Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime

Xinlei Ge A , Qi Zhang A D , Yele Sun B , Christopher R. Ruehl C and Ari Setyan A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616, USA.

B State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P. R. China.

C Environmental Science, Policy, and Management. University of California, 130 Mulford Hall, Berkeley, CA 94720, USA.

D Corresponding author. Email: dkwzhang@ucdavis.edu

Environmental Chemistry 9(3) 221-235 https://doi.org/10.1071/EN11168
Submitted: 23 December 2011  Accepted: 10 May 2012   Published: 26 June 2012

Environmental context. Aqueous-phase processes in fogs and clouds can significantly alter atmospheric fine particles with consequences for climate and human health. We studied the influence of fog and rain on atmospheric aerosol properties, and show that aqueous-phase reactions contribute to the production of secondary aerosol species and change significantly the composition and microphysical properties of aerosols. In contrast, rains effectively remove aerosols and reduce their concentrations.

Abstract. Submicrometre aerosols (PM1) were characterised in situ with a high resolution time-of-flight aerosol mass spectrometer and a scanning mobility particle sizer in Fresno, CA, from 9 to 23 January 2010. Three dense fog events occurred during the first week of the campaign whereas the last week was influenced by frequent rain events. We thus studied the effects of aqueous-phase processing on aerosol properties by examining the temporal variations of submicrometre aerosol composition and size distributions. Rains removed secondary species effectively, leading to low loadings of PM1 dominated by primary organic species. Fog episodes, however, increased the concentrations of secondary aerosol species (sulfate, nitrate, ammonium and oxygenated organic aerosol). The size distributions of these secondary species, which always showed a droplet mode peaking at ~500 nm in the vacuum aerodynamic diameter, increased in mode size during fog episodes as well. In addition, the oxygen-to-carbon ratio of oxygenated organic species increased in foggy days, indicating that fog processing likely enhances the production of secondary organic aerosol as well as its oxidation degree. Overall, our observations show that aqueous-phase processes significantly affect submicrometre aerosol chemistry and microphysics in the Central Valley of California during winter, responsible for the production of secondary inorganic and organic aerosol species and the formation of droplet mode particles, thus altering the climatic and health effects of ambient aerosols in this region.

Additional keywords: Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), aqueous-phase reaction, fog/cloud processing, SOA production, submicrometre aerosol chemistry.


References

[1]  S. J. Ghan, S. E. Schwartz, Aerosol properties and processes: a path from field and laboratory measurements to global climate models. Bull. Am. Meteorol. Soc. 2007, 88, 1059.
Aerosol properties and processes: a path from field and laboratory measurements to global climate models.Crossref | GoogleScholarGoogle Scholar |

[2]  C. A. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, G. D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132.
Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslGgtbo%3D&md5=f4bd4f29d012a699c600c9e0cef2f855CAS |

[3]  N. Mahowald, Aerosol indirect effect on biogeochemical cycles and climate. Science 2011, 334, 794.
Aerosol indirect effect on biogeochemical cycles and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagtrnM&md5=217a625def3de11af0821003d9bd2d8cCAS |

[4]  M. Ngo, K. Pinkerton, S. Freeland, M. Geller, W. Ham, S. Cliff, L. Hopkins, M. Kleeman, U. Kodavanti, E. Meharg, L. Plummer, J. Recendez, M. Schenker, C. Sioutas, S. Smiley-Jewell, C. Haas, J. Gutstein, A. Wexler, Airborne particles in the San Joaquin Valley may affect human health. Cal. Ag. 2010, 64, 12.
Airborne particles in the San Joaquin Valley may affect human health.Crossref | GoogleScholarGoogle Scholar |

[5]  P. Herckes, H. Chang, T. Lee, J. L. Collett, Air pollution processing by radiation fogs. Water Air Soil Pollut. 2007, 181, 65.
Air pollution processing by radiation fogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlOgsL4%3D&md5=8d6b4d128edb9ef7ee150fffe0721dd2CAS |

