Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Evaluation of phosphate-uptake mechanisms by Fe(III) (oxyhydr)oxides in Early Proterozoic oceanic conditions

Christoffer Hemmingsson A C , Iain K. Pitcairn A and Ernest Chi Fru B
+ Author Affiliations
- Author Affiliations

A Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden.

B School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, United Kingdom.

C Corresponding author. Email: christoffer.hemmingsson@geo.su.se

Environmental Chemistry 15(2) 18-28 https://doi.org/10.1071/EN17124
Submitted: 4 July 2017  Accepted: 13 October 2017   Published: 20 April 2018

Environmental context. Reconstructing the Precambrian oceanic P cycle, in conjunction with the As cycle, is critical for understanding the rise of atmospheric O2 in Earth’s history. Bioavailable phosphorus (P) has been found to regulate photosynthetic activity, whereas dissolved arsenic (As) maxima correlate with photosynthetic minima. New data on empirical adsorption and coprecipitation models with Fe(III) (oxyhydr)oxides suggest coprecipitation is a more efficient method of P sorption than is adsorption in Precambrian surface ocean conditions.

Abstract. Banded iron formations (BIF) are proxies of global dissolved inorganic phosphate (DIP) content in Precambrian marine waters. Estimates of Precambrian DIP rely on constraining the mechanisms by which Fe(III) (oxyhydr)oxides scavenge DIP in NaCl solutions mimicking elevated Precambrian marine Si and Fe(II) concentrations. The two DIP binding modes suggested for Early Proterozoic marine waters are (1) surface attachment on pre-formed Fe(III) (oxyhydr)oxides (adsorption), and (2) incorporation of P into actively growing Fe(III) (oxyhydr)oxides (coprecipitation) during the oxidation of Fe(II) to Fe(III) (oxyhydr)oxides in the presence of DIP. It has been suggested that elevated Si concentrations, such as those suggested for Precambrian seawater, strongly inhibit adsorption of DIP in Fe(III) (oxyhydr)oxides; however, recent coprecipitation experiments show that DIP is scavenged by Fe(III) (oxyhydr)oxides in the presence of Si, seawater cations and hydrothermal As. In the present study, we show that the DIP uptake onto Fe(III) (oxyhydr)oxides by adsorption is less than 5 % of DIP uptake by coprecipitation. Differences in surface attachment and the possibility of structural capture within the Fe(III) (oxyhydr)oxides are inferred from the robust influence Si has on DIP binding during adsorption, meanwhile the influence of Si on DIP binding is inhibited during coprecipitation when As(III) and As(V) are present. In the Early Proterozoic open oceans, Fe(III) (oxyhydr)oxides precipitated when deep anoxic Fe(II)-rich waters rose and mixed with the first permanently oxygenated ocean surface waters. Our data imply that, DIP was removed from surface waters through coprecipitation with those Fe(III) (oxyhydr)oxides, rather than adsorption. Local variations in DIP and perhaps even stratification of DIP in the oceans were likely created from the continuous removal of DIP from surface waters by Fe(III) (oxyhydr)oxides, and by the partial release of DIP into the anoxic bottom waters and buried sediments. In addition to a DIP famine, the selectivity for DIP over As(V) may have led to As enrichment in surface waters, both of which would have most likely decreased the productivity of cyanobacteria and O2 production.

Additional keywords: adsorption, coprecipitation, DIP, iron formations.


References

[1]  D. E. Canfield, A new model for Proterozoic ocean chemistry Nature 1998, 396, 450.
A new model for Proterozoic ocean chemistryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVSit7g%3D&md5=14dba058abaebdf6eeb0ce79a53894d8CAS |

[2]  A. Bekker, J. F. Slack, N. Planavsky, B. Krapež, A. Hofmann, K. O. Konhauser, O. J. Rouxel, Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes Econ. Geol. 2010, 105, 467.
Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlagtb4%3D&md5=88cfcfbc21559450779ed64a50d402e0CAS |

[3]  S. W. Poulton, D. E. Canfield, Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: implications for the evaluation of paleoseawater phosphate concentrations Geochim. Cosmochim. Acta 2006, 70, 5883.
Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: implications for the evaluation of paleoseawater phosphate concentrationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wmtb3K&md5=935a3006fadbd415d4354138a5f4b2bfCAS |

[4]  C. T. Reinhard, N. J. Planavsky, L. J. Robbins, C. A. Partin, B. C. Gill, S. V. Lalonde, A. Bekker, K. O. Konhauser, T. W. Lyons, Proterozoic ocean redox and biogeochemical stasis Proc. Natl. Acad. Sci. USA 2013, 110, 5357.
Proterozoic ocean redox and biogeochemical stasisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVehtbg%3D&md5=e96de8d91d2aa3cbfa19e4b57b87ece9CAS |

[5]  F. Horton, Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? Geochem. Geophys. Geosyst. 2015, 16, 1723.
Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean?Crossref | GoogleScholarGoogle Scholar |

[6]  T. W. Lyons, C. T. Reinhard, N. J. Planavsky, The rise of oxygen in Earth’s early ocean and atmosphere Nature 2014, 506, 307.
The rise of oxygen in Earth’s early ocean and atmosphereCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVels78%3D&md5=1d2ae2a03c3ef444676e609221b46738CAS |

[7]  C. T. Reinhard, N. J. Planavsky, B. C. Gill, K. Ozaki, L. J. Robbins, T. W. Lyons, W. W. Fischer, C. Wang, D. B. Cole, K. O. Konhauser, Evolution of the global phosphorus cycle Nature 2017, 541, 386.
Evolution of the global phosphorus cycleCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFeht7vF&md5=88ccac3dff4b203b848413297b12d467CAS |

[8]  R. A. Feely, J. H. Trefry, G. T. Lebon, C. R. German, The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater Geophys. Res. Lett. 1998, 25, 2253.
The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawaterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1ajtLk%3D&md5=beb4e84739746a6808866e7a4b40cf24CAS |

[9]  T. Schaller, J. Morford, S. R. Emerson, R. A. Feely, Oxyanions in metalliferous sediments: tracers for paleoseawater metal concentrations? Geochim. Cosmochim. Acta 2000, 63, 2243.
Oxyanions in metalliferous sediments: tracers for paleoseawater metal concentrations?Crossref | GoogleScholarGoogle Scