OH)2Cr(OH2)4]4+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVymsbo%3D&md5=8fd0c70ef05059003a67bda828889406CAS |

[27]  A. Drljaca, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution-X. Kinetics of formation of trimer from monomer and dimer. Polyhedron 1995, 14, 1653.
Early stages of the hydrolysis of chromium(III) in aqueous solution-X. Kinetics of formation of trimer from monomer and dimer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtleksLY%3D&md5=5fefa7e97068e042a0973813b265467aCAS |

[28]  S. J. Crimp, L. Spiccia, Characterization of three active rhodium(III) hydroxides. Aust. J. Chem. 1995, 48, 557.
Characterization of three active rhodium(III) hydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFyitbs%3D&md5=83fff167b15efa22cddc45e484c0f576CAS |

[29]  S. J. Crimp, et al. Early stages of the hydrolysis of chromium(III) in aqueous solution. 9. Kinetics of water exchange on the hydrolytic dimer. Inorg. Chem. 1994, 33, 465.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 9. Kinetics of water exchange on the hydrolytic dimer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXoslOntg%3D%3D&md5=5a5f6f2598583030cd1c958156bb4077CAS |

[30]  L. Spiccia, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. VI. Kinetics of intramolecular interconversion between singly and doubly bridged hydrolytic dimers. Polyhedron 1991, 10, 619.
Early stages of the hydrolysis of chromium(III) in aqueous solution. VI. Kinetics of intramolecular interconversion between singly and doubly bridged hydrolytic dimers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisFCksLg%3D&md5=bad3dc4c26e9c93b4fbf5dedd7763452CAS |

[31]  L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution. 7. Kinetics of cleavage of the hydrolytic dimer in acidic solution. Polyhedron 1991, 10, 1865.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 7. Kinetics of cleavage of the hydrolytic dimer in acidic solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmvVersQ%3D%3D&md5=d997ce6a0320509443f6bebf2ebed41fCAS |

[32]  M. R. Grace, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution. VIII. Kinetics of dimerization of deprotonated forms of doubly bridged dimer. Polyhedron 1991, 10, 2389.
Early stages of the hydrolysis of chromium(III) in aqueous solution. VIII. Kinetics of dimerization of deprotonated forms of doubly bridged dimer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFKrsrc%3D&md5=400bc263b718db6a1cb01307cbb9646cCAS |

[33]  R. Cervini, G. D. Fallon, L. Spiccia, Hydrolytic polymerization of rhodium(III). 1. Preparation, solution studies, and x-ray structure of the doubly bridged dimer [(H2O)4Rh(μ-OH)2Rh(OH2)4](dmtos)4·8H2O. Inorg. Chem. 1991, 30, 831.
Hydrolytic polymerization of rhodium(III). 1. Preparation, solution studies, and x-ray structure of the doubly bridged dimer [(H2O)4Rh(μ-OH)2Rh(OH2)4](dmtos)4·8H2O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFeqtr4%3D&md5=b910f1ff6ec823fff86367053f1f3e40CAS |

[34]  H. Stuenzi, L. Spiccia, F. P. Rotzinger, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 4. The stability constants of the hydrolytic dimer, trimer, and tetramer at 25 °C and I = 1.0 M. Inorg. Chem. 1989, 28, 66.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 4. The stability constants of the hydrolytic dimer, trimer, and tetramer at 25 °C and I = 1.0 M.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksF2htg%3D%3D&md5=02d272da2bf2181fa03a60f53120afc7CAS |

[35]  T. Merakis, L. Spiccia, Early stages of the hydrolysis of chromium(III) in aqueous solution. V. Measurement of the equilibrium between singly and doubly bridged dimer. Aust. J. Chem. 1989, 42, 1579.
Early stages of the hydrolysis of chromium(III) in aqueous solution. V. Measurement of the equilibrium between singly and doubly bridged dimer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmsVWns7g%3D&md5=f085496a61f73a2b70206b63ba1230c7CAS |

[36]  F. P. Rotzinger, H. Stuenzi, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 3. Kinetics of dimerization of the deprotonated aqua ion. Inorg. Chem. 1986, 25, 489.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 3. Kinetics of dimerization of the deprotonated aqua ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xps1GitA%3D%3D&md5=f4d837737b0997fb60bc82945f63ff97CAS |