[6]  D. J. Jacob, F. H. Shair, J. M. Waldman, J. W. Munger, M. R. Hoffmann, Transport and oxidation of SO2 in a stagnant foggy valley. Atmos. Environ. 1987, 21, 1305.
Transport and oxidation of SO2 in a stagnant foggy valley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXks1equ7Y%3D&md5=0329fc1d731c142f46630f26b98439a7CAS |

[7]  S. N. Pandis, J. H. Seinfeld, C. Pilinis, Heterogeneous sulfate production in an urban fog. Atmos. Environ., A Gen. Topics 1992, 26, 2509.
Heterogeneous sulfate production in an urban fog.Crossref | GoogleScholarGoogle Scholar |

[8]  J. W. Munger, J. Collett, B. C. Daube, M. R. Hoffmann, Carboxylic acids and carbonyl compounds in southern California clouds and fogs. Tellus B Chem. Phys. Meterol. 1989, 41B, 230.
Carboxylic acids and carbonyl compounds in southern California clouds and fogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtl2htLY%3D&md5=e0fcf4be46d9910083e2e8b3df043ecbCAS |

[9]  X. Rao, J. L. Collett, Behavior of SIV and formaldehyde in a chemically heterogeneous cloud. Environ. Sci. Technol. 1995, 29, 1023.
Behavior of SIV and formaldehyde in a chemically heterogeneous cloud.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFeit7g%3D&md5=38069fed11067787e77079f8c72fd937CAS |

[10]  D. Grosjean, B. Wright, Carbonyls in urban fog, ice fog, cloudwater and rainwater. Atmos. Environ. 1983, 17, 2093.
Carbonyls in urban fog, ice fog, cloudwater and rainwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXptFSnuw%3D%3D&md5=9eb040bb87a591b102771f9ec77d7504CAS |

[11]  M. C. Facchini, J. Lind, G. Orsi, S. Fuzzi, Chemistry of carbonyl compounds in Po Valley fog water. Sci. Total Environ. 1990, 91, 79.
Chemistry of carbonyl compounds in Po Valley fog water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFWrtbo%3D&md5=91a165fb60e264f4a4678cb92511f61aCAS |

[12]  D. J. Jacob, J. W. Munger, J. M. Waldman, M. R. Hoffmann, The H2SO4–HNO3–NH3 system at high humidities and in fogs 1. Spatial and temporal patterns in the San Joaquin Valley of California. J. Geophys. Res. – Atmos. 1986, 91, 1073.
The H2SO4–HNO3–NH3 system at high humidities and in fogs 1. Spatial and temporal patterns in the San Joaquin Valley of California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhslemsrc%3D&md5=89e5cd4d59cd08c4db60d8a67551a96cCAS |

[13]  D. Lillis, C. N. Cruz, J. Collett, L. W. Richards, S. N. Pandis, Production and removal of aerosol in a polluted fog layer: model evaluation and fog effect on PM. Atmos. Environ. 1999, 33, 4797.
Production and removal of aerosol in a polluted fog layer: model evaluation and fog effect on PM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlOkt7o%3D&md5=59e8e4b744d1c67ed4fcf2a7e51f0af9CAS |

[14]  J. L. Collett, K. J. Hoag, D. E. Sherman, A. Bator, L. W. Richards, Spatial and temporal variations in San Joaquin Valley fog chemistry. Atmos. Environ. 1998, 33, 129.
Spatial and temporal variations in San Joaquin Valley fog chemistry.Crossref | GoogleScholarGoogle Scholar |

[15]  J. L. Collett, A. Bator, D. E. Sherman, K. F. Moore, K. J. Hoag, B. B. Demoz, X. Rao, J. E. Reilly, The chemical composition of fogs and intercepted clouds in the United States. Atmos. Res. 2002, 64, 29.
The chemical composition of fogs and intercepted clouds in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVWrtrY%3D&md5=b1bdabe54211c40b7b246a9be4954b8fCAS |

[16]  C. Anastasio, B. C. Faust, C. J. Rao, Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols). Environ. Sci. Technol. 1997, 31, 218.
Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVyisbg%3D&md5=d056d1b188b51b0d2956f985e702b462CAS |

