Chemical ionisation mass spectrometry for the measurement of atmospheric amines
Huan Yu A and Shan-Hu Lee A BA Kent State University, College of Public Health, Kent, OH 44242, USA.
B Corresponding author. Email: slee19@kent.edu
Environmental Chemistry 9(3) 190-201 https://doi.org/10.1071/EN12020
Submitted: 31 January 2012 Accepted: 26 April 2012 Published: 20 June 2012
Environmental context. Amines are of interest to atmospheric chemistry as they may be important gas-phase precursors for secondary aerosol formation. We describe a mass spectrometer for real-time in-situ measurements of gaseous alkyl amines in the atmosphere. This measurement technique will help to evaluate the contribution of amines to the formation of secondary aerosols, including secondary organic aerosol and new particle formation.
Abstract. We describe a chemical ionisation mass spectrometer (CIMS) for the ambient measurement of amines, known as important gas-phase precursors for secondary aerosol formation. Protonated ethanol or acetone ions were used as ionisation reagents to selectively detect high proton affinity base compounds (e.g. amines and NH3), thereby minimising interferences from other atmospheric gaseous organic compounds. With ethanol as ionisation reagent (~3 × 105 Hz of ion signals), the CIMS showed similar sensitivities (2.1–8.7 Hz pptv–1) and detection limits (7–41 pptv with a 1-min integration time) for NH3 and several atmospherically relevant key amine compounds containing one to six carbon atoms (C1- to C6-amines and their isomers). The CIMS background signals of the six amines ranged from 9 to 40 pptv, much lower than ~930 pptv for NH3. The CIMS response times were between 13 and 26 s for these amines. The unique combination of the fast time response, high sensitivities and low detection limits allows the use of this CIMS for real time measurements of atmospheric trace amines. During the ambient measurement made in Kent, OH, in November 2011, the measured mixing ratios of C2- and C3-amines were 8 ± 3 (mean ± 1 standard deviation) and 16 ± 7 pptv, whereas those of NH3 were 517 ± 259 pptv.
References
[1] L. Grönberg, P. Lövkvist, J. Jönsson, Determination of aliphatic amines in air by membrane enrichment directly coupled to a gas chromatograph Chromatographia 1992, 33, 77.| Determination of aliphatic amines in air by membrane enrichment directly coupled to a gas chromatographCrossref | GoogleScholarGoogle Scholar |
[2] S. W. Gibb, R. F. C. Mantoura, P. S. Liss, Ocean–atmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian Sea Global Biogeochem. Cycles 1999, 13, 161.
| Ocean–atmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian SeaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12ktLs%3D&md5=ab507c38500e4e7880c69b0a95a9fb67CAS |
[3] K. Pratt, L. Hatch, K. Prather, Seasonal volatility dependence of ambient particle phase amines Environ. Sci. Technol. 2009, 43, 5276.
| Seasonal volatility dependence of ambient particle phase aminesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVCitr0%3D&md5=4a1ccecaaf2e523f76cc7c18dcccbef6CAS |
[4] C. Müller, Y. Iinuma, J. Karstensen, D. Van Pinxteren, S. Lehmann, T. Gnauk, H. Herrmann, Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands Atmos. Chem. Phys. 2009, 9, 9587.
| Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islandsCrossref | GoogleScholarGoogle Scholar |
[5] S. Murphy, A. Sorooshian, J. Kroll, N. Ng, P. Chhabra, C. Tong, J. Surratt, E. Knipping, R. Flagan, J. Seinfeld, Secondary aerosol formation from atmospheric reactions of aliphatic amines Atmos. Chem. Phys. 2007, 7, 2313.
| Secondary aerosol formation from atmospheric reactions of aliphatic aminesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ygsLg%3D&md5=03ebfe57d8d4e98dd0f347792fc450b7CAS |
[6] S. Angelino, D. Suess, K. Prather, Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometry Environ. Sci. Technol. 2001, 35, 3130.
| Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFSis7Y%3D&md5=ea86c39ce213d4aec8e2ca75455a51dcCAS |
[7] P. J. Silva, M. E. Erupe, D. Price, J. Elias, Q. G. J. Malloy, Q. Li, B. Warren, D. R. Cocker, Trimethylamine as precursor to secondary organic aerosol formation via nitrate radical reaction in the atmosphere Environ. Sci. Technol. 2008, 42, 4689.
