Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx level, relative humidity and aerosol acidity
Haofei Zhang A , Ying-Hsuan Lin A , Zhenfa Zhang A , Xiaolu Zhang B , Stephanie L. Shaw C , Eladio M. Knipping D , Rodney J. Weber B , Avram Gold A , Richard M. Kamens A and Jason D. Surratt A EA Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
B School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
C Electric Power Research Institute, Palo Alto, CA 94304, USA.
D Electric Power Research Institute, Washington, DC 20036, USA.
E Corresponding author. Email: surratt@unc.edu
Environmental Chemistry 9(3) 247-262 https://doi.org/10.1071/EN12004
Submitted: 6 January 2012 Accepted: 9 February 2012 Published: 13 April 2012
Environmental context. Secondary organic aerosols formed from the oxidation of volatile organic compounds make a significant contribution to atmospheric particulate matter, which in turn affects both global climate change and human health. We investigate the mechanisms of formation and the chemical properties of secondary organic aerosols derived from isoprene, the most abundant non-methane-based, volatile organic compound emitted into the Earth’s atmosphere. However, the exact manner in which these aerosols are formed, and how they are affected by environmental conditions, remains unclear.
Abstract. Secondary organic aerosol (SOA) formation from the photooxidation of methacrolein (MACR) was examined in a dual outdoor smog chamber under varied initial nitric oxide (NO) levels, relative humidities (RHs) and seed aerosol acidities. Aerosol sizing measurements and off-line chemical analyses by gas chromatography/mass spectrometry and ultra performance liquid chromatography/electrospray ionisation high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS) were used to characterise MACR SOA formation. Results indicate that both SOA mass and chemical composition largely depend on the initial MACR/NO ratio and RH conditions. Specifically, at lower initial NO levels (MACR/NO = ~2.7) more substantial SOA is formed under dry conditions (5–20 % RH) compared to wet conditions (30–80 % RH). However, at higher initial NO levels (MACR/NO = ~0.9), the maximum SOA formation was marginally higher under wet conditions. Furthermore, UPLC/ESI-HR-Q-TOFMS data suggest that most particle-phase oligomers, which have been previously observed to form from the oxidation of methacryloylperoxynitrate, were enhanced under dry conditions. In addition to 2-methylglyceric acid and organosulfates derived from MACR oxidation, a nitrogen-containing organic tracer compound was found to form substantially in both chamber-generated and ambient aerosol samples collected from downtown Atlanta, GA, during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Moreover, increasing aerosol acidity because of additional sulfuric acid appears to have a negligible effect on both SOA mass and most SOA constituents. Nevertheless, increased RH and aerosol acidity were both observed to enhance organosulfate formation; however, elevating RH mediates organosulfate formation, suggesting that wet sulfate aerosols are necessary to form organosulfates in atmospheric aerosols.
References
[1] M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.| The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=0437ae491e64eca2afaa26d3b70e085eCAS |
[2] B. J. Turpin, J. J. Huntzicker, Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentration during SCAQS. Atmos. Environ. 1995, 29, 3527.
| Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentration during SCAQS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFCgur4%3D&md5=20de79a568cbf1b221568403b517a456CAS |
[3] J. C. Cabada, S. N. Pandis, A. L. Robinson, Sources of atmospheric particulate matter in Pittsburgh, Pennsylvania. J. Air Waste Manag. Assoc. 2002, 52, 732.