[17]  S. Raja, R. Raghunathan, X. Y. Yu, T. Y. Lee, J. Chen, R. R. Kommalapati, K. Murugesan, X. Shen, Y. Qingzhong, K. T. Valsaraj, J. L. Collett, Fog chemistry in the Texas–Louisiana gulf coast corridor. Atmos. Environ. 2008, 42, 2048.
Fog chemistry in the Texas–Louisiana gulf coast corridor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlWisLg%3D&md5=2d44f061974d924f74b13b1843a6c9a6CAS |

[18]  M. A. J. Harrison, S. Barra, D. Borghesi, D. Vione, C. Arsene, R. Iulian Olariu, Nitrated phenols in the atmosphere: a review. Atmos. Environ. 2005, 39, 231.
Nitrated phenols in the atmosphere: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKgurvJ&md5=59997b48fc9f793c2fba666730eae063CAS |

[19]  W. Winiwarter, H. Fierlinger, H. Puxbaum, M. C. Facchini, B. G. Arends, S. Fuzzi, D. Schell, U. Kaminski, S. Pahl, T. Schneider, A. Berner, I. Solly, C. Kruisz, Henry’s law and the behavior of weak acids and bases in fog and cloud. J. Atmos. Chem. 1994, 19, 173.
Henry’s law and the behavior of weak acids and bases in fog and cloud.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFKrs7Y%3D&md5=30a4bd0c44e9e53f11481a62d2931a2eCAS |

[20]  S. Decesari, M. C. Facchini, S. Fuzzi, E. Tagliavini, Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. J. Geophys. Res. – Atmos. 2000, 105, 1481.
Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlKgtrg%3D&md5=57b2502fbef023822e41d0d9c5d35812CAS |

[21]  Q. Zhang, C. Anastasio, Chemistry of fog waters in California’s Central Valley – Part 3. Concentrations and speciation of organic and inorganic nitrogen. Atmos. Environ. 2001, 35, 5629.
Chemistry of fog waters in California’s Central Valley – Part 3. Concentrations and speciation of organic and inorganic nitrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVGjuro%3D&md5=1ee2864696dab3a33da097c3ed43c1fdCAS |

[22]  Q. Zhang, C. Anastasio, Conversion of fogwater and aerosol organic nitrogen to ammonium, nitrate, and NOx during exposure to simulated sunlight and ozone. Environ. Sci. Technol. 2003, 37, 3522.
Conversion of fogwater and aerosol organic nitrogen to ammonium, nitrate, and NOx during exposure to simulated sunlight and ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFOhu7o%3D&md5=dbec40582a4c01fde4637038c0172b37CAS |

[23]  J. W. Hutchings, B. Ervens, D. Straub, P. Herckes, N-nitrosodimethylamine occurrence, formation and cycling in clouds and fogs. Environ. Sci. Technol. 2010, 44, 8128.
N-nitrosodimethylamine occurrence, formation and cycling in clouds and fogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gqt7zI&md5=f7ab4c5a5f2a16d7e130cad56e4eeb09CAS |

[24]  M. C. Facchini, S. Fuzzi, S. Zappoli, A. Andracchio, A. Gelencsér, G. Kiss, Z. Krivácsy, E. Meszaros, H. C. Hansson, T. Alsberg, Y. Zebuhr, Partitioning of the organic aerosol component between fog droplets and interstitial air. J. Geophys. Res. – Atmos. 1999, 104, 26 821.
Partitioning of the organic aerosol component between fog droplets and interstitial air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFajs7Y%3D&md5=53d2cb76375644f18aec70fafbab6b67CAS |

[25]  Z. Krivácsy, G. Kiss, B. Varga, I. Galambos, Z. Sárvári, A. Gelencsér, Á. Molnár, S. Fuzzi, M. C. Facchini, S. Zappoli, A. Andracchio, T. Alsberg, H. C. Hansson, L. Persson, Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmos. Environ. 2000, 34, 4273.
Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar |

[26]  G. Kiss, B. Varga, A. Gelencser, Z. Krivacsy, A. Molnar, T. Alsberg, L. Persson, H. C. Hansson, M. C. Facchini, Characterisation of polar organic compounds in fog water. Atmos. Environ. 2001, 35, 2193.
Characterisation of polar organic compounds in fog water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslOgtr8%3D&md5=6c6454bbf97543839868373572d12d50CAS |