[37]  F. P. Rotzinger, W. Marty, A unified interpretation of kinetic data on the acid-induced cleavage and of product-analysis data on spontaneous cleavage of the mono-ol cation μ-hydroxo-bis[pentaamminecobalt(III)]([(NH3)5CoOHCo(NH3)5]5+). Helv. Chim. Acta 1985, 68, 1914.
A unified interpretation of kinetic data on the acid-induced cleavage and of product-analysis data on spontaneous cleavage of the mono-ol cation μ-hydroxo-bis[pentaamminecobalt(III)]([(NH3)5CoOHCo(NH3)5]5+).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVGktQ%3D%3D&md5=ee778dcff412a979a4e9f0bd40ef1215CAS |

[38]  H. Stünzi, F. P. Rotzinger, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 2. Kinetics and mechanism of the interconversion between two tetrameric species. Inorg. Chem. 1984, 23, 2160.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 2. Kinetics and mechanism of the interconversion between two tetrameric species.Crossref | GoogleScholarGoogle Scholar |

[39]  F. P. Rotzinger, W. Marty, Activated ligand substitution in bridged complexes. 1. Base hydrolysis and structure of (+-)-(m-amido)-cis,cis-tetrakis(1,2-ethanediamine)diamminedicobalt(III) pentanitrate dihydrate. Inorg. Chem. 1983, 22, 3593.
Activated ligand substitution in bridged complexes. 1. Base hydrolysis and structure of (+-)-(m-amido)-cis,cis-tetrakis(1,2-ethanediamine)diamminedicobalt(III) pentanitrate dihydrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtVGjtr4%3D&md5=5d9716fbe3b1e5c523a2d8c8b48cbcc4CAS |

[40]  A. F. Panasci, J. G. McAlpin, C. A. Ohlin, S. Christensen, J. C. Fettinger, R. D. Britt, J. R. Rustad, W. H. Casey, Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates. Geochim. Cosmochim. Acta 2012, 78, 18.
Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFOrsg%3D%3D&md5=cedd6a61e61d74607a135a13a2cdd447CAS |

[41]  T. W. Swaddle, Silicate complexes of aluminum(III) in aqueous systems. Coord. Chem. Rev. 2001, 219–221, 665.
Silicate complexes of aluminum(III) in aqueous systems.Crossref | GoogleScholarGoogle Scholar |

[42]  T. W. Swaddle, J. Salerno, P. A. Tregloan, Aqueous aluminates, silicates, and aluminosilicates. Chem. Soc. Rev. 1994, 23, 319.
Aqueous aluminates, silicates, and aluminosilicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVOjsLo%3D&md5=3ca53a6c90c75175e7d3017dc8cbde31CAS |

[43]  S. J. Brudenell, S. J. Crimp, J. K. E. Higgs, K. Moubaraki, K. S. Murray, L. Spiccia, Binuclear chromium(III) complexes bridged by hydroxide and acetate groups. Inorg. Chim. Acta 1996, 247, 35.
Binuclear chromium(III) complexes bridged by hydroxide and acetate groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Snsb8%3D&md5=75a7916f48556a14befe418e076a6db6CAS |

[44]  M. R. Grace, L. Spiccia, Kinetics of anation of Cr(III) hydrolytic oligomers: reaction of dimer with sulfate. Inorg. Chim. Acta 1993, 213, 103.
Kinetics of anation of Cr(III) hydrolytic oligomers: reaction of dimer with sulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlCitg%3D%3D&md5=41446399b3111ab7b8dcd5925b016e26CAS |

[45]  A. Drljaca, J. R. Anderson, L. Spiccia Turney, Intercalation of montmorillonite with individual chromium(III) hydrolytic oligomers. Inorg. Chem. 1992, 31, 4894.
Intercalation of montmorillonite with individual chromium(III) hydrolytic oligomers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVCnu7Y%3D&md5=dd1d9e7a714b08ab4a83288b77fc87a3CAS |

[46]  S. J. Crimp, G. D. Fallon, L. Spiccia, Synthesis and x-ray structure of a chromium(III)-rhodium(III) heterometallic hydrolytic dimer: [(H2O)4Rh(μ-OH)2Cr(OH2)4](Me3C6H2SO3)44H2O. J. Chem. Soc. Chem. Commun. 1992, 1992, 197.
Synthesis and x-ray structure of a chromium(III)-rhodium(III) heterometallic hydrolytic dimer: [(H2O)4Rh(μ-OH)2Cr(OH2)4](Me3C6H2SO3)44H2O.Crossref | 4H2O.&journal=J. Chem. Soc. Chem. Commun.&volume=1992&pages=197-&publication_year=1992&author=S%2E%20J%2E%20Crimp&hl=en&doi=10.1039/C39920000197" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar |

[47]  L. Spiccia, W. Marty, The fate of active chromium hydroxide, Cr(OH)3·3H2O, in aqueous suspension. Study of the chemical changes involved in its aging. Inorg. Chem. 1986, 25, 266.
The fate of active chromium hydroxide, Cr(OH)3·3H2O, in aqueous suspension. Study of the chemical changes involved in its aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVWjtbw%3D&md5=30e3dd2b9b42387a329c8a802e6a4e01CAS |

[48]  J. Springborg, Hydroxo-bridged complexes of chromium(III), cobalt(III), rhodium(III), and iridium(III). Adv. Inorg. Chem. 1988, 32, 55.
| 1:CAS:528:DyaL1cXkvVCrur0%3D&md5=c391c095def4e11210634f1163e71184CAS |

[49]  A. Müller, F. Peters, M. T. Pope, D. Gatteschi, Polyoxometalates: very large clusters – Nanoscale magnets. Chem. Rev. 1998, 98, 239.
Polyoxometalates: very large clusters – Nanoscale magnets.Crossref | GoogleScholarGoogle Scholar | 11851505PubMed |

[50]  M. T. Pope, Heteropoly and Isopoly Oxometalates 1983 (Springer: Berlin).

[51]  A. Müller, E. Diemann, S. Q. N. Shah, C. Kuhlmann, M. Letzel, Soccer-playing metal oxide giant spheres: a first step towards patterning structurally well defined nano-object collectives. Chem. Commun. 2002, 2002, 440.
Soccer-playing metal oxide giant spheres: a first step towards patterning structurally well defined nano-object collectives.Crossref | GoogleScholarGoogle Scholar |

[52]  M. T. Pope, A. Müller (Eds), Polyoxometalates: from platonic solids to anti-retroviral activity. Topics in Molecular Organization and Engineering, Vol. 10 1994 (Springer: Netherlands).

[53]  C. L. Hill, Polyoxometalates: reactivity. Compr. Coordin. Chem. II 2004, 4, 679.
Polyoxometalates: reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOktg%3D%3D&md5=b09b9cd01deb9f9926d7fdf227f586b9CAS |

[54]  M. Filowitz, R. K. C. Ho, W. G. Klemperer Shum, Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution. Inorg. Chem. 1979, 18, 93.
Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXks1aqsQ%3D%3D&md5=297b63635c52e24bb9de10b984567b49CAS |

[55]  C. J. Besecker, W. G. Klemperer, D. J. Maltbie, D. A. Wright,, Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 2. Heteronuclear decoupling of quadrupolar nuclei. Inorg. Chem. 1985, 24, 1027.
Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 2. Heteronuclear decoupling of quadrupolar nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFKlsLs%3D&md5=746292f709f5161739cd75682d51be08CAS |

[56]  L. Pettersson, I. Andersson, F. Taube, I. Toth, M. Hashimoto, O. W. Howarth, 17O NMR study of aqueous peroxoisopolymolybdate equilibria at lower peroxide/Mo ratios. Dalton Trans. 2003, 146.
17O NMR study of aqueous peroxoisopolymolybdate equilibria at lower peroxide/Mo ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KjtL8%3D&md5=9b242b640c0bcde592da690624051e14CAS |

[57]  J. J. Hastings, O. W. Howarth, A tungsten-183, proton and oxygen-17 nuclear magnetic resonance study of aqueous isopolytungstates. J. Chem. Soc., Dalton Trans. 1992, 2, 209.
A tungsten-183, proton and oxygen-17 nuclear magnetic resonance study of aqueous isopolytungstates.Crossref | GoogleScholarGoogle Scholar |

[58]  O. W. Howarth, P. Kelly, Intramolecular oxygen exchange in the heptamolybdate(VI) isopolyanion. J. Chem. Soc. Chem. Commun. 1988, 1236.
Intramolecular oxygen exchange in the heptamolybdate(VI) isopolyanion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjt1Omsw%3D%3D&md5=2d5689b684064ee821ba9acbfc46367bCAS |