[4] A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. 2006, 6, 3181.
| Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hs7vF&md5=89765c7450716bbdb61e02e1f8022ccdCAS |
[5] M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M. O. Andreae, P. Artaxo, W. Maenhaut, Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173.
| Formation of secondary organic aerosols through photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWgtb4%3D&md5=eef442b73dfc7608ee1529dcde8b7e37CAS |
[6] E. O. Edney, T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, W. Wang, M. Claeys, Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos. Environ. 2005, 39, 5281.
| Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVWmur8%3D&md5=f73fb3b7f0323e135d831e56584b671fCAS |
[7] J. H. Kroll, N. L. Ng, S. M. Murphy, R. C. Flagan, J. H. Seinfeld, Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys. Res. Lett. 2005, 32, L18808.
| Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions.Crossref | GoogleScholarGoogle Scholar |
[8] J. H. Kroll, N. L. Ng, S. M. Murphy, R. C. Flagan, J. H. Seinfeld, Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 2006, 40, 1869.
| Secondary organic aerosol formation from isoprene photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtl2ju7o%3D&md5=b89749e8814bb023a3e90d53f668ad19CAS |
[9] J. Dommen, A. Metzger, J. Duplissy, M. Kalberer, M. R. Alfarra, A. Gascho, E. Weingartner, A. S. H. Prevot, B. Verheggen, U. Baltensperger, Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation. Geophys. Res. Lett. 2006, 33, L13805.
| Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation.Crossref | GoogleScholarGoogle Scholar |
[10] D. K. Henze, J. H. Seinfeld, Global secondary organic aerosol from isoprene oxidation. Geophys. Res. Lett. 2006, 33, L09812.
| Global secondary organic aerosol from isoprene oxidation.Crossref | GoogleScholarGoogle Scholar |
[11] C. R. Hoyle, T. Berntsen, G. Myhre, I. S. A. Isaksen, Secondary organic aerosol in the global aerosol chemical transport model Oslo CTM2. Atmos. Chem. Phys. 2007, 7, 5675.
| Secondary organic aerosol in the global aerosol chemical transport model Oslo CTM2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Kiuw%3D%3D&md5=97e7fca0ea18867472015f8aae187cdeCAS |
[12] T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, D. K. Henze, Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008, 113, D15303.
| Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |
[13] W. Wang, I. Kourtchev, B. Graham, J. Cafmeyer, W. Maenhaut, M. Claeys, Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1343.
| Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVyqsLk%3D&md5=396888997ea8415b3bb1c1ed3ca0fc56CAS |
[14] J. D. Surratt, S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrabdt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem. A 2006, 110, 9665.
| Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFGjsbs%3D&md5=9fd8b39924cb4ff67d5435ef6d4cb1d2CAS |
[15] J. D. Surratt, A. W. H. Chan, N. C. Eddingsaas, M. Chan, C. L. Loza, A. J. Kwan, S. P. Hersey, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640.
| Reactive intermediates revealed in secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsL0%3D&md5=0c09f16899742e34501fe30fbdaddb76CAS |
[16] F. Paulot, J. D. Crounse, H. G. Kjaergaard, A. Kürten, J. M. St. Clair, J. H. Seinfeld, P. O. Wennberg, Unexpected eposide formation in the gas-phase photooxidation of isoprene. Science 2009, 325, 730.
| Unexpected eposide formation in the gas-phase photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2gurs%3D&md5=2b5307947c2217f60c6aee2fe057b2ddCAS |
[17] Y.-H. Lin, Z. Zhang, K. S. Docherty, H. Zhang, S. H. Budisulistiorini, C. L. Rubitschun, S. L. Shaw, E. M. Knipping, E. S. Edgerton, T. E. Kleindienst, A. Gold, J. D. Surratt, Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds. Environ. Sci. Technol. 2012, 46, 250.
| Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2nu7zN&md5=78e0d6a12771333eabbd5cbbfbc4d92fCAS |
[18] H. Zhang, W. Rattanavaraha, Y. Zhou, J. Bapat, E. P. Rosen, R. M. Kamens, A new gas-phase condensed mechanism of isoprene-NOx photooxidation. Atmos. Environ. 2011, 45, 4507.
| A new gas-phase condensed mechanism of isoprene-NOx photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlCgu7g%3D&md5=b0f529bcae80668e65f4d215d110a5beCAS |
[19] T. A. Biesenthal, P. B. Shepson, Observations of anthropogenic inputs of the isoprene oxidation products methyl vinyl ketone and methacrolein to the atmosphere. Geophys. Res. Lett. 1997, 24, 1375.
