Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Composition profile of oxygenated organic compounds and inorganic ions in PM2.5 in Hong Kong

Yun Chun Li A B and Jian Zhen Yu A C D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

B School of Science, Sichuan Agricultural University, Sichuan Province, 625014, China.

C Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

D Corresponding author. Email: chjianyu@ust.hk

Environmental Chemistry 7(4) 338-349 https://doi.org/10.1071/EN09167
Submitted: 31 December 2009  Accepted: 30 June 2010   Published: 20 August 2010

Environment context. Oxygenated organic compounds are active constituents in ambient aerosols, affecting their hygroscopic properties and other interactions with water. We have measured 29 oxygenated organic compounds, together with inorganic ions and other major aerosol constituents, in ambient samples collected under various synoptic conditions in Hong Kong. These composition profiles of water-soluble matter provide valuable data for modelling and theoretical studies of aerosol–water interactions.

Abstract. This study reports a comprehensive dataset of oxygenated compounds, inorganic ions and other major aerosol constituents in fine particulate matter (2.5 μm) in the urban atmosphere of Hong Kong in periods of different synoptic weather conditions during 2003–05. The oxygenated compounds quantified include C2–C10 dicarboxylic acids, C3–C9 ketoacids and C2–C3 dicarbonyls, their combined concentrations accounting for 3.2–18.2% of water-soluble organic carbon on a carbon mass basis. Six C2 and C3 oxygenated compounds, namely oxalic acid, malonic acid, glyoxylic acid, pyruvic acid, glyoxal, and methyl glyoxal, dominate this suite of oxygenated compounds, accounting for 75% of the total quantified oxygenated species. Good correlations were observed among most of the quantified oxygenated compounds, suggesting that a relatively stable abundance distribution exists under varying synoptic conditions. These composition profiles provide a comprehensive dataset for use in modelling and theoretical studies of aerosol–water interactions, secondary aerosol formation pathways, and speciated organic mass distributions.

Additional keywords: oxalic acid, phthalic acid, secondary organic aerosols.


Acknowledgements

This work was partially supported by the Research Grants Council of Hong Kong, China (621708).


References


[1]   A. H. Falkovich , E. R. Graber , G. Schkolnik , Y. Rudich , W. Maenhaut , P. Artaxo , Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 2005 , 5,  781.
        | Crossref | GoogleScholarGoogle Scholar |  [Verified 16 July 2010]

[21]   Li Y. C., Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong 2008, Ph.D. thesis, The Hong Kong University of Science and Technology. Available at http://lbxml.ust.hk/th_imgo/b1030097.pdf [Verified 16 July 2010]

[22]   K. F. Ho , J. J. Cao , S. C. Lee , K. Kawamura , R. J. Zhang , J. C. Chow , J. G. Watson , Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmospheric of China. J. Geophys. Res. 2007 , 112,  D22S27.
        | Crossref | GoogleScholarGoogle Scholar |  [Verified 16 July 2010]

[33]   X. F. Huang , J. Z. Yu , Is vehicle exhaust significant primary source of oxalic acid in ambient aerosols? Geophys. Res. Lett. 2007 , 34,  L02808.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   A. G. Allen , A. H. Miguel , Biomass burning in the Amazon: characterization of the ionic component of aerosols generated from flaming and smoldering rainforest and savannah. Environ. Sci. Technol. 1995 , 29,  486.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   S. Gao , D. A. Hegg , P. V. Hobbs , T. W. Kirchstetter , B. I. Magi , M. Sadilek , Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. J. Geophys. Res. 2003 , 108,  8491.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   M. A. Yamasoe , P. Artaxo , A. H. Miguel , A. G. Allen , Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos. Environ. 2000 , 34,  1641.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   M. Kalberer , J. Yu , D. R. Cocker , R. C. Flagan , J. H. Seinfeld , Aerosol formation in the cyclohexene–ozone system. Environ. Sci. Technol. 2000 , 34,  4894.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   K. Kawamura , R. B. Gagosian , Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photooxidation of unsaturated fatty acids. Nature 1987 , 325,  330.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   J. J. Schauer , M. J. Kleeman , G. R. Cass , B. R. T. Simoneit , Measurement of emissions from air pollution sources. 4. C1–C27 Organic compounds from cooking with seed oils. Environ. Sci. Technol. 2002 , 36,  567.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   D. W. M. Sin , W. H. Fung , Y. Y. Choi , C. H. Lam , P. K. K. Louie , J. C. Chow , J. G. Watson , Seasonal and spatial variation of solvent-extractable organic compounds in fine suspended particulate matter in Hong Kong. J. Air Waste Manage. Assoc. 2005 , 55,  291.
         open url image1

[41]   K. Kawamura , K. Ikushima , Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 1993 , 27,  2227.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   L. Wang , R. Atkinson , J. Arey , Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1- and C2-alkylnaphthalenes. Environ. Sci. Technol. 2007 , 41,  2803.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[43]   J. J. Schauer , M. P. Fraser , G. R. Cass , B. R. T. Simoneit , Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode. Environ. Sci. Technol. 2002 , 36,  3806.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[44]   T.-M. Fu , D. J. Jacob , F. Wittrock , J. P. Burrows , M. Vrekoussis , D. Henze , Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008 , 113,  D15303.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   E. Gómez Alvarez , J. Viidanoja , A. Munoz , K. Wirtz , J. Hjorth , Experimental confirmation of the dicarbonyls route in the photo-oxidation of toluene and benzene. Environ. Sci. Technol. 2007 , 41,  8362.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[46]   B. Ervens , A. G. Carlton , B. J. Turpin , K. E. Altieri , S. M. Kreidenweis , G. Feingold , Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys. Res. Lett. 2008 , 35,  L02816.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[47]   R. Volkamer , F. S. Martini , L. T. Molina , D. Salcedo , J. L. Jimenez , M. J. Molina , A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007 , 34,  L19807.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   J. Z. Yu , J. W. T. Tung , A. W. M. Wu , A. K. H. Lau , P. K. K. Louie , J. C. H. Fung , Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong. Atmos. Environ. 2004 , 38,  1511.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[49]   J. F. Hamilton , P. J. Webb , A. C. Lewis , M. M. Reviejo , Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals. Atmos. Environ. 2005 , 39,  7263.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   S. Samy , B. Zielinska , Secondary organic aerosol production from modern diesel engine emissions. Atmos. Chem. Phys. 2010 , 10,  609.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[51]   C. Luo , Y. Gao , Aeolian iron mobilisation by dust–acid interactions and their implications for soluble iron deposition to the ocean: a test involving potential anthropogenic organic acidic species. Environ. Chem. 2010 , 7,  153.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   K. Kawamura , O. Yasui , Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 2005 , 39,  1945.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[53]   H. B. Wang , K. Kawamura , K. Yamazaki , Water-soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmosphere aerosols over the Southern Ocean and Western Pacific Ocean. J. Atmos. Chem. 2006 , 53,  43.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1





Appendix.  List of abbreviations
T4