| Trimethylamine as precursor to secondary organic aerosol formation via nitrate radical reaction in the atmosphereCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Sqs78%3D&md5=546a16bf6a32c8d9c41c311e0e9279caCAS |
[8] J. Zahardis, S. Geddes, G. A. Petrucci, The ozonolysis of primary aliphatic amines in fine particles Atmos. Chem. Phys. 2008, 8, 1181.
| The ozonolysis of primary aliphatic amines in fine particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFKqurk%3D&md5=86fb2de8f8d707bfb4e41a1ac772be5bCAS |
[9] Q. J. Malloy, B. Warren, Q. Li, D. R. Cocker, M. E. Erupe, P. J. Silva, Secondary organic aerosol formation from primary aliphatic amines with NO3 radical Atmos. Chem. Phys. 2009, 9, 2051.
| Secondary organic aerosol formation from primary aliphatic amines with NO3 radicalCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisrc%3D&md5=d62bdc32457486717daaacff0b9b67d0CAS |
[10] Y. Gai, M. Ge, W. Wang, Rate constants for the gas phase reactions of ozone with diethylamine and triethylamine Acta Phys. Chim. Sin. 2010, 26, 1768.
| Rate constants for the gas phase reactions of ozone with diethylamine and triethylamineCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslSrs70%3D&md5=cf6fa6be1586e7702b72fbbaea710d21CAS |
[11] J. N. Smith, K. C. Barsanti, H. R. Friedli, M. Ehn, M. Kulmala, D. R. Collins, J. H. Scheckman, B. J. Willians, P. H. McMurry, Observations of aminium salts in atmospheric nanoparticles and possible climatic implications Proc. Natl. Acad. Sci. USA 2010, 107, 6634.
| Observations of aminium salts in atmospheric nanoparticles and possible climatic implicationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsLw%3D&md5=b7e5b71e1d39e5e5dd60570e03d3523dCAS |
[12] J. Zhao, J. N. Smith, F. L. Eisele, M. Chen, C. Kuang, P. H. McMurry, Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements Atmos. Chem. Phys. 2011, 11, 10823.
| Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurementsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisrg%3D&md5=84e8579af733163a1a4d300f4d689a2dCAS |
[13] T. Kurtén, V. Loukonen, H. Vehkamäki, M. Kulmala, Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia Atmos. Chem. Phys. 2008, 8, 4095.
| Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammoniaCrossref | GoogleScholarGoogle Scholar |
[14] V. Loukonen, T. Kurtén, I. Ortega, H. Vehkamäki, A. Padua, K. Sellegri, M. Kulmala, Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study Atmos. Chem. Phys. 2010, 10, 4961.
| Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qsrvE&md5=198b53d336c9ff39a4f67e8a679f6284CAS |
[15] A. B. Nadykto, F. Yu, M. V. Jakovleva, J. Herb, Y. Xu, Amines in the Earth’s atmosphere: a density functional theory study of the thermochemistry of pre-nucleation clusters Entropy 2011, 13, 554.
| Amines in the Earth’s atmosphere: a density functional theory study of the thermochemistry of pre-nucleation clustersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVSqtLk%3D&md5=2598661637069518fceb1fa12c04580cCAS |
[16] T. Kurten, T. Petäjä, J. Smith, I. K. Ortega, M. Sipilä, H. Junninen, M. Ehn, H. Vehkamäki, L. Mauldin, D. R. Worsnop, M. Kulmala, The effect of H2SO4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid Atmos. Chem. Phys. 2011, 11, 3007.
| The effect of H2SO4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acidCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFajsbY%3D&md5=e20e07bf3d6cb5343759817c605ea782CAS |
[17] L. Wang, V. Lal, A. Khalizov, R. Zhang, Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulfates Environ. Sci. Technol. 2010, 44, 2461.
| Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulfatesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFalsbw%3D&md5=eb25da528ac6da641c5c02fe08220b23CAS |
[18] T. Berndt, F. Stratmann, M. Sipilä, J. Vanhanen, T. Petäjä, J. Mikkilä, A. Grüner, G. Spindler, R. Lee Mauldin , J. Curtius, M. Kulmala, J. Heintzenberg, Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process Atmos. Chem. Phys. 2010, 10, 7101.
| Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall processCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSkt7rK&md5=82ab441085847869330926c273460424CAS |
[19] M. E. Erupe, A. A. Viggiano, S. H. Lee, The effect of trimethylamine on atmospheric nucleation involving H2SO4 Atmos. Chem. Phys. 2011, 11, 4767.
| The effect of trimethylamine on atmospheric nucleation involving H2SO4Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWlt7%2FL&md5=60b6acf23465b82646ff986f90edd8b4CAS |
[20] H. Yu, R. McGraw, S.-H. Lee, Effects of amines on formation of sub-3 nm particles and their subsequent growth Geophys. Res. Lett. 2012, 39, L02807.
| Effects of amines on formation of sub-3 nm particles and their subsequent growthCrossref | GoogleScholarGoogle Scholar |
[21] X. Ge, A. S. Wexler, S. L. Clegg, Atmospheric amines – part I. A review Atmos. Environ. 2011, 45, 524.
| Atmospheric amines – part I. A reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVGktg%3D%3D&md5=888536eedd7314339eabbbb3179e07f7CAS |
[22] D. R. Benson, A. Markovich, M. Al-Refai, S.-H. Lee, A chemical ionization mass spectrometer for ambient measurements of ammonia Atmos. Meas. Tech. 2010, 3, 1075.
| A chemical ionization mass spectrometer for ambient measurements of ammoniaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKntLnF&md5=2ba0a8ea5a2cef92476cd9e8efbc93b8CAS |
[23] J. B. Nowak, L. G. Huey, F. L. Eisele, D. Tanner, R. L. Mauldin , C. A. Cantrell, E. Kosciuch, D. Davis, Chemical ionization mass spectrometry technique for the detection of dimethylsulfoxide and ammonia J. Geophys. Res. 2002, 107, 4363.
| Chemical ionization mass spectrometry technique for the detection of dimethylsulfoxide and ammoniaCrossref | GoogleScholarGoogle Scholar |
[24] J. B. Nowak, L. G. Huey, A. G. Russell, D. Tian, J. A. Neuman, D. Orsini, S. J. Sjostedt, A. P. Sullivan, D. J. Tanner, R. J. Weber, A. Nenes, E. Edgerton, F. C. Fehsenfeld, Analysis of urban gas phase ammonia measurements from the 2002 Atlanta aerosol nucleation and real-time characterization experiment (ANARChE) J. Geophys. Res. 2006, 111, D17308.
| Analysis of urban gas phase ammonia measurements from the 2002 Atlanta aerosol nucleation and real-time characterization experiment (ANARChE)Crossref | GoogleScholarGoogle Scholar |
[25] J. B. Nowak, J. A. Newman, K. Kozai, L. G. Huey, D. Tanner, J. S. Holloway, T. B. Ryerson, G. L. Frost, S. A. McKeen, F. C. Fehsenfeld, A chemical ionization mass spectrometry technique for airborne measurements of ammonia J. Geophys. Res. 2007, 112, D10S02.
| A chemical ionization mass spectrometry technique for airborne measurements of ammoniaCrossref | GoogleScholarGoogle Scholar |
[26] M. Norman, A. Hansel, A. Wisthaler, O2+ as reagent ion in the PTR-MS instrument: detection of gas-phase ammonia Int. J. Mass Spectrom. 2007, 265, 382.
| O2+ as reagent ion in the PTR-MS instrument: detection of gas-phase ammoniaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotValsL8%3D&md5=d11d731b6b682eab66fc0066be3039f7CAS |
[27] K. von Bobrutzki, C. F. Braban, D. Famulari, S. K. Jones, T. Blackall, T. E. L. Smith, M. Blom, H. Coe, M. Gallagher, M. Ghalaieny, M. R. McGillen, C. J. Percival, J. D. Whitehead, R. Ellis, J. Murphy, A. Mohacsi, A. Pogany, H. Junninen, S. Rantanen, M. A. Sutton, E. Nemitz, Field inter-comparison of eleven atmospheric ammonia measurement techniques Atmos. Meas. Tech. 2010, 3, 91.
