The fate of arsenic in groundwater discharged to the Meghna River, Bangladesh
Michelle Berube A , Katrina Jewell B , Kimberly D. Myers C , Peter S. K. Knappett C F , Pin Shuai C , Abrar Hossain D , Mehtaz Lipsi D , Sadam Hossain D , Alamgir Hossain D , Jacqueline Aitkenhead-Peterson E , Kazi M. Ahmed D and Saugata Datta AA Department of Geological Sciences, 108 Thompson Hall, Kansas State University, Manhattan, KS 66506, USA.
B Water Management and Hydrologic Sciences Program, 611 Ross Street, Texas A&M University, College Station, TX 77845, USA.
C Department Geology and Geophysics, Texas A&M University, College Station, TX 77845, USA.
D Department Geology, University of Dhaka, Dhaka 1000, Bangladesh.
E Department Soil and Crop Science, Texas A&M University, College Station, TX 77845, USA.
F Corresponding author. Email: knappett@tamu.edu
Environmental Chemistry 15(2) 29-45 https://doi.org/10.1071/EN17104
Submitted: 31 May 2017 Accepted: 13 October 2017 Published: 23 May 2018
Environmental context. Arsenic contamination of groundwater is a major environmental problem in many areas of the world. In south-east Asia, iron-rich reducing groundwater mixes with oxidising river water in hyporheic zones, precipitating iron oxides. These oxides can act as a natural reactive barrier capable of accumulating elevated solid-phase concentrations of arsenic.
Abstract. Shallow, anoxic aquifers within the Ganges–Brahmaputra–Meghna Delta (GBMD) commonly contain elevated concentrations of arsenic (As), iron (Fe) and manganese (Mn). Highly enriched solid-phase concentrations of these elements have been observed within sediments lining the banks of the Meghna River. This zone has been described as a Natural Reactive Barrier (NRB). The impact of hydrological processes on NRB formation, such as transient river levels, which drive mixing between rivers and aquifers, is poorly understood. We evaluated the impact of groundwater flow dynamics on hydrobiogeochemical processes that led to the formation of an Fe- and Mn-rich NRB containing enriched As, within a riverbank aquifer along the Meghna River. The NRB dimensions were mapped using four complementary elemental analysis methods on sediment cores: X-ray fluorescence (XRF), aqua regia bulk extraction, and HCl and sodium phosphate leaching. It extended from 1.2 to 2.4 m in depth up to 15 m from the river’s edge. The accumulated As was advected to the NRB from offsite and released locally in response to mixing with aged river water. Nearly all of the As was subsequently deposited within the NRB before discharging to the Meghna. Significant FeII release to the aqueous phase was observed within the NRB. This indicates the NRB is a dynamic zone defined by the interplay between oxidative and reductive processes, causing the NRB to grow and recede in response to rapid and seasonal hydrologic processes. This implies that natural and artificially induced changes in river stages and groundwater-tables will impact where As accumulates and is released to aquifers.
Additional keywords: groundwater-surface interactions, hyporheic zone, iron curtain, natural reactive barrier, NRB.
References
[1] L. Winkel, M. Berg, M. Amini, S. J. Hug, C. A. Johnson, Predicting groundwater arsenic contamination in south-east Asia from surface parameters Nat. Geosci. 2008, 1, 536.| Predicting groundwater arsenic contamination in south-east Asia from surface parametersCrossref | GoogleScholarGoogle Scholar |
[2] S. Fendorf, H. A. Michael, A. van Geen, Spatial and temporal variations of groundwater arsenic in south and south-east Asia Science 2010, 328, 1123.
| Spatial and temporal variations of groundwater arsenic in south and south-east AsiaCrossref | GoogleScholarGoogle Scholar |
[3] Department of Public Health Engineering (D. o. P. H. Engineering), Groundwater Studies for Arsenic Contamination in Bangladesh. Final Report, Rapid Investigation Phase 1999, (Department of Public Health Engineering, Mott MacDonald Ltd. and British Geological Survey).