[59]  A. T. Harrison, O. W. Howarth, Oxygen exchange and protonation of polyanions: a multinuclear magnetic resonance study of tetradecavanadophosphate(9-) and decavanadate(6-). J. Chem. Soc., Dalton Trans. 1985, 9, 1953.
Oxygen exchange and protonation of polyanions: a multinuclear magnetic resonance study of tetradecavanadophosphate(9-) and decavanadate(6-).Crossref | GoogleScholarGoogle Scholar |

[60]  R. K. Murmann, M. E. Shelton, Isotopic oxygen studies on aqueous molybdenum(IV). J. Amer. Chem. Soc. 1980, 102, 3984.
Isotopic oxygen studies on aqueous molybdenum(IV).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFGisLY%3D&md5=f8ba662a9b38b702e414cd9fe1efc424CAS |

[61]  K. R. Rodgers, R. K. Murmann, E. O. Schlemper, M. E. Shelton, Rates of isotopic oxygen exchange with solvent and oxygen atom transfer involving [Mo3O4(OH2)9]4+. Inorg. Chem. 1985, 24, 1313.
Rates of isotopic oxygen exchange with solvent and oxygen atom transfer involving [Mo3O4(OH2)9]4+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkslKrsLs%3D&md5=e62a6d802032c2b730ca95902e30ee3dCAS |

[62]  W. H. Casey, T. W. Swaddle, Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev. Geophys. 2003, 41, 1008.
Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry.Crossref | GoogleScholarGoogle Scholar |

[63]  M. R. North, M. A. Fleischer, T. W. Swaddle, Precipitation from alkaline aqueous aluminosilicate solutions. Can. J. Chem. 2001, 79, 75.
Precipitation from alkaline aqueous aluminosilicate solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFensL8%3D&md5=10e4e2c82d62140ed347d2b0ff62ce7cCAS |

[64]  M. R. North, T. W. Swaddle, Kinetics of silicate exchange in alkaline aluminosilicate solutions. Inorg. Chem. 2000, 39, 2661.
Kinetics of silicate exchange in alkaline aluminosilicate solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlGrtrw%3D&md5=7c8b98657c688ee2e6392e93ea32efcaCAS | 11197023PubMed |

[65]  E. Vallazza, A. D. Bain, T. W. Swaddle, Dynamics of silicate exchange in highly alkaline potassium silicate solutions. Can. J. Chem. 1998, 76, 183.
| 1:CAS:528:DyaK1cXjt1Wquro%3D&md5=775d618efa1978b735f3875916ea5ccbCAS |

[66]  C. T. G. Knight, R. J. Balec, S. D. Kinrade, The structure of silicate anions in aqueous alkaline solutions. Angew. Chem. Int. Ed. 2007, 46, 8148.
The structure of silicate anions in aqueous alkaline solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCktrvM&md5=f524f3771d8d2117dff5d94eb80ea81bCAS |

[67]  S. D. Kinrade, J. C. H. Donovan, A. S. Schach, C. T. G. Knight, Two substituted cubic octameric silicate cages in aqueous solution. J. Chem. Soc., Dalton Trans. 2002, 1250.
Two substituted cubic octameric silicate cages in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlamtLw%3D&md5=6c5d3c86e674ad2072d7126ab3e8aae2CAS |

[68]  S. D. Kinrade, C. T. G. Knight, D. L. Pole, R. T. Syvitski, Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 2. Polymerization kinetics. Inorg. Chem. 1998, 37, 4278.
Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 2. Polymerization kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslOgsbk%3D&md5=4e2b7381124a1ee89aa8521ed1f143b8CAS | 11670563PubMed |

[69]  S. D. Kinrade, C. T. G. Knight, D. L. Pole, R. T. Syvitski, Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 1. Equilibria, 29Si chemical shifts, and 29Si relaxation. Inorg. Chem. 1998, 37, 4272.
Silicon-29 NMR studies of tetraalkylammonium silicate solutions. 1. Equilibria, 29Si chemical shifts, and 29Si relaxation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslOgsb4%3D&md5=9c5a31642c54103fabaedd20aaa06c1fCAS | 11670562PubMed |

[70]  S. D. Kinrade, K. Marat, C. T. G. Knight, Longitudinal 29Si nuclear magnetic relaxation in aqueous alkali-metal silicate solutions revisited. J. Phys. Chem. 1996, 100, 18351.
Longitudinal 29Si nuclear magnetic relaxation in aqueous alkali-metal silicate solutions revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFentLc%3D&md5=ad4d4dd0b93609a3cc17b48e6ea07480CAS |