| Observations of anthropogenic inputs of the isoprene oxidation products methyl vinyl ketone and methacrolein to the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1emsbY%3D&md5=16fde2704f8730ad3f6980787ed695c2CAS |
[20] C. Park, G. W. Schade, I. Boedeker, Characteristics of the flux of isoprene and its oxidation products in an urban area. J. Geophys. Res. 2011, 116, D21303.
| Characteristics of the flux of isoprene and its oxidation products in an urban area.Crossref | GoogleScholarGoogle Scholar |
[21] R. Szmigielski, J. D. Surratt, R. Vermeylen, K. Szmigielska, J. H. Kroll, N. L. Ng, S. M. Murphy, A. Sorooshian, J. H. Seinfeld, M. Claeys, Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formation from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. J. Mass Spectrom. 2007, 42, 101.
| Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formation from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Wqtbg%3D&md5=b7eb20bcc7eba19ea65a470aa5db8809CAS |
[22] J. D. Surratt, M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney, J. H. Seinfeld, Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol. 2007b, 41, 5363.
| Effect of acidity on secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFeisrc%3D&md5=ff911f5232a62e8d0fa94fa69baa899fCAS |
[23] M. Jaoui, E. W. Corse, M. Lewandowski, J. H. Offenberg, T. E. Kleindienst, E. O. Edney, Formation of organic tracers from isoprene SOA under acidic conditions. Atmos. Environ. 2010, 44, 1798.
| Formation of organic tracers from isoprene SOA under acidic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1yguro%3D&md5=aeb2f88d73b2a6edf25bbf8ba13b72c3CAS |
[24] R. Szmigielski, R. Vermeylen, J. Dommen, A. Metzger, W. Maenhaut, U. Baltensperger, M. Claeys, The acid effect in the formation of 2-methyltetrols from the photooxidation of isoprene in the presence of NOx. Atmos. Res. 2010, 98, 183.
| The acid effect in the formation of 2-methyltetrols from the photooxidation of isoprene in the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2nsbnI&md5=1fe9e269f44882153aefbd6cc74d8dccCAS |
[25] H. Zhang, J. D. Surratt, Y.-H. Lin, J. Bapat, R. M. Kamens, Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions. Atmos. Chem. Phys. 2011, 11, 6411.
| Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yksL3N&md5=05d8bd466668efd2bfa84f42fa945b85CAS |
[26] T. B. Nguyen, P. J. Roach, J. Laskin, A. Laskin, S. A. Nizkorodov, Effect of humidity on the composition and yield of isoprene photooxidation secondary organic aerosol. Atmos. Chem. Phys. 2011, 11, 6931.
| Effect of humidity on the composition and yield of isoprene photooxidation secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yks7rM&md5=24afed2bf7f3bb6441f87dc5b54fa330CAS |
[27] A. W. H. Chan, M. N. Chan, J. D. Surratt, P. S. Chhabra, C. L. Loza, J. D. Crounse, L. D. Yee, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys. 2010, 10, 7169.
| Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSkt7vN&md5=3f2e23c13d011c17bef7ec94ee2da3efCAS |
[28] M. Vartiainen, S. R. Mcdow, R. M. Kamens, Water-uptake by aerosol-particles from automobile exhaust and wood smoke. Chemosphere 1994, 29, 1661.
| Water-uptake by aerosol-particles from automobile exhaust and wood smoke.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlOqtrk%3D&md5=8db3fa324d5d78867f85c9b151a6236eCAS |
[29] M. Jang, R. M. Kamens, A thermodynamic approach for modeling partitioning of semivolatile organic compounds on atmospheric particulate matter: humidity effects. Environ. Sci. Technol. 1998, 32, 1237.