[27]  S. Fuzzi, M. C. Facchini, S. Decesari, E. Matta, M. Mircea, Soluble organic compounds in fog and cloud droplets: what have we learned over the past few years? Atmos. Res. 2002, 64, 89.
Soluble organic compounds in fog and cloud droplets: what have we learned over the past few years?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVWrt7k%3D&md5=154bd16bed725424ae125b79c07da100CAS |

[28]  P. Herckes, T. Lee, L. Trenary, G. G. Kang, H. Chang, J. L. Collett, Organic matter in central California radiation fogs. Environ. Sci. Technol. 2002, 36, 4777.
Organic matter in central California radiation fogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1GrtbY%3D&md5=302a5903c291ed55e6a929f99e66c86eCAS |

[29]  A. Cappiello, E. De Simoni, C. Fiorucci, F. Mangani, P. Palma, H. Trufelli, S. Decesari, M. C. Facchini, S. Fuzzi, Molecular characterization of the water-soluble organic compounds in fogwater by ESIMS/MS. Environ. Sci. Technol. 2003, 37, 1229.
Molecular characterization of the water-soluble organic compounds in fogwater by ESIMS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlSrs78%3D&md5=9b214d2996b2fdad6666834ac805760dCAS |

[30]  J. L. Collett, P. Herckes, S. Youngster, T. Lee, Processing of atmospheric organic matter by California radiation fogs. Atmos. Res. 2008, 87, 232.
Processing of atmospheric organic matter by California radiation fogs.Crossref | GoogleScholarGoogle Scholar |

[31]  S. Raja, R. Raghunathan, R. R. Kommalapati, X. H. Shen, J. L. Collett, K. T. Valsaraj, Organic composition of fogwater in the Texas–Louisiana gulf coast corridor. Atmos. Environ. 2009, 43, 4214.
Organic composition of fogwater in the Texas–Louisiana gulf coast corridor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Cltrk%3D&md5=c03a2f604becfbefb2e6353cbdca7127CAS |

[32]  P. Herckes, M. P. Hannigan, L. Trenary, T. Lee, J. L. Collett, Organic compounds in radiation fogs in Davis (California). Atmos. Res. 2002, 64, 99.
Organic compounds in radiation fogs in Davis (California).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVWrt7c%3D&md5=c7c94bba47d4d8bbf58228de097c3231CAS |

[33]  P. Herckes, J. A. Leenheer, J. L. Collett, Comprehensive characterization of atmospheric organic matter in Fresno, California, fog water. Environ. Sci. Technol. 2007, 41, 393.
Comprehensive characterization of atmospheric organic matter in Fresno, California, fog water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yrtrfM&md5=3459e83d0fff67f734c099a1ce5a6064CAS |

[34]  L. R. Mazzoleni, B. M. Ehrmann, X. Shen, A. G. Marshall, J. L. Collett, Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2010, 44, 3690.
Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=f2df57988217a3fa1940176ccaa4f8dfCAS |

[35]  A. Nel, Air pollution-related illness: effects of particles. Science 2005, 308, 804.
Air pollution-related illness: effects of particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVWrtLg%3D&md5=99c6fc7fe0c3f08424d43cca521d727dCAS |

[36]  J. Haywood, O. Boucher, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 2000, 38, 513.
Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFSlsr8%3D&md5=69cb5c6e967f9a523541f5e3eae3566cCAS |

[37]  Q. Zhang, J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P. F. DeCarlo, D. Salcedo, T. Onasch, J. T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R. J. Griffin, J. Rautiainen, J. Y. Sun, Y. M. Zhang, D. R. Worsnop, Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced northern hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801.
Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced northern hemisphere midlatitudes.Crossref | GoogleScholarGoogle Scholar |

[38]  N. L. Ng, M. R. Canagaratna, Q. Zhang, J. L. Jimenez, J. Tian, I. M. Ulbrich, J. H. Kroll, K. S. Docherty, P. S. Chhabra, R. Bahreini, S. M. Murphy, J. H. Seinfeld, L. Hildebrandt, N. M. Donahue, P. F. DeCarlo, V. A. Lanz, A. S. H. Prevot, E. Dinar, Y. Rudich, D. R. Worsnop, Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry. Atmos. Chem. Phys. 2010, 10, 4625.
Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qsr3K&md5=994dd9e90eee50aad5bf20258f04a366CAS |