| Field inter-comparison of eleven atmospheric ammonia measurement techniquesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKqs77F&md5=c3ae9f72c8730fe7846a2e5aa6a1f87fCAS |
[28] L. G. Huey, Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and recent developments Mass Spectrom. Rev. 2007, 26, 166.
| Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and recent developmentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlKqtrg%3D&md5=ad234d1561adebe910cfe65a171a2a02CAS |
[29] M. Norman, C. Spirig, V. Wolff, I. Trebs, C. Flechard, A. Wisthaler, R. Schnitzhofer, A. Hansel, A. Neftel, Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland) Atmos. Chem. Phys. 2009, 9, 2635.
| Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjurg%3D&md5=290af3566436dae44309025c7c994bbcCAS |
[30] F. L. Eisele, First tandem mass-spectrometric measurement of tropospheric ions J. Geophys. Res. 1988, 93, 716.
| First tandem mass-spectrometric measurement of tropospheric ionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvFWrsLw%3D&md5=b02061af1a31ad3e7acb08711ca923c3CAS |
[31] K. Sellegri, B. Umann, M. Hanke, F. Arnold, Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaign Atmos. Chem. Phys. 2005, 5, 357.
| Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaignCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrsL0%3D&md5=d0c5ca0fce1c3689c3cb9adcb700516fCAS |
[32] K. Sellegri, M. Hanke, B. Umann, F. Arnold, M. Kulmala, Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST Atmos. Chem. Phys. 2005, 5, 373.
| Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUESTCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrsLo%3D&md5=68398766f7c98ef845255ebc45f01b3fCAS |
[33] D. R. Hanson, P. H. McMurry, J. Jiang, D. Tanner, L. G. Huey, Ambient pressure proton transfer mass spectrometry: detection of amines and Ammonia Environ. Sci. Technol. 2011, 45, 8881.
| Ambient pressure proton transfer mass spectrometry: detection of amines and AmmoniaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOqu73I&md5=6ba4eaf65593600a8327484b8b1e7b11CAS |
[34] E. P. Hunter, S. G. Lias, Proton Affinity Evaluation, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (Eds P. J. Linstrom, W. G. Mallard) 1998 (National Institute of Standards and Technology, Gaithersburg MD). Available at http://webbook.nist.gov [Verified December 2011].
[35] T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, An efficient photolysis system for fast response NO2 measurements J. Geophys. Res. 2000, 105, 26447.
| An efficient photolysis system for fast response NO2 measurementsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVGrs70%3D&md5=0c221b1308b2b28bfe590d859b9f5dc9CAS |
[36] T. Mikoviny, L. Kaser, A. Wisthaler, Development and characterization of a high-temperature proton-transfer-reaction mass spectrometer (HT-PTR-MS) Atmos. Meas. Tech. 2010, 3, 537.
| Development and characterization of a high-temperature proton-transfer-reaction mass spectrometer (HT-PTR-MS)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSnur3O&md5=5d09a6cd16ba2234e6c5c4bf38c8ebfdCAS |
[37] J. de Gouw, C. Warneke, Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry Mass Spectrom. Rev. 2007, 26, 223.
| Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlKqtrY%3D&md5=91be32409d7f177cc47887734c8fc669CAS |
[38] P. Veres, J. M. Roberts, C. Warneke, D. Welsh-Bon, M. Zahniser, S. Herndon, R. Fall, J. de Gouw, Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for measurement of gas-phase organic acids in the atmosphere Int. J. Mass Spectrom. 2008, 274, 48.
| Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for measurement of gas-phase organic acids in the atmosphereCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlGhsL0%3D&md5=bae8f370d43146c66f4617520700787cCAS |
[39] A. A. Viggiano, R. A. Perry, D. L. Albritton, E. E. Ferguson, F. C. Fehsenfeld, Stratospheric negative ion reaction rates with H2SO4 J. Geophys. Res. 1982, 87, 7340.
| Stratospheric negative ion reaction rates with H2SO4Crossref | GoogleScholarGoogle Scholar |
[40] R. G. Keesee, A. W. Castleman, Thermochemical data on gas-phase ion-molecule association and clustering reactions J. Phys. Chem. Ref. Data 1986, 15, 1011.
| Thermochemical data on gas-phase ion-molecule association and clustering reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXisVSitA%3D%3D&md5=5d5ad9e15c44d861875603e450292f14CAS |