[4] D. K. Nordstrom, Public health – Worldwide occurrences of arsenic in ground water Science 2002, 296, 2143.
| Public health – Worldwide occurrences of arsenic in ground waterCrossref | GoogleScholarGoogle Scholar |
[5] D. Postma, S. Jessen, T. M. H. Nguyen, T. D. Mai, C. B. Koch, H. V. Pham, Q. N. Pham, F. Larsen, Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam Geochim. Cosmochim. Acta 2010, 74, 3367.
| Mobilization of arsenic and iron from Red River floodplain sediments, VietnamCrossref | GoogleScholarGoogle Scholar |
[6] R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, M. Rahman, Arsenic poisoning of Bangladesh groundwater Nature 1998, 395, 338.
| Arsenic poisoning of Bangladesh groundwaterCrossref | GoogleScholarGoogle Scholar |
[7] C. F. Harvey, C. H. Swartz, A. B. M. Badruzzaman, N. Keon-Blute, W. Yu, M. A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P. M. Oates, K. N. Ashfaque, S. Islam, H. F. Hemond, M. F. Ahmed, Arsenic mobility and groundwater extraction in Bangladesh Science 2002, 298, 1602.
| Arsenic mobility and groundwater extraction in BangladeshCrossref | GoogleScholarGoogle Scholar |
[8] F. S. Islam, A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee, J. R. Lloyd, Role of metal-reducing bacteria in arsenic release from Bengal delta sediments Nature 2004, 430, 68.
| Role of metal-reducing bacteria in arsenic release from Bengal delta sedimentsCrossref | GoogleScholarGoogle Scholar |
[9] C. F. Harvey, K. N. Ashfaque, W. Yu, A. B. M. Badruzzaman, M. A. Ali, P. M. Oates, H. A. Michael, R. B. Neumann, R. Beckie, S. Islam, M. F. Ahmed, Groundwater dynamics and arsenic contamination in Bangladesh Chem. Geol. 2006, 228, 112.
| Groundwater dynamics and arsenic contamination in BangladeshCrossref | GoogleScholarGoogle Scholar |
[10] R. B. Neumann, K. N. Ashfaque, A. B. M. Badruzzaman, M. A. Ali, J. K. Shoemaker, C. F. Harvey, Anthropogenic influences on groundwater arsenic concentrations in Bangladesh Nat. Geosci. 2010, 3, 46.
| Anthropogenic influences on groundwater arsenic concentrations in BangladeshCrossref | GoogleScholarGoogle Scholar |
[11] M. O. Stahl, C. F. Harvey, A. van Geen, J. Sun, P. T. K. Trang, V. M. Lan, T. M. Phuong, P. H. Viet, B. C. Bostick, River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi, Vietnam Water Resour. Res. 2016, 52, 6321.
| River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi, VietnamCrossref | GoogleScholarGoogle Scholar |
[12] J. M. McArthur, P. Ravenscroft, D. M. Banerjee, J. Milsom, K. A. Hudson-Edwards, S. Sengupta, C. Bristow, A. Sarkar, S. Tonkin, R. Purohit, How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implication Water Resour. Res. 2008, 44, W11411.
| How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implicationCrossref | GoogleScholarGoogle Scholar |
[13] H. Masuda, K. Shinoda, N. Noguchi, T. Okudaira, Y. Takahashi, M. Mitamura, A. A. Seddique, Chlorite as a primary source of arsenic in groundwater aquifer sediments in Bengal delta Geochim Cosmochim Acta 2010, 74, A676-A.
[14] F. Larsen, N. Q. Pham, N. D. Dang, D. Postma, S. Jessen, V. H. Pham, T. B. Nguyen, H. D. Trieu, L. T. Tran, H. Nguyen, J. Chambon, H. Van Nguyen, D. H. Ha, N. T. Hue, M. T. Duc, J. C. Refsgaard, Controlling geological and hydrogeological processes in an arsenic-contaminated aquifer on the Red River flood plain, Vietnam Appl. Geochem. 2008, 23, 3099.
| Controlling geological and hydrogeological processes in an arsenic-contaminated aquifer on the Red River flood plain, VietnamCrossref | GoogleScholarGoogle Scholar |
[15] A. S. Kolker, J. E. Cable, K. H. Johannesson, M. A. Allison, L. V. Inniss, Pathways and processes associated with the transport of groundwater in deltaic systems J. Hydrol. 2013, 498, 319.
| Pathways and processes associated with the transport of groundwater in deltaic systemsCrossref | GoogleScholarGoogle Scholar |
[16] X. J. Wang, H. L. Li, J. J. Jiao, D. A. Barry, L. Li, X. Luo, C. Y. Wang, L. Wan, X. S. Wang, X. W. Jiang, Q. Ma, W. J. Qu, Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux Sci Rep-UK. 2015, 5, 8814.
[17] C. B. Dowling, R. J. Poreda, A. G. Hunt, A. E. Carey, Groundwater discharge and nitrate flux to the Gulf of Mexico Ground Water 2004, 42, 401.
| Groundwater discharge and nitrate flux to the Gulf of MexicoCrossref | GoogleScholarGoogle Scholar |
[18] P. W. Swarzenski, W. C. Burnett, W. J. Greenwood, B. Herut, R. Peterson, N. Dimova, Y. Shalem, Y. Yechieli, Y. Weinstein, Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel Geophys. Res. Lett. 2006, 33, L24405.
| Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, IsraelCrossref | GoogleScholarGoogle Scholar |
[19] N. T. Dimova, W. C. Burnett, K. Speer, A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida Cont. Shelf Res. 2011, 31, 731.
| A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in FloridaCrossref | GoogleScholarGoogle Scholar |
[20] N. T. Dimova, P. W. Swarzenski, H. Dulaiova, C. R. Glenn, Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems J. Geophys. Res. Oceans 2012, 117, C02012.
| Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systemsCrossref | GoogleScholarGoogle Scholar |
[21] N. T. Dimova, A. Paytan, J. D. Kessler, K. J. Sparrow, F. G. T. Kodovska, A. L. Lecher, J. Murray, S. M. Tulaczyk, Current magnitude and mechanisms of groundwater discharge in the Arctic: case study from Alaska Environ. Sci. Technol. 2015, 49, 12036.
| Current magnitude and mechanisms of groundwater discharge in the Arctic: case study from AlaskaCrossref | GoogleScholarGoogle Scholar |
[22] H. A. Michael, C. J. Russoniello, L. A. Byron, Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems Water Resour. Res. 2013, 49, 2228.
| Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systemsCrossref | GoogleScholarGoogle Scholar |
[23] C. T. Musial, A. H. Sawyer, R. T. Barnes, S. Bray, D. Knights, Surface water–groundwater exchange dynamics in a tidal freshwater zone Hydrol. Processes 2016, 30, 739.
| Surface water–groundwater exchange dynamics in a tidal freshwater zoneCrossref | GoogleScholarGoogle Scholar |
[24] A. H. Sawyer, D. A. Edmonds, D. Knights, Surface water–groundwater connectivity in deltaic distributary channel networks Geophys. Res. Lett. 2015, 42, 10299.
| Surface water–groundwater connectivity in deltaic distributary channel networksCrossref | GoogleScholarGoogle Scholar |
[25] S. M. Wondzell, F. J. Swanson, Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. 1. Hydrologic processes J. N. Am. Benthol. Soc. 1996, 15, 3.
| Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. 1. Hydrologic processesCrossref | GoogleScholarGoogle Scholar |
[26] A. H. Sawyer, F. Y. Shi, J. T. Kirby, H. A. Michael, Dynamic response of surface water–groundwater exchange to currents, tides, and waves in a shallow estuary J. Geophys. Res. Oceans 2013, 118, 1749.
| Dynamic response of surface water–groundwater exchange to currents, tides, and waves in a shallow estuaryCrossref | GoogleScholarGoogle Scholar |
[27] R. E. Danczak, A. H. Sawyer, K. H. Williams, J. C. Stegen, C. Hobson, M. J. Wilkins, Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments J. Geophys. Res. Biogeosci. 2016, 121, 2976.
| Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sedimentsCrossref | GoogleScholarGoogle Scholar |
[28] S. Datta, B. Mailloux, H. B. Jung, M. A. Hoque, M. Stute, K. M. Ahmed, Y. Zheng, Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in Bangladesh Proc. Natl. Acad. Sci. USA 2009, 106, 16930.
| Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in BangladeshCrossref | GoogleScholarGoogle Scholar |
[29] W. S. Moore, High fluxes of radium and barium from the mouth of the Ganges–Brahmaputra river during low river discharge suggest a large groundwater source Earth Planet. Sci. Lett. 1997, 150, 141.
| High fluxes of radium and barium from the mouth of the Ganges–Brahmaputra river during low river discharge suggest a large groundwater sourceCrossref | GoogleScholarGoogle Scholar |
[30] C. Spiteri, C. P. Slomp, M. A. Charette, K. Tuncay, C. Meile, Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modeling Geochim. Cosmochim. Acta 2008, 72, 3398.
| Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modelingCrossref | GoogleScholarGoogle Scholar |
[31] M. A. Charette, E. R. Sholkovitz, Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay Geophys. Res. Lett. 2002, 29, 85-1.
| Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bayCrossref | GoogleScholarGoogle Scholar |
[32] A. J. Beck, M. A. Charette, J. K. Cochran, M. E. Gonneea, B. Peucker-Ehrenbrink, Dissolved strontium in the subterranean estuary – implications for the marine strontium isotope budget Geochim. Cosmochim. Acta 2013, 117, 33.
| Dissolved strontium in the subterranean estuary – implications for the marine strontium isotope budgetCrossref | GoogleScholarGoogle Scholar |
[33] A. J. Beck, J. K. Cochran, S. A. Sanudo-Wilhelmy, The distribution and speciation of dissolved trace metals in a shallow subterranean estuary Mar. Chem. 2010, 121, 145.
| The distribution and speciation of dissolved trace metals in a shallow subterranean estuaryCrossref | GoogleScholarGoogle Scholar |
[34] A. J. Beck, J. K. Cochran, S. A. Sanudo-Wilhelmy, Temporal trends of dissolved trace metals in Jamaica Bay, NY: importance of wastewater input and submarine groundwater discharge in an urban estuary Estuaries Coasts 2009, 32, 535.
| Temporal trends of dissolved trace metals in Jamaica Bay, NY: importance of wastewater input and submarine groundwater discharge in an urban estuaryCrossref | GoogleScholarGoogle Scholar |
[35] H. B. Jung, Y. Zheng, M. W. Rahman, M. M. Rahman, K. M. Ahmed, Redox zonation and oscillation in the hyporheic zone of the Ganges–Brahmaputra–Meghna Delta: implications for the fate of groundwater arsenic during discharge Appl. Geochem. 2015, 63, 647.
| Redox zonation and oscillation in the hyporheic zone of the Ganges–Brahmaputra–Meghna Delta: implications for the fate of groundwater arsenic during dischargeCrossref | GoogleScholarGoogle Scholar |
[36] H. B. Jung, B. C. Bostick, Y. Zheng, Field, experimental, and modeling study of arsenic partitioning across a redox transition in a Bangladesh aquifer Environ. Sci. Technol. 2012, 46, 1388.
| Field, experimental, and modeling study of arsenic partitioning across a redox transition in a Bangladesh aquiferCrossref | GoogleScholarGoogle Scholar |
[37] A. van Geen, Y. Zheng, R. Versteeg, M. Stute, A. Horneman, R. Dhar, M. Steckler, A. Gelman, C. Small, H. Ahsan, J. H. Graziano, I. Hussain, K. M. Ahmed, Spatial variability of arsenic in 6000 tube wells in a 25-km2 area of Bangladesh Water Resour. Res. 2003, 39, 1140.
| Spatial variability of arsenic in 6000 tube wells in a 25-km2 area of BangladeshCrossref | GoogleScholarGoogle Scholar |
[38] J. Buschmann, M. Berg, C. Stengel, L. Winkel, M. L. Sampson, P. T. K. Trang, P. H. Viet, Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population Environ. Int. 2008, 34, 756.
| Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to populationCrossref | GoogleScholarGoogle Scholar |
[39] F. Jakobsen, A. K. M. Z. Hoque, G. N. Paudyal, M. S. Bhuiyan, Evaluation of the short-term processes forcing the monsoon river floods in Bangladesh Water Int. 2005, 30, 389.
| Evaluation of the short-term processes forcing the monsoon river floods in BangladeshCrossref | GoogleScholarGoogle Scholar |
[40] B. Weinman, S. L. Goodbred, Y. Zheng, Z. Aziz, M. Steckler, A. van Geen, A. K. Singhvi, Y. C. Nagar, Contributions of floodplain stratigraphy and evolution to the spatial patterns of groundwater arsenic in Araihazar, Bangladesh Geol. Soc. Am. Bull. 2008, 120, 1567.
| Contributions of floodplain stratigraphy and evolution to the spatial patterns of groundwater arsenic in Araihazar, BangladeshCrossref | GoogleScholarGoogle Scholar |
[41] P. S. K. Knappett, B. J. Mailloux, I. Choudhury, M. R. Khan, H. A. Michael, S. Barua, D. R. Mondal, M. S. Steckler, S. H. Akhter, K. M. Ahmed, B. Bostick, C. F. Harvey, M. Shamsudduha, P. Shuai, I. Mihajlov, R. Mozumder, A. van Geen, Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh J. Hydrol. 2016, 539, 674.