[71]  S. D. Kinrade, Oxygen-17 NMR study of aqueous potassium silicates. J. Phys. Chem. 1996, 100, 4760.
Oxygen-17 NMR study of aqueous potassium silicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhtleiu74%3D&md5=8de7dee1e96db93841475ff87388afa7CAS |

[72]  S. D. Kinrade, D. L. Pole, Effect of alkali-metal cations on the chemistry of aqueous silicate solutions. Inorg. Chem. 1992, 31, 4558.
Effect of alkali-metal cations on the chemistry of aqueous silicate solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvF2ntrk%3D&md5=093fa067c107d3c3660f41ee6830d3d6CAS |

[73]  S. D. Kinrade, T. W. Swaddle, Silicon-29 NMR studies of aqueous silicate solutions. 1. Chemical shifts and equilibria. Inorg. Chem. 1988, 27, 4253.
Silicon-29 NMR studies of aqueous silicate solutions. 1. Chemical shifts and equilibria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFynt7Y%3D&md5=82a1ed4292e00ae888f64466e74d153bCAS |

[74]  S. D. Kinrade, T. W. Swaddle, Silicon-29 NMR studies of aqueous silicate solutions. 2. Transverse silicon-29 relaxation and the kinetics and mechanism of silicate polymerization. Inorg. Chem. 1988, 27, 4259.
Silicon-29 NMR studies of aqueous silicate solutions. 2. Transverse silicon-29 relaxation and the kinetics and mechanism of silicate polymerization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFyht74%3D&md5=e1a359378ff6388caf698083d7b06d52CAS |

[75]  S. D. Kinrade, T. W. Swaddle, Mechanisms of longitudinal silicon-29 nuclear magnetic relaxation in aqueous alkali-metal silicate solutions. J. Am. Chem. Soc. 1986, 108, 7159.
Mechanisms of longitudinal silicon-29 nuclear magnetic relaxation in aqueous alkali-metal silicate solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVWrs7k%3D&md5=df0f7265d8081b87546ac660bdc3029eCAS |

[76]  S. D. Kinrade, T. W. Swaddle, Aqueous silicate exchange dynamics and silicon-29 nuclear magnetic relaxation: the importance of protonation equilibriums. J. Chem. Soc. Chem. Commun. 1986, 120.
Aqueous silicate exchange dynamics and silicon-29 nuclear magnetic relaxation: the importance of protonation equilibriums.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvFCjs7Y%3D&md5=6309c02550c7bbb3a1bbee05b0a39d56CAS |

[77]  W. H. Casey, G. Sposito, On the temperature dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 1992, 56, 3825.
On the temperature dependence of mineral dissolution rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlOhurw%3D&md5=2cc928ab814866002521902be5c54376CAS |

[78]  T. Schneppensieper, S. Seibig, A. Zahl, P. Tregloan, R. van Eldik, Influence of chelate effects on the water-exchange mechanism of polyaminecarboxylate complexes of iron(III). Inorg. Chem. 2001, 40, 3670.
Influence of chelate effects on the water-exchange mechanism of polyaminecarboxylate complexes of iron(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVKls7o%3D&md5=18f1980e706cecedd323d3a398094e8bCAS | 11442363PubMed |

[79]  J. Maigut, R. Meier, A. Zahl, R. van Eldik, Triggering water exchange mechanisms via chelate architecture. Shielding of transition metal centers by aminopolycarboxylate spectator ligands. J. Am. Chem. Soc. 2008, 130, 14 556.
Triggering water exchange mechanisms via chelate architecture. Shielding of transition metal centers by aminopolycarboxylate spectator ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1WjsrjJ&md5=a4c4a3d97aab1cda8732cea1cca7b4d4CAS |

[80]  T. Schneppensieper, A. Zahl, R. van Eldik, Water exchange controls the complex-formation mechanism of water-soluble iron(III) porphyrins: conclusive evidence for dissociative water exchange from a high-pressure 17O NMR study. Angew. Chem. Int. Ed. 2001, 40, 1678.
Water exchange controls the complex-formation mechanism of water-soluble iron(III) porphyrins: conclusive evidence for dissociative water exchange from a high-pressure 17O NMR study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslChu74%3D&md5=426d3aaa7d0a0b61e55e698895564710CAS |

