Field intercomparison on the determination of volatile and semivolatile polyfluorinated compounds in air
Annekatrin Dreyer A F , Mahiba Shoeib B , Stefan Fiedler C , Jon Barber D E , Tom Harner B , Karl-Werner Schramm C , Kevin C. Jones D and Ralf Ebinghaus AA GKSS Research Centre Geesthacht, Max Planck Straße 1, 21502 Geesthacht, Germany.
B Environment Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada.
C Helmholz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
D Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
E Cefas, Pakefield Road, Lowestoft, NR33 0HT, United Kingdom.
F Corresponding author. Email: annekatrin.dreyer@gkss.de
Environmental Chemistry 7(4) 350-358 https://doi.org/10.1071/EN10053
Submitted: 17 May 2010 Accepted: 29 June 2010 Published: 20 August 2010
Environmental context. Polyfluorinated compounds are an emerging group of organic pollutants that are globally distributed in urban and natural environments. Reliable air monitoring methods are crucial to our understanding of how these pollutants are released to, and transported in, the atmosphere. This intercomparison study, involving laboratories that investigate polyfluorinated compounds in air, uncovers inconsistencies in the reported data, and highlights necessary analytical improvements for future research projects.
Abstract. Fluorotelomer alcohols, perfluorinated sulfonamides or sulfonamido ethanols are volatile precursors of persistent perfluorinated acids. Published air-sampling strategies and analytical methods to determine these compounds differ. To assess performance on the determination of airborne polyfluorinated compounds, an intercomparison comprising four international research groups was established. Instrumental and analytical comparability between laboratories varied depending on the compound class. Variability in different sampling strategies was assessed for active (high-volume) v. passive samplers consisting of either semipermeable membrane devices or sorbent-impregnated polyurethane foam disks. Results from passive samplers were typically within an order of magnitude of air concentrations from averaged continuous high-volume samples. Smallest deviations (passive v. active) were observed for sorbent-impregnated polyurethane foam disk samplers with best agreement for fluorotelomer alcohols. This study reveals that it is important to be aware of several types of uncertainty or error for the determination of airborne polyfluorinated compounds and report data in this context or to take steps to minimise their impact.
Additional keywords: air sampling, fluorotelomer alcohol, interlaboratory comparison, PFAS, PFC.
Acknowledgements
We thank Uwe Eckermann from the Environmental Agency (Staatliches Umweltamt Itzehoe) for his support concerning the Barsbüttel site and Vera Langer, Sabine Struwe, and Ingo Weinberg for their helping hands throughout the sampling. Partial funding for Environment Canada was provided by the Chemicals Management Plan.
[1]
C. Lau ,
K. Anitole ,
C. Hodes ,
D. Lai ,
A. Pfahles-Hutchens ,
J. Seed ,
Perfluoroalkyl acids: a review of monitoring and toxicological findings.
Toxicol. Sci. 2007
, 99, 366.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[Verified 12 July 2010]
[18]
M. J. A. Dinglasan-Panlilio ,
S. A. Mabury ,
Significant residual fluorinated alcohols present in various fluorinated materials.
Environ. Sci. Technol. 2006
, 40, 1447.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
R. Renner ,
The long and the short of perfluorinated replacements.
Environ. Sci. Technol. 2006
, 40, 12.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[20]
S. Oono ,
K. H. Harada ,
M. A. M. Mahmoud ,
K. Inoue ,
A. Koizumi ,
Current levels of airborne polyfluorinated telomers in Japan.
Chemosphere 2008
, 73, 932.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[21]
M. Shoeib ,
T. Harner ,
P. Vlahos ,
Perfluorinated chemicals in the Arctic atmosphere.
Environ. Sci. Technol. 2006
, 40, 7577.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
A. Jahnke ,
U. Berger ,
R. Ebinghaus ,
C. Temme ,
Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53°N–33°S).
Environ. Sci. Technol. 2007
, 41, 3055.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[23]
N. L. Stock ,
F. K. Lau ,
D. A. Ellis ,
J. W. Martin ,
D. C. G. Muir ,
S. A. Mabury ,
Polyfluorinated telomer alcohols and sulfonamides in the north American troposphere.
Environ. Sci. Technol. 2004
, 38, 991.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[24]
M. Shoeib ,
T. Harner ,
M. Ikonomou ,
K. Kannan ,
Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers.
Environ. Sci. Technol. 2004
, 38, 1313.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
M. Shoeib ,
T. Harner ,
S. C. Lee ,
D. Lane ,
J. P. Zhu ,
Sorbent-impregnated polyurethane foam disk for passive air sampling of volatile fluorinated chemicals.
Anal. Chem. 2008
, 80, 675.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[26]
S. P. J. van Leeuwen ,
A. Karrman ,
B. Van Bavel ,
J. De Boer ,
G. Lindstrom ,
Struggle for quality in determination of perfluorinated contaminants in environmental and human samples.
Environ. Sci. Technol. 2006
, 40, 7854.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
S. P. J. van Leeuwen ,
C. P. Swart ,
I. van der Veen ,
J. de Boer ,
Significant improvements in the analysis of perfluorinated compounds in water and fish: results from an interlaboratory method evaluation study.
J. Chromatogr. A 2009
, 1216, 401.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[28]
G. Lindstrom ,
A. Karrman ,
B. van Bavel ,
Accuracy and precision in the determination of perfluorinated chemicals in human blood verified by interlaboratory comparisons.
J. Chromatogr. A 2009
, 1216, 394.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
M. P. Longnecker ,
C. S. Smith ,
G. E. Kissling ,
J. A. Hoppin ,
J. L. Butenhoff ,
E. Decker ,
D. J. Ehresman ,
M. E. Ellefson ,
et al. An interlaboratory study of perfluorinated alkyl compound levels in human plasma.
Environ. Res. 2008
, 107, 152.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
S. Fiedler ,
G. Pfister ,
K.-W. Schramm ,
Partitioning of fluorotelomer alcohols (FTOH) to semipermeable membrane devices (SPMD).
Environ. Sci. Pollut. Res. 2010
, 17, 420.
| Crossref |
[31]
[32]
S. Thuens ,
A. Dreyer ,
R. Sturm ,
C. Temme ,
R. Ebinghaus ,
Determination of the octanol–air partition coefficient (KOA) of fluorotelomer alcohols.
J. Chem. Eng. Data 2008
, 53, 223.
| Crossref | GoogleScholarGoogle Scholar |
[33]
A. Dreyer ,
R. Ebinghaus ,
Polyfluorinated compounds in ambient air from ship- and land-based measurements in northern Germany.
Atmos. Environ. 2009
, 43, 1527.
| Crossref | GoogleScholarGoogle Scholar |
[34]
A. Dreyer ,
C. Temme ,
R. Sturm ,
R. Ebinghaus ,
Optimized method avoiding solvent-induced response enhancement in the analysis of volatile and semivolatile polyfluorinated alkylated compounds using gas chromatography–mass spectrometry.
J. Chromatogr. A 2008
, 1178, 199.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[35]
A. Dreyer ,
I. Weinberg ,
C. Temme ,
R. Ebinghaus ,
Polyfluorinated compounds in the atmosphere of the Atlantic and Southern Oceans: evidence for a global distribution.
Environ. Sci. Technol. 2009
, 43, 6507.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[36]
J. Klánová ,
P. Èupr ,
J. Kohoutek ,
T. Harner ,
Assessing the influence of meteorological parameters on the performance of polyurethane foam-based passive air samplers.
Environ. Sci. Technol. 2008
, 42, 550.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[37]
L. Tuduri ,
T. Harner ,
H. Hung ,
Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.
Environ. Pollut. 2006
, 144, 377.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[38]
K. Pozo ,
T. Harner ,
S. C. Lee ,
F. Wania ,
D. C. G. Muir ,
K. C. Jones ,
Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study.
Environ. Sci. Technol. 2009
, 43, 796.
| Crossref | GoogleScholarGoogle Scholar | PubMed |