| Vulnerability of low-arsenic aquifers to municipal pumping in BangladeshCrossref | GoogleScholarGoogle Scholar |
[42] P. Shuai, P. S. K. Knappett, S. Hossain, A. Hosain, K. Rhodes, K. M. Ahmed, M. B. Cardenas, The impact of the degree of aquifer confinement and anisotropy on tidal pulse propagation Ground Water 2017, 55, 519.
| The impact of the degree of aquifer confinement and anisotropy on tidal pulse propagationCrossref | GoogleScholarGoogle Scholar |
[43] A. Horneman, A. Van Geen, D. V. Kent, P. E. Mathe, Y. Zheng, R. K. Dhar, S. O’Connell, M. A. Hoque, Z. Aziz, M. Shamsudduha, A. A. Seddique, K. M. Ahmed, Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: Evidence from sediment profiles Geochim. Cosmochim. Acta 2004, 68, 3459.
| Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: Evidence from sediment profilesCrossref | GoogleScholarGoogle Scholar |
[44] P. S. K. Knappett, L. D. McKay, A. Layton, D. E. Williams, M. J. Alam, M. R. Huq, J. Mey, J. E. Feighery, P. J. Culligan, B. J. Mailloux, J. Zhuang, V. Escamilla, M. Emch, E. Perfect, G. S. Sayler, K. M. Ahmed, A. van Geen, Implications of fecal bacteria input from latrine-polluted ponds for wells in sandy aquifers Environ. Sci. Technol. 2012, 46, 1361.
| Implications of fecal bacteria input from latrine-polluted ponds for wells in sandy aquifersCrossref | GoogleScholarGoogle Scholar |
[45] H. W. Reeves, P. M. Thibodeau, R. G. Underwood, L. R. Gardner, Incorporation of total stress changes into the ground water model SUTRA Ground Water 2000, 38, 89.
| Incorporation of total stress changes into the ground water model SUTRACrossref | GoogleScholarGoogle Scholar |
[46] A. M. Wilson, L. R. Gardner, Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations Water Resour. Res. 2006, 42, W01405.
| Tidally driven groundwater flow and solute exchange in a marsh: numerical simulationsCrossref | GoogleScholarGoogle Scholar |
[47] D. Knights, A. H. Sawyer, R. T. Barnes, C. T. Musial, S. Bray, Tidal controls on riverbed denitrification along a tidal freshwater zone Water Resour. Res. 2017, 53, 799.
| Tidal controls on riverbed denitrification along a tidal freshwater zoneCrossref | GoogleScholarGoogle Scholar |
[48] T. F. M. Chui, D. L. Freyberg, Implementing hydrologic boundary conditions in a multiphysics model J. Hydrol. Eng. 2009, 14, 1374.
| Implementing hydrologic boundary conditions in a multiphysics modelCrossref | GoogleScholarGoogle Scholar |
[49] M. G. Schaap, F. J. Leij, M. T. van Genuchten, ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions J. Hydrol. 2001, 251, 163.
| ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functionsCrossref | GoogleScholarGoogle Scholar |
[50] G. d. Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers 1986 (Academic Press: Orlando, FL).
[51] J. B. Fellman, D. V. D’Amore, E. Hood, An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples Sci. Total Environ. 2008, 392, 305.
| An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samplesCrossref | GoogleScholarGoogle Scholar |
[52] B. B. Potter, J. C. Wimsatt, Method 415.3 - Measurement of Total Organic Carbon, Dissolved Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water 2005 (US Environmental Protection Agency: Washington, DC).
[53] M. S. Sankar, M. A. Vega, P. P. Defoe, M. G. Kibria, S. Ford, K. Telfeyan, A. Neal, T. J. Mohajerin, G. M. Hettiarachchi, S. Barua, C. Hobson, K. Johannesson, S. Datta, Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India Sci. Total Environ. 2014, 488, 574.
[54] D. L. Parkhurst, C. A. J. Appelo, Description of Input and Examples for PHREEQC Version 3 – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations 2013 (US Geological Survey: Denver, CO).