[81]  L. Babcock, R. Pizer, Dynamics of boron acid complexation reactions: formation of the 1 : 1 boron acid-ligand complexes. Inorg. Chem. 1980, 19, 56.
Dynamics of boron acid complexation reactions: formation of the 1 : 1 boron acid-ligand complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtVSgsr4%3D&md5=03e6dfc92f5cfbc5a517fb015aeb5cbbCAS |

[82]  K. Yoshino, M. Kotaka, M. Okamoto, H. Kakihana, 11B-NMR study of the complex formation of borate with catechol and L-dopa. Bull. Chem. Soc. Jpn. 1979, 52, 3005.
11B-NMR study of the complex formation of borate with catechol and L-dopa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtFOksb8%3D&md5=96e4f558a3867af3d6adc80f3f4e7b71CAS |

[83]  R. Pizer, P. J. Ricatto, C. A. Tihal, Thermodynamics of several boron acid complexation reactions studied by variable-temperature 1H- and 11B-NMR spectroscopy. Polyhedron 1993, 12, 2137.
Thermodynamics of several boron acid complexation reactions studied by variable-temperature 1H- and 11B-NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlGlsQ%3D%3D&md5=896183e7db3d83eabf3782a640466017CAS |

[84]  R. Pizer, C. A. Tihal, Mechanism of boron acid/polyol complex formation. Comments on the trigonal/tetrahedral interconversion on boron. Polyhedron 1996, 15, 3411.
Mechanism of boron acid/polyol complex formation. Comments on the trigonal/tetrahedral interconversion on boron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvFGgs7w%3D&md5=6031e85efc7ceb3d5c7993992edd14b0CAS |

[85]  M. Ishihara, Y. Mouri, S. Funahashi, M. Tanaka, Mechanistic study of the complex formation of boric acid. Inorg. Chem. 1991, 30, 2356.
Mechanistic study of the complex formation of boric acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFGms78%3D&md5=2b2d24d9735f37d0006a8e2661f2bb25CAS |

[86]  S. Kagawa, K.-I. Sugimoto, S. Funahashi, Kinetic study on complexation of boric acid with 4-isopropyltropolone in non-aqueous solvents. Inorg. Chim. Acta 1995, 231, 115.
Kinetic study on complexation of boric acid with 4-isopropyltropolone in non-aqueous solvents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVylu7k%3D&md5=666f086e6a5e217b1e33249a82ba7226CAS |

[87]  R. Pizer, L. Babcock, Mechanism of the complexation of boron acids with catechol and substituted catechols. Inorg. Chem. 1977, 16, 1677.
Mechanism of the complexation of boron acids with catechol and substituted catechols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlygu7k%3D&md5=e8eda7ef8dd305c5d39a2e83037b8e5cCAS |

[88]  A. Crumbliss, A.-M. Albrecht-Gary, Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release, in Metal Ions in Biological Systems (Eds A. Sigal, H. Sigal) 1998 (Marcel Dekker: New York).

[89]  J. G. Hering, M. M. Morel Francois, Slow complexation reactions in seawater. Geochim. Cosmochim. Acta 1989, 53, 611.
Slow complexation reactions in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVCrsbg%3D&md5=761b449d6ef8a733619a73df0afaea22CAS |

[90]  F. G. Kari, W. Giger, Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt. Environ. Sci. Technol. 1995, 29, 2814.
Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFKhu7w%3D&md5=d5fbaca42fb2a8a351310144b30b8471CAS | 22206530PubMed |

[91]  B. Nowack, H. Xue, L. Sigg, Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ. Sci. Technol. 1997, 31, 866.
Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVahtQ%3D%3D&md5=6b84419d5d876d0071f63ace61322450CAS |

[92]  A. F. Wallace, G. V. Gibbs, P. M. Dove, Influence of ion-associated water on the hydrolysis of Si-O bonded nteractions. J. Phys. Chem. A 2010, 114, 2534.
Influence of ion-associated water on the hydrolysis of Si-O bonded nteractions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Knsrc%3D&md5=6e799c491491273c447889850289e437CAS | 20108957PubMed |