| A thermodynamic approach for modeling partitioning of semivolatile organic compounds on atmospheric particulate matter: humidity effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVyruro%3D&md5=c06e7183442a9ad2771174b80192d189CAS |
[30] T. E. Kleindienst, D. F. Smith, W. Li, E. O. Edney, D. J. Driscoll, R. E. Speer, W. S. Weathers, Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol. Atmos. Environ. 1999, 33, 3669.
| Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVyrurw%3D&md5=3bd74d2c8e2b57c94c800b4d22a4c161CAS |
[31] J. Liggio, S. M. Li, R. Mclaren, Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110, D10304.
| Reactive uptake of glyoxal by particulate matter.Crossref | GoogleScholarGoogle Scholar |
[32] R. Volkamer, F. S. Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, M. J. Molina, A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807.
| A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |
[33] B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11 069.
| Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisLw%3D&md5=9f723358d623ab0c35e88c0e24927658CAS |
[34] Z. Liu, L. Y. Wu, T. H. Wang, M. F. Ge, W. G. Wang, Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide. J. Phys. Chem. A 2012, 116, 437.
| Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKgsr%2FP&md5=30eae6cc926e52a2ba0fbf6692035835CAS |
[35] S. Nakao, Y. Liu, P. Tang, C. L. Chen, J. Zhang, D. Cocker, Role of glyoxal in SOA formation from aromatic hydrocarbons: gas-phase reaction trumps reactive uptake. Atmos. Chem. Phys. Discuss. 2011, 11, 30 599.
| Role of glyoxal in SOA formation from aromatic hydrocarbons: gas-phase reaction trumps reactive uptake.Crossref | GoogleScholarGoogle Scholar |
[36] W. P. Hastings, C. A. Koehler, E. L. Bailey, D. O. de Haan, Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis. Environ. Sci. Technol. 2005, 39, 8728.
| Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2jsLvF&md5=78cd3c0e40740609c7a4086de613add4CAS |
[37] J. H. Kroll, N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 2005, 110, D23207.
| Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds.Crossref | GoogleScholarGoogle Scholar |
[38] N. Sareen, A. N. Schwier, E. L. Shapiro, D. Mitroo, V. F. McNeill, Secondary organic aerosol material formed by methylglyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2010, 10, 997.
| Secondary organic aerosol material formed by methylglyoxal in aqueous aerosol mimics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2rtLo%3D&md5=c9c6ed9e04fa6231d72d2452eccbbab5CAS |
[39] R. M. Kamens, H. Zhang, E. H. Chen, Y. Zhou, H. M. Parikh, R. L. Wilson, K. E. Galloway, E. P. Rosen, Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 2011, 45, 2324.
| Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbs%3D&md5=4bd7bfcfc6d3248a5cca8816c226c16bCAS |
[40] Y. Zhou, H. Zhang, H. M. Parikh, E. H. Chen, W. Rattanavaraha, E. P. Rosen, W. Wang, R. M. Kamens, Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882.
| Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOgsrw%3D&md5=8a9d4a36ef32dc1ce228e26c3148f905CAS |
[41] R. Volkamer, I. Barnes, U. Platt, L. T. Molina, M. J. Molina, Remote sensing of glyoxal by differential optical absorption spectroscopy (DOAS): advancements in simulation chamber and field experiments, in Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, NOTO Science Series: IV: Earth and Environmental Sciences, 62, 2006, pp. 129–141. (Springer: Dordrecht, the Netherlands).