[55] P. S. K. Knappett, J. Du, P. Liu, V. Horvath, B. J. Mailloux, J. Feighery, A. van Geen, P. J. Culligan, Importance of reversible attachment in predicting E. coli transport in saturated aquifers from column experiments Adv. Water Resour. 2014, 63, 120.
| Importance of reversible attachment in predicting E. coli transport in saturated aquifers from column experimentsCrossref | GoogleScholarGoogle Scholar |
[56] G. C. Poole, S. J. O’Daniel, K. L. Jones, W. W. Woessner, E. S. Bernhardt, A. M. Helton, J. A. Stanford, B. R. Boer, T. J. Beechie, Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems River Res. Appl. 2008, 24, 1018.
| Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystemsCrossref | GoogleScholarGoogle Scholar |
[57] S. Nakaya, H. Natsume, H. Masuda, M. Mitamura, D. K. Biswas, A. A. Seddique, Effect of groundwater flow on forming arsenic-contaminated groundwater in Sonargaon, Bangladesh J. Hydrol. 2011, 409, 724.
| Effect of groundwater flow on forming arsenic-contaminated groundwater in Sonargaon, BangladeshCrossref | GoogleScholarGoogle Scholar |
[58] F. Boano, C. Camporeale, R. Revelli, L. Ridolfi, Sinuosity-driven hyporheic exchange in meandering rivers Geophys. Res. Lett. 2006, 33, L18406.
| Sinuosity-driven hyporheic exchange in meandering riversCrossref | GoogleScholarGoogle Scholar |
[59] M. B. Cardenas, A model for lateral hyporheic flow based on valley slope and channel sinuosity Water Resour. Res. 2009, 45, W01501.
| A model for lateral hyporheic flow based on valley slope and channel sinuosityCrossref | GoogleScholarGoogle Scholar |
[60] M. Brunke, T. Gonser, The ecological significance of exchange processes between rivers and groundwater Freshw. Biol. 1997, 37, 1.
| The ecological significance of exchange processes between rivers and groundwaterCrossref | GoogleScholarGoogle Scholar |
[61] D. S. White, Perspectives on defining and delineating hyporheic zones J. N. Am. Benthol. Soc. 1993, 12, 6.
| Perspectives on defining and delineating hyporheic zonesCrossref | GoogleScholarGoogle Scholar |
[62] P. Vervier, J. Gibert, P. Marmonier, M. J. Doleolivier, A perspective on the permeability of the surface fresh-water–groundwater ecotone J. N. Am. Benthol. Soc. 1992, 11, 93.
| A perspective on the permeability of the surface fresh-water–groundwater ecotoneCrossref | GoogleScholarGoogle Scholar |
[63] N. E. Keon, C. H. Swartz, D. J. Brabander, C. F. Harvey, H. F. Hemond, Validation of an arsenic sequential extraction method for evaluating mobility in sediments Environ. Sci. Technol. 2001, 35, 2778.
| Validation of an arsenic sequential extraction method for evaluating mobility in sedimentsCrossref | GoogleScholarGoogle Scholar |
[64] M. H. Ebinger, D. G. Schulze, The influence of pH on the synthesis of mixed Fe-Mn oxide minerals Clay Miner. 1990, 25, 507.
| The influence of pH on the synthesis of mixed Fe-Mn oxide mineralsCrossref | GoogleScholarGoogle Scholar |
[65] H. B. Jung, Y. Zheng, Enhanced recovery of arsenite sorbed onto synthetic oxides by L-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samples Water Res. 2006, 40, 2160.
| Enhanced recovery of arsenite sorbed onto synthetic oxides by L-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samplesCrossref | GoogleScholarGoogle Scholar |
[66] W. W. Wenzel, N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi, D. C. Adriano, Arsenic fractionation in soils using an improved sequential extraction procedure Anal. Chim. Acta 2001, 436, 309.
| Arsenic fractionation in soils using an improved sequential extraction procedureCrossref | GoogleScholarGoogle Scholar |
[67] Y. T. He, A. G. Fitzmaurice, A. Bilgin, S. Choi, P. O’Day, J. Horst, J. Harrington, H. J. Reisinger, D. R. Burris, J. G. Hering, Geochemical processes controlling arsenic mobility in groundwater: a case study of arsenic mobilization and natural attenuation Appl. Geochem. 2010, 25, 69.