[93]  A. Czap, N. I. Neuman, T. W. Swaddle, Electrochemistry and homogeneous self-exchange kinetics of the aqueous 12-tungstoaluminate(5-/6-) couple. Inorg. Chem. 2006, 45, 9518.
Electrochemistry and homogeneous self-exchange kinetics of the aqueous 12-tungstoaluminate(5-/6-) couple.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2gtLvP&md5=f8f8b2d9d055f631962de079f82d977dCAS | 17083254PubMed |

[94]  J. R. Rustad, J. S. Loring, W. H. Casey, Oxygen-exchange pathways in aluminum polyoxocations. Geochim. Cosmochim. Acta 2004, 68, 3011.
Oxygen-exchange pathways in aluminum polyoxocations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyitLg%3D&md5=c82b690028f588c190f9adf89dcc0817CAS |

[95]  W. H. Casey, J. R. Rustad, Reaction dynamics, molecular clusters and aqueous geochemistry. Annu. Rev. Earth Sci. 2007, 35, 21.
Reaction dynamics, molecular clusters and aqueous geochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKhtbs%3D&md5=6133513ace3d94fc6eaf874b38668f1cCAS |

[96]  E. M. Villa, C. A. Ohlin, J. R. Rustad, W. H. Casey, Isotope-exchange dynamics in isostructural decametalates with profound differences in reactivity. J. Am. Chem. Soc 2009, 131, 16 488.
Isotope-exchange dynamics in isostructural decametalates with profound differences in reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFart7w%3D&md5=22a94e2858eb04c4b2592d296c38f214CAS |

[97]  E. M. Villa, C. A. Ohlin, W. H. Casey, Adding reactivity to structure 2: oxygen-isotope-exchange rates in three isostructural oxide ions. Am. J. Sci. 2010, 310, 629.
Adding reactivity to structure 2: oxygen-isotope-exchange rates in three isostructural oxide ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1antb8%3D&md5=6bb23eff59b40f4710db33248e0d883dCAS |

[98]  E. M. Villa, C. A. Ohlin, W. H. Casey, Borate accelerates oxygen-isotope exchange for polyoxoniobate ions in water. Chemistry 2010, 16, 8631.
Borate accelerates oxygen-isotope exchange for polyoxoniobate ions in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWmtL8%3D&md5=2645700c359cdc1a84d40af085712ca5CAS | 20602370PubMed |

[99]  E. M. Villa, C. A. Ohlin, W. H. Casey, Oxygen-isotope exchange rates for three isostructural polyoxometalate ions. J. Am. Chem. Soc. 2010, 132, 5264.
Oxygen-isotope exchange rates for three isostructural polyoxometalate ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Wku7w%3D&md5=a805f9b87119858c550baf376754fe37CAS | 20302304PubMed |

[100]  E. M. Villa, C. A. Ohlin, E. Balogh, T. M. Anderson, M. D. Nyman, W. H. Casey, Reaction dynamics of the decaniobate ([HxNb10O28](6–x)–) ion in water. Angew. Chem. Int. Ed. 2008, 47, 4844.
Reaction dynamics of the decaniobate ([HxNb10O28](6–x)–) ion in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2lsLs%3D&md5=94a0c33455bcc98c362adab6df164ecaCAS |

[101]  E. M. Villa, C. A. Ohlin, E. Balogh, T. A. Anderson, M. Nyman, W. H. Casey, Adding reactivity to structure – reaction dynamics in a nanometer-size oxide ion in water. Am. J. Sci. 2008, 308, 942.
Adding reactivity to structure – reaction dynamics in a nanometer-size oxide ion in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyjtbnP&md5=90fecc0dcd1a2737b39c5cc8884d2017CAS |

[102]  J. R. Rustad, W. H. Casey, Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution. Nat. Mater. 2012, 11, 223.
Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsF2jsQ%3D%3D&md5=5bbb6532780ede72f3c3b4fc04f56771CAS | 22231599PubMed |

[103]  R. van Eldik (Ed.) Advances in Inorganic Chemistry 2010, Vol. 62 (Academic Press: San Diego, CA).

[104]  J. R. Rustad, Elementary reactions in polynuclear ions and aqueous-mineral interfaces: a new geology, in Advances in Inorganic Chemistry (Ed. R. van Eldik) 2010, pp. 391–436 (Academic Press: San Diego, CA).