[39]  J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525.
Evolution of organic aerosols in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFensbjE&md5=d9c7580ed2340a3d184f8f5b2249b226CAS |

[40]  Q. Zhang, J. Jimenez, M. Canagaratna, I. Ulbrich, N. Ng, D. Worsnop, Y. Sun, Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Anal. Bioanal. Chem. 2011, 401, 3045.
Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KisL%2FL&md5=365e7d511e4413d40064ca4e096457d0CAS |

[41]  M. Dall'Osto, R. M. Harrison, H. Coe, P. Williams, Real-time secondary aerosol formation during a fog event in London. Atmos. Chem. Phys. 2009, 9, 2459.
Real-time secondary aerosol formation during a fog event in London.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtbo%3D&md5=39b34d682e91ab897ac612864838bf58CAS |

[42]  C. M. Berkowitz, L. K. Berg, X.-Y. Yu, M. L. Alexander, A. Laskin, R. A. Zaveri, B. T. Jobson, E. Andrews, J. A. Ogren, The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt Reyes National Seashore. Atmos. Environ. 2011, 45, 2559.
The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt Reyes National Seashore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVegt78%3D&md5=718294c338c2abde3fbec6542c77c64fCAS |

[43]  K. J. Hoag, J. L. Collett, S. N. Pandis, The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs. Atmos. Environ. 1999, 33, 4817.
The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlOkt7s%3D&md5=fb3a2c769d392130b13b92a4c46e09c0CAS |

[44]  W. A. Ham, J. D. Herner, P. G. Green, M. J. Kleeman, Size distribution of health-relevant trace elements in airborne particulate matter during a severe winter stagnation event: implications for epidemiology and inhalation exposure studies. Aerosol Sci. Technol. 2010, 44, 753.
Size distribution of health-relevant trace elements in airborne particulate matter during a severe winter stagnation event: implications for epidemiology and inhalation exposure studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVKksLg%3D&md5=12df0578ca334da0d2c110e6d14d6dfaCAS |

[45]  W. A. Ham, C. R. Ruehl, M. J. Kleeman, Seasonal variation of airborne particle deposition efficiency in the human respiratory system. Aerosol Sci. Technol. 2011, 45, 795.
Seasonal variation of airborne particle deposition efficiency in the human respiratory system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVKku7k%3D&md5=a7b4246698936bc52cd7f8383ea6e5ccCAS |

[46]  A. K. Madl, K. E. Pinkerton, Health effects of inhaled engineered and incidental nanoparticles. Crit. Rev. Toxicol. 2009, 39, 629.
Health effects of inhaled engineered and incidental nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWlt7vI&md5=4b6ad9f363f33d5d25d1f5219abd097dCAS |

[47]  K. J. Bein, Y. Zhao, A. S. Wexler, Conditional sampling for source-oriented toxicological studies using a single particle mass spectrometer. Environ. Sci. Technol. 2009, 43, 9445.
Conditional sampling for source-oriented toxicological studies using a single particle mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValtbnP&md5=2c88abf1685310a8100248fd49b5773dCAS |

[48]  M. R. Canagaratna, J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra, Q. Zhang, T. B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L. R. Williams, A. M. Trimborn, M. J. Northway, P. F. DeCarlo, C. E. Kolb, P. Davidovits, D. R. Worsnop, Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 2007, 26, 185.
Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlKqtrk%3D&md5=8546a28ec18be1eee6a48b0d19117f12CAS |

[49]  P. F. DeCarlo, J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K. S. Docherty, D. R. Worsnop, J. L. Jimenez, Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 2006, 78, 8281.
Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFynurzI&md5=3cbd8b4db35e6f8f6965474b3a780a93CAS |

[50]  Q. Zhang, M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, J. L. Jimenez, Time- and size-resolved chemical composition of submicron particles in Pittsburgh: implications for aerosol sources and processes. J. Geophys. Res. – Atmos. 2005, 110, D07S09.
Time- and size-resolved chemical composition of submicron particles in Pittsburgh: implications for aerosol sources and processes.Crossref | GoogleScholarGoogle Scholar |