| Geochemical processes controlling arsenic mobility in groundwater: a case study of arsenic mobilization and natural attenuationCrossref | GoogleScholarGoogle Scholar |
[68] Y. Zheng, A. van Geen, M. Stute, R. Dhar, Z. Mo, Z. Cheng, A. Horneman, I. Gavrieli, H. J. Simpson, R. Versteeg, M. Steckler, A. Grazioli-Venier, S. Goodbred, M. Shahnewaz, M. Shamsudduha, M. A. Hoque, K. M. Ahmed, Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources Geochim. Cosmochim. Acta 2005, 69, 5203.
| Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sourcesCrossref | GoogleScholarGoogle Scholar |
[69] J. A. Saunders, C. T. Swann, Nature and origin of authigenic rhodochrosite and siderite from the Paleozoic aquifer, north-east Mississippi, USA Appl. Geochem. 1992, 7, 375.
| Nature and origin of authigenic rhodochrosite and siderite from the Paleozoic aquifer, north-east Mississippi, USACrossref | GoogleScholarGoogle Scholar |
[70] S. R. Randall, D. M. Sherman, K. V. Ragnarsdottir, Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (γ-FeOOH): surface complexes from EXAFS spectroscopy Geochim. Cosmochim. Acta 2001, 65, 1015.
| Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (γ-FeOOH): surface complexes from EXAFS spectroscopyCrossref | GoogleScholarGoogle Scholar |
[71] S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility Environ. Sci. Technol. 2003, 37, 4182.
| Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobilityCrossref | GoogleScholarGoogle Scholar |
[72] A. Tessier, P. G. C. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals Anal. Chem. 1979, 51, 844.
| Sequential extraction procedure for the speciation of particulate trace metalsCrossref | GoogleScholarGoogle Scholar |
[73] E. Tipping, N. B. Hetherington, J. Hilton, D. W. Thompson, E. Bowles, J. Hamilton-Taylor, Artifacts in the use of selective chemical-extraction to determine distributions of metals between oxides of manganese and iron Anal. Chem. 1985, 57, 1944.
| Artifacts in the use of selective chemical-extraction to determine distributions of metals between oxides of manganese and ironCrossref | GoogleScholarGoogle Scholar |
[74] C. Kheboian, C. F. Bauer, Accuracy of selective extraction procedures for metal speciation in model aquatic sediments Anal. Chem. 1987, 59, 1417.
| Accuracy of selective extraction procedures for metal speciation in model aquatic sedimentsCrossref | GoogleScholarGoogle Scholar |
[75] K. A. Gruebel, J. A. Davis, J. O. Leckie, The feasibility of using sequential extraction techniques for arsenic and selenium in soils and sediments Soil Sci. Soc. Am. J. 1988, 52, 390.
| The feasibility of using sequential extraction techniques for arsenic and selenium in soils and sedimentsCrossref | GoogleScholarGoogle Scholar |
[76] G. N. F. Breit, A. L.; R. B. Perkins, J. C. Yount, T. King, A. H. Welch, Arsenic-rich ferric oxyhydroxide enrichments in the shallow subsurface of Bangladesh, in Water-Rock Interactions (Eds R. B. Wanty, R. R. I. Seal) 2004, pp. 1457–1461 (Taylor & Francis Group: London).
[77] M. von Brömssen, L. Markussen, P. Bhattacharya, K. M. Ahmed, M. Hossain, G. Jacks, O. Sracek, R. Thunvik, M. A. Hasan, M. M. Islam, M. M. Rahman, Hydrogeological investigation for assessment of the sustainability of low-arsenic aquifers as a safe drinking water source in regions with high-arsenic groundwater in Matlab, south-eastern Bangladesh J. Hydrol. 2014, 518, 373.
| Hydrogeological investigation for assessment of the sustainability of low-arsenic aquifers as a safe drinking water source in regions with high-arsenic groundwater in Matlab, south-eastern BangladeshCrossref | GoogleScholarGoogle Scholar |
[78] A. van Geen, B. C. Bostick, P. T. K. Trang, V. M. Lan, N. N. Mai, P. D. Manh, P. H. Viet, K. Radloff, Z. Aziz, J. L. Mey, M. O. Stahl, C. F. Harvey, P. Oates, B. Weinman, C. Stengel, F. Frei, R. Kipfer, M. Berg, Retardation of arsenic transport through a Pleistocene aquifer Nature 2013, 501, 204.
| Retardation of arsenic transport through a Pleistocene aquiferCrossref | GoogleScholarGoogle Scholar |