[42] M. M. Galloway, A. J. Huisman, L. D. Yee, A. W. H. Chan, C. L. Loza, J. H. Seinfeld, F. N. Keutsch, Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NOx conditions. Atmos. Chem. Phys. 2011, 11, 10 779.
| Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NOx conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisr0%3D&md5=9f9faa931ff58b2da4b3d01a90f331dcCAS |
[43] N. Nishino, J. Arey, R. Atkinson, Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration. J. Phys. Chem. A 2010, 114, 10 140.
| Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsbrJ&md5=abb5cea06169e27c0a4a3e88782b01e3CAS |
[44] Y. Iinuma, C. Müller, O. Böge, T. Gnauk, H. Herrmann, The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions. Atmos. Environ. 2007, 41, 5571.
| The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ghs7Y%3D&md5=aa77a2a7637ca319239540a9d81d34b2CAS |
[45] Y. Iinuma, C. Müller, T. Berndt, O. Böge, M. Claeys, H. Herrmann, Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 6678.
| Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVCntLo%3D&md5=ee5b0887594bf9e8f467cab9f1b8db9bCAS |
[46] Y. Iinuma, O. Böge, A. Kahnt, H. Herrmann, Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. Phys. Chem. Chem. Phys. 2009, 11, 7985.
| Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrsL%2FO&md5=2cf60f23e39cae4210431ddeb3395cd3CAS |
[47] J. D. Surratt, J. H. Kroll, T. E. Kleindienst, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
| Evidence for organosulfates in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=3ba1496dcab5f18f744e84387c36ab24CAS |
[48] J. D. Surratt, Y. Gómez-González, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
| Organosulfate formation in biogenic secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=8ed1709bc00dac5ed4673e4b498bad19CAS |
[49] K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry. Atmos. Chem. Phys. 2009, 9, 2533.
| Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtbc%3D&md5=b23507f2b8bca3c1b667f4d129b43782CAS |
[50] K. D. Froyd, S. M. Murphy, D. M. Murphy, J. A. de Gouw, N. C. Eddingsaas, P. O. Wennberg, Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proc. Natl. Acad. Sci. USA 2010, 107, 21 360.
| Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WisL7I&md5=477355004599dd1e26de6f95ba22c551CAS |
[51] A. I. Darer, N. C. Cole-Filipiak, A. E. O’Connor, M. J. Elrod, Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ. Sci. Technol. 2011, 45, 1895.
| Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGnsL4%3D&md5=586c9a74a725d5119ac1c2fecad7379fCAS |
[52] L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. Su, K. A. Prather, Measurements of isoprene-derived organosulfates in ambient aerosols by Aerosol Time-of-Flight Mass Spectrometry – Part 1. Single particle atmospheric observations in Atlanta. Environ. Sci. Technol. 2011, 45, 5105.
| Measurements of isoprene-derived organosulfates in ambient aerosols by Aerosol Time-of-Flight Mass Spectrometry – Part 1. Single particle atmospheric observations in Atlanta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlCrsLo%3D&md5=2730fc7dbd60588e4a1ae1818d16797cCAS |
[53] L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. Su, K. A. Prather, Measurements of isoprene-derived organosulfates in ambient aerosols by Aerosol Time-of-Flight Mass Spectrometry – Part 2. Temporal variability and formation mechanisms. Environ. Sci. Technol. 2011, 45, 8648.
| Measurements of isoprene-derived organosulfates in ambient aerosols by Aerosol Time-of-Flight Mass Spectrometry – Part 2. Temporal variability and formation mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCgs7nL&md5=e2c22c268b2e958d07041409eb32dbf4CAS |
[54] Y. Gómez-González, J. D. Surratt, F. Cuyckens, R. Szmigielski, R. Vermeylen, M. Jaoui, M. Lewandowski, J. H. Offenberg, T. E. Kleindienst, E. O. Edney, F. Blockhuys, C. van Alsenoy, W. Maenhaut, M. Claeys, Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(-) electrospray ionization mass spectrometry. J. Mass Spectrom. 2008, 43, 371.
| Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(-) electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
[55] M. J. Perri, Y. B. Lim, S. P. Seitzinger, B. J. Turpin, Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies. Atmos. Environ. 2010, 44, 2658.
| Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt12ltLs%3D&md5=6fd2c83f7972fce40079a395b195ba3fCAS |
[56] B. Nozière, S. Ekström, T. Alsberg, S. Holmstrom, Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 2010, 37, L05806.
| Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |
[57] D. R. Worton, A. H. Goldstein, D. K. Farmer, K. S. Docherty, J. L. Jimenez, J. B. Gilman, W. C. Kuster, J. de Gouw, B. J. Williams, N. M. Kreisberg, S. V. Hering, G. Bench, M. McKay, K. Kristensen, M. Glasius, J. D. Surratt, J. H. Seinfeld, Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California. Atmos. Chem. Phys. 2011, 11, 10 219.
| Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12ntrjI&md5=6eb434ade9b162d3868d3f751c83fe0fCAS |
[58] S. Lee, M. Jang, R. M. Kamens, SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust. Atmos. Environ. 2004, 38, 2597.
| SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGgs7c%3D&md5=e7fa9f9de766e95f271493b58db01658CAS |
[59] S. Leungsakul, H. E. Jeffries, R. M. Kamens, A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight. Atmos. Environ. 2005, 39, 7063.
| A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGht7jI&md5=27ea65a08f23ae939f669d2a87cd1183CAS |
[60] C. K. Chan, R. C. Flagan, J. H. Seinfeld, Water activities of NH4NO3/(NH4)2SO4 solutions. Atmos. Environ., A Gen. Topics 1992, 26, 1661.
| Water activities of NH4NO3/(NH4)2SO4 solutions.Crossref | GoogleScholarGoogle Scholar |
[61] D. A. Hansen, E. S. Edgerton, B. E. Hartsell, J. J. Jansen, N. Kandasamy, G. M. Hidy, C. L. Blanchard, The Southeastern Aerosol Research and Characterization Study. Part I. Overview. J. Air Waste Manag. Assoc. 2003, 53, 1460.
| 1:CAS:528:DC%2BD2cXis1KitA%3D%3D&md5=8e302716eb0a6ca5e2244e91b3392cd6CAS |
[62] E. S. Edgerton, B. E. Hartsell, R. D. Saylor, J. J. Jansen, D. A. Hansen, G. M. Hidy, The Southeastern Aerosol Resarch and Characteriztion Study – Part II. Filter-based measurements of fine and coarse particulate matter mass and composition. J. Air Waste Manag. Assoc. 2005, 55, 1527.
| 1:CAS:528:DC%2BD2MXhtF2nurrE&md5=078771204d74f31943fcec131cd6ce2dCAS |
[63] E. S. Edgerton, B. E. Hartsell, R. D. Saylor, J. J. Jansen, D. A. Hansen, G. M. Hidy, The Southeastern Aerosol Resarch and Characteriztion Study – Part III. Continuous measurements of PM2.5 mass and composition. J. Air Waste Manag. Assoc. 2006, 56, 1325.
| 1:CAS:528:DC%2BD28Xht1aktbvE&md5=7547ab3a6ea26b8191254455b9026d11CAS |
[64] E. S. Edgerton, R. D. Saylor, B. E. Hartsell, J. J. Jansen, D. A. Hansen, Ammonia and ammonium measurements from the southeastern United States. Atmos. Environ. 2007, 41, 3339.
| Ammonia and ammonium measurements from the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFSis74%3D&md5=79a1aae0c727d99c10fe889d9b3f90f6CAS |
[65] E. S. Edgerton, G. S. Casuccio, R. D. Saylor, T. L. Lersch, B. E. Hartsell, J. J. Jansen, D. A. Hansen, Measurements of OC and EC in coarse particulate matter in the southeastern United States. J. Air Waste Manag. Assoc. 2009, 59, 78.
| Measurements of OC and EC in coarse particulate matter in the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVKku7k%3D&md5=e423ddd1327eb79791b15941839a463fCAS |
[66] S. Gao, J. D. Surratt, E. M. Knipping, E. S. Edgerton, M. Shahgholi, J. H. Seinfeld, Characterization of polar organic components in fine aerosols in the southeastern United States: identity, origin, and evolution. J. Geophys. Res. 2006, 111, D14314.