[51]  J. D. Allan, A. E. Delia, H. Coe, K. N. Bower, M. R. Alfarra, J. L. Jimenez, A. M. Middlebrook, F. Drewnick, T. B. Onasch, M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 2004, 35, 909.
A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVShtbs%3D&md5=a6c57d9cb6234daa5ea06a610c156071CAS |

[52]  A. C. Aiken, P. F. Decarlo, J. H. Kroll, D. R. Worsnop, J. A. Huffman, K. S. Docherty, I. M. Ulbrich, C. Mohr, J. R. Kimmel, D. Sueper, Y. Sun, Q. Zhang, A. Trimborn, M. Northway, P. J. Ziemann, M. R. Canagaratna, T. B. Onasch, M. R. Alfarra, A. S. H. Prévôt, J. Dommen, J. Duplissy, A. Metzger, U. Baltensperger, J. L. Jimenez, O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 2008, 42, 4478.
O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVymsb8%3D&md5=4a4f2d1a7640c8e304c854394de55118CAS |

[53]  A. M. Middlebrook, R. Bahreini, J. L. Jimenez, M. R. Canagaratna, Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol. 2012, 46, 258.
Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFWg&md5=eebb7895d0885cf8fe5dfbcd09e54266CAS |

[54]  P. F. DeCarlo, J. G. Slowik, D. R. Worsnop, P. Davidovits, J. L. Jimenez, Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1. Theory. Aerosol Sci. Technol. 2004, 38, 1185.
| 1:CAS:528:DC%2BD2MXhsFGmuw%3D%3D&md5=257db3d4a623fcbcda039ebfee8237d7CAS |

[55]  E. S. Cross, J. G. Slowik, P. Davidovits, J. D. Allan, D. R. Worsnop, J. T. Jayne, D. K. Lewis, M. Canagaratna, T. B. Onasch, Laboratory and ambient particle density determinations using light scattering in conjunction with aerosol mass spectrometry. Aerosol Sci. Technol. 2007, 41, 343.
Laboratory and ambient particle density determinations using light scattering in conjunction with aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlalt7c%3D&md5=b88c810269987a9fc1561e848ae2a9dbCAS |

[56]  I. M. Ulbrich, M. R. Canagaratna, Q. Zhang, D. R. Worsnop, J. L. Jimenez, Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. 2009, 9, 2891.
Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKku74%3D&md5=89ec09524a6421ed383471e311c8d3b8CAS |

[57]  P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111.
Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values.Crossref | GoogleScholarGoogle Scholar |

[58]  S. H. Chu, J. W. Paisie, B. W. L. Jang, PM data analysis – a comparison of two urban areas: Fresno and Atlanta. Atmos. Environ. 2004, 38, 3155.
PM data analysis – a comparison of two urban areas: Fresno and Atlanta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFKqsb8%3D&md5=47ab596f7ff243848201bd59713aedb4CAS |

[59]  R. V. Mallina, A. S. Wexler, M. V. Johnston, Particle growth in high-speed particle beam inlets. J. Aerosol Sci. 1997, 28, 223.
Particle growth in high-speed particle beam inlets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVWrtw%3D%3D&md5=324dfb3bce32096e3601a78b0ac21d30CAS |

[60]  J. L. Collett, K. J. Hoag, X. Rao, Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing. Atmos. Environ. 1999, 33, 4833.
Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlOkt7g%3D&md5=36bb713efac61cfc0230d6f2c35888f6CAS |

[61]  F. W. Lurmann, S. G. Brown, M. C. McCarthy, P. T. Roberts, Processes influencing secondary aerosol formation in the San Joaquin Valley during winter. J. Air Waste Manage. 2006, 56, 1679.
Processes influencing secondary aerosol formation in the San Joaquin Valley during winter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisF2rtw%3D%3D&md5=985398390d4390465648d7854b11ca06CAS |

[62]  K. Turkiewicz, K. Magliano, T. Najita, Comparison of two winter air quality episodes during the California regional particulate air quality study. J. Air Waste Manage. 2006, 56, 467.
Comparison of two winter air quality episodes during the California regional particulate air quality study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFChtb0%3D&md5=f3eb6e9b15937c84945694e112e15504CAS |