[105]  W. H. Casey, On the relative dissolution rates of some oxide and orthosilicate minerals. J. Colloid Interface Sci. 1991, 146, 586.
On the relative dissolution rates of some oxide and orthosilicate minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFWqt7w%3D&md5=441c6642f154286c1a3d46e294b58fdcCAS |

[106]  H. Stuenzi, W. Marty, Early stages of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species. Inorg. Chem. 1983, 22, 2145.
Early stages of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvVWmt7s%3D&md5=0ccfadc4967be2a163bf40f9a1145cc5CAS |

[107]  T. V. Rowland, Oxygen-17 NMR studies of the rate of water exchange from partially complexed nickel ion 1975, Ph.D. thesis, University of California, Berkeley.

[108]  J. Burgess, Metal Ions in Solution 1978 (Ellis-Horwood Limited: Chichester, UK).

[109]  J. Burgess, Ions in Solution: Basic Principles of Chemical Interactions 1988 (Ellis-Horwood Limited: Chichester, UK).

[110]  D. W. Margerum, H. M. Rosen, The effect of coordinated ligands on the rate of replacement of bound water by ammonia in nickel(II) complexes. J. Am. Chem. Soc. 1967, 89, 1088.
The effect of coordinated ligands on the rate of replacement of bound water by ammonia in nickel(II) complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXovV2mtA%3D%3D&md5=c78b2568e9e0d8645315c80f5c803c01CAS |

[111]  R. G. Wilkins, The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes. 1974 (VCH: New York).

[112]  R. G. Wilkins, The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd edn 1991 (VCH: New York).

[113]  W. H. Casey, H. R. Westrich, Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature 1992, 355, 157.
Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFShs74%3D&md5=f1094162f68e0b0cf7dd4a34b52b84f3CAS |

[114]  O. S. Pokrovsky, J. Schott, Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ. Sci. Technol. 2002, 36, 426.
Surface chemistry and dissolution kinetics of divalent metal carbonates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWhsg%3D%3D&md5=7dee86086fbc30652312ad4c9364c52dCAS | 11871558PubMed |

[115]  K. Hachiya, M. Sasaki, Y. Saruta, N. Mikami Yasunaga, Static and kinetic studies of adsorption-desorption of metal ions on a γ-alumina surface. 1. Static study of adsorption-desorption. J. Phys. Chem. 1984, 88, 23.
Static and kinetic studies of adsorption-desorption of metal ions on a γ-alumina surface. 1. Static study of adsorption-desorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVWrug%3D%3D&md5=facd7f07afdc57775ff2e012926d6a74CAS |

[116]  C. A. Ohlin, et al. The dissolution of insulating oxides at the molecular scale. Nat. Mater. 2010, 9, 11.
The dissolution of insulating oxides at the molecular scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOnsr3K&md5=360924a91371667767f6e09539a4777bCAS | 20019664PubMed |

[117]  W. H. Casey, Large aqueous aluminum-hydroxide molecules. Chem. Rev. 2006, 106, 1.
Large aqueous aluminum-hydroxide molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yrsLvP&md5=9e56157e65743d5847ce6aecee6ae554CAS | 16402770PubMed |

[118]  J. Rowsell, L. F. Nazar, Speciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)2618+ and its δ-Keggin moiete. J. Am. Chem. Soc. 2000, 122, 3777.
Speciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)2618+ and its δ-Keggin moiete.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVGntL4%3D&md5=2e1cddcbc6312a4faf8f7af9bcbc746bCAS |

[119]  L. Allouche, C. Gerardin, T. Loiseau, G. Ferey, F. Taulelle, Al30: a giant aluminum polycation. Angew. Chem. Int. Ed. 2000, 39, 511.
Al30: a giant aluminum polycation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlagu7k%3D&md5=f7bc476cfbac2990c41fe92e22a6c2afCAS |

[120]  W. H. Casey, J. R. Rustad, L. Spiccia, Minerals as molecules – use of aqueous oxide and hydroxide clusters to understand geochemical reactions. Chemistry 2009, 15, 4496.
Minerals as molecules – use of aqueous oxide and hydroxide clusters to understand geochemical reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFGjs74%3D&md5=647ae8b808e53adf0acf3012badab461CAS | 19347896PubMed |

[121]  H. R. Westrich, R. T. Cygan, W. H. Casey, C. Zemitis, G. W. Arnold, The dissolution kinetics of mixed-cation orthosilicate minerals. Am. J. Sci. 1993, 293, 869.
The dissolution kinetics of mixed-cation orthosilicate minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktl2hurY%3D&md5=65d237bb1c34beb39df06b7ccba3833eCAS |