| Characterization of polar organic components in fine aerosols in the southeastern United States: identity, origin, and evolution.Crossref | GoogleScholarGoogle Scholar |
[67] J. J. Orlando, G. S. Tyndall, Mechanism of the OH-initiated oxidation of methacrolein. Geophys. Res. Lett. 1999, 26, 2191.
| Mechanism of the OH-initiated oxidation of methacrolein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFamt7s%3D&md5=87f44920c428f0bf04c2fe6247a68f20CAS |
[68] M. Claeys, W. Wang, A. C. Ion, I. Kourtchev, A. Gelencsér, W. Maenhaut, Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 2004, 38, 4093.
| Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyhs78%3D&md5=b559036eb4ebf09213da5891802e08e3CAS |
[69] Y. Liu, I. El Haddad, M. Scarfogliero, L. Nieto-Gligorovski, B. Temime-Roussel, E. Quivet, N. Marchand, B. Picquet-Varrault, A. Monod, In-cloud processes of methacrolein under simulated conditions – Part 1. Aqueous phase photooxidation. Atmos. Chem. Phys. 2009, 9, 5093.
| In-cloud processes of methacrolein under simulated conditions – Part 1. Aqueous phase photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGiurjL&md5=5c481d69c87128a1b7c9550d93de737cCAS |
[70] F. Paulot, J. D. Crounse, H. G. Kjaergaard, J. H. Kroll, J. H. Seinfeld, P. O. Wennberg, Isoprene photooxidation: new insights into the production of acids and organic nitrates. Atmos. Chem. Phys. 2009, 9, 1479.
| Isoprene photooxidation: new insights into the production of acids and organic nitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFKhu7s%3D&md5=9cd73f1e5492283da732b9fbcdb1f564CAS |
[71] F. Paulot, D. Wunch, J. D. Crounse, G. C. Toon, D. B. Millet, P. F. DeCarlo, C. Vigouroux, N. M. Deutscher, G. González Abad, J. Notholt, T. Warneke, J. W. Hannigan, C. Warneke, J. A. de Gouw, E. J. Dunlea, M. De Mazière, D. W. T. Griffith, P. Bernath, J. L. Jimenez, P. O. Wennberg, Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmos. Chem. Phys. 2011, 11, 1989.
| Importance of secondary sources in the atmospheric budgets of formic and acetic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslyls7g%3D&md5=0f487e033f4335a96872c67e9daa4d1cCAS |
[72] J. Otera, J. Nishikido, Reaction of alcohols with caboxylic acids and their derivatives, in Esterification: Methods, Reactions, and Applications 2010, pp. 5–51 (Wiley-VCH: Weinheim, Germany).
[73] C. N. Olson, M. M. Galloway, G. Yu, C. J. Hedman, M. R. Lockett, T. Yoon, E. A. Stone, L. M. Smith, F. N. Keutsch, Hydroxycarbonxylic acid-derived organosufaltes: synthesis, stability, and quantification in ambient aerosol. Environ. Sci. Technol. 2011, 45, 6468.
| Hydroxycarbonxylic acid-derived organosufaltes: synthesis, stability, and quantification in ambient aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCgt7s%3D&md5=07c1259f4d0e7a32b43838026d568aaeCAS |
[74] J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics, from Air Pollution to Climate Change 1998, pp. 396–435 (Wiley: New York).
[75] M. Jaoui, E. O. Edney, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, J. D. Surratt, J. H. Seinfeld, Formation of secondary organic aerosol from irradiated α-pinene/toluene/NOx/mixtures and the effect of isoprene and sulfur dioxide. J. Geophys. Res. 2008, 113, D09303.
| Formation of secondary organic aerosol from irradiated α-pinene/toluene/NOx/mixtures and the effect of isoprene and sulfur dioxide.Crossref | GoogleScholarGoogle Scholar |