[63]  J. C. Chow, J. G. Watson, D. H. Lowenthal, K. L. Magliano, Size-resolved aerosol chemical concentrations at rural and urban sites in central California, USA. Atmos. Res. 2008, 90, 243.
Size-resolved aerosol chemical concentrations at rural and urban sites in central California, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhs7jE&md5=146a39a9e34c9947600b3b4abe7dbc54CAS |

[64]  J. C. Chow, J. G. Watson, D. H. Lowenthal, R. Hackney, K. Magliano, D. Lehrman, T. Smith, Temporal variations of PM2.5, PM10, and gaseous precursors during the 1995 integrated monitoring study in central California. J. Air Waste Manage. Assoc. 1999, 49, 16.
Temporal variations of PM2.5, PM10, and gaseous precursors during the 1995 integrated monitoring study in central California.Crossref | GoogleScholarGoogle Scholar |

[65]  Q. Zhang, D. R. Worsnop, M. R. Canagaratna, J. L. Jimenez, Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmos. Chem. Phys. 2005, 5, 3289.
Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVWqtw%3D%3D&md5=dd31c15fa427449b4c9f5cc53c997fccCAS |

[66]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11 069.
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisLw%3D&md5=9f723358d623ab0c35e88c0e24927658CAS |

[67]  Y. L. Sun, Q. Zhang, J. J. Schwab, W. N. Chen, M. S. Bae, Y. C. Lin, H. M. Hung, K. L. Demerjian, A case study of aerosol processing and evolution in summer in New York City. Atmos. Chem. Phys. 2011, 11, 12 737.
A case study of aerosol processing and evolution in summer in New York City.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsV2ruro%3D&md5=66eeb38b28008c65f93ac4e93a84a5f5CAS |

[68]  S. V. Hering, S. K. Friedlander, Origins of aerosol sulfur size distributions in the Los Angeles basin. Atmos. Environ. 1982, 16, 2647.
Origins of aerosol sulfur size distributions in the Los Angeles basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXpsVyhug%3D%3D&md5=fbd671474ff73a511b8d50876808dd94CAS |

[69]  W. John, S. M. Wall, J. L. Ondo, W. Winklmayr, Modes in the size distributions of atmospheric inorganic aerosol. Atmos. Environ., A Gen. Topics 1990, 24, 2349.
Modes in the size distributions of atmospheric inorganic aerosol.Crossref | GoogleScholarGoogle Scholar |

[70]  Z. Meng, J. H. Seinfeld, On the source of the submicrometer droplet mode of urban and regional aerosols. Aerosol Sci. Technol. 1994, 20, 253.
On the source of the submicrometer droplet mode of urban and regional aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1CgtLc%3D&md5=1b5fd6319c0343982550ca5b3aceceaaCAS |

[71]  V.-M. Kerminen, A. S. Wexler, Growth laws for atmospheric aerosol particles: an examination of the bimodality of the accumulation mode. Atmos. Environ. 1995, 29, 3263.
Growth laws for atmospheric aerosol particles: an examination of the bimodality of the accumulation mode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVOrt7g%3D&md5=f9301d9827a08d2302cb9012212fdef9CAS |

[72]  J. D. Blando, B. J. Turpin, Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos. Environ. 2000, 34, 1623.
Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFOjt7c%3D&md5=148a9eedfde3b52ad91c29aadf7cec46CAS |

[73]  R. Volkamer, F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, M. J. Molina, A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807.
A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[74]  R. Volkamer, P. J. Ziemann, M. J. Molina, Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 2009, 9, 1907.
Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisr4%3D&md5=6d9554c5569466a39d1484c506aa3856CAS |

[75]  Y. L. Sun, Q. Zhang, M. Zheng, X. Ding, E. S. Edgerton, X. Wang, Characterization and source apportionment of water-soluble organic matter in atmospheric fine particles (PM2.5) with high-resolution aerosol mass spectrometry and GC–MS. Environ. Sci. Technol. 2011, 45, 4854.
Characterization and source apportionment of water-soluble organic matter in atmospheric fine particles (PM2.5) with high-resolution aerosol mass spectrometry and GC–MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFWnu7k%3D&md5=8ed3489645aeaa151d0d366898c564f6CAS |

[76]  D. S. Kaul, T. Gupta, S. N. Tripathi, V. Tare, J. L. Collett, Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ. Sci. Technol. 2011, 45, 7307.
Secondary organic aerosol: a comparison between foggy and nonfoggy days.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1Oitr8%3D&md5=371b0b3ef575fca1e52968bf4c7aa737CAS |

[77]  S. R. Zorn, F. Drewnick, M. Schott, T. Hoffmann, S. Borrmann, Characterization of the south Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer. Atmos. Chem. Phys. 2008, 8, 4711.
Characterization of the south Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnur3O&md5=4575ba77e7b77cfbb8c6b316da068f6cCAS |

[78]  R. von Glasow, P. J. Crutzen, Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys. 2004, 4, 589.
Model study of multiphase DMS oxidation with a focus on halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWht7o%3D&md5=92b0d02c0af9dd1b72030f54028e32f7CAS |

[79]  L. Phinney, W. Richard Leaitch, U. Lohmann, H. Boudries, D. R. Worsnop, J. T. Jayne, D. Toom-Sauntry, M. Wadleigh, S. Sharma, N. Shantz, Characterization of the aerosol over the Sub-Arctic North East Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 2410.
Characterization of the aerosol over the Sub-Arctic North East Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

[80]  C. J. Gaston, K. A. Pratt, X. Qin, K. A. Prather, Real-time detection and mixing state of methanesulfonate in single particles at an inland urban location during a phytoplankton bloom. Environ. Sci. Technol. 2010, 44, 1566.
Real-time detection and mixing state of methanesulfonate in single particles at an inland urban location during a phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgtbs%3D&md5=8e8fa2e0d0a9b8fa84748cf532b689aeCAS |

[81]  J. A. Huffman, K. S. Docherty, A. C. Aiken, M. J. Cubison, I. M. Ulbrich, P. F. DeCarlo, D. Sueper, J. T. Jayne, D. R. Worsnop, P. J. Ziemann, J. L. Jimenez, Chemically resolved aerosol volatility measurements from two megacity field studies. Atmos. Chem. Phys. 2009, 9, 7161.
Chemically resolved aerosol volatility measurements from two megacity field studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqurrI&md5=21cba1de96f76b8286e48d987090c8c8CAS |

[82]  S. F. Watts, The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 2000, 34, 761.
The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFCgtw%3D%3D&md5=9f0c9f3d6c03479d8f41646b044472ccCAS |

[83]  H. Schäfer, N. Myronova, R. Boden, Microbial degradation of dimethylsulphide and related c1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 2010, 61, 315.
Microbial degradation of dimethylsulphide and related c1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere.Crossref | GoogleScholarGoogle Scholar |

[84]  I. Barnes, J. Hjorth, N. Mihalopoulos, Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev. 2006, 106, 940.
Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Grtr4%3D&md5=3958d091883e9af9dffa49b2bdc9e928CAS |

[85]  J. R. Whiteaker, K. A. Prather, Hydroxymethanesulfonate as a tracer for fog processing of individual aerosol particles. Atmos. Environ. 2003, 37, 1033.
Hydroxymethanesulfonate as a tracer for fog processing of individual aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGrtLY%3D&md5=53db38482b4f6361e99458916be9dc39CAS |

[86]  S. H. Lee, D. M. Murphy, D. S. Thomson, A. M. Middlebrook, Nitrate and oxidized organic ions in single particle mass spectra during the 1999 Atlanta supersite project. J. Geophys. Res. – Atmos. 2003, 108, 8417.
Nitrate and oxidized organic ions in single particle mass spectra during the 1999 Atlanta supersite project.Crossref | GoogleScholarGoogle Scholar |

[87]  Q. Zhang, J. L. Jimenez, D. R. Worsnop, M. Canagaratna, A case study of urban particle acidity and its influence on secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 3213.
A case study of urban particle acidity and its influence on secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Sktbg%3D&md5=b18538618f57876e5f23c14f83835c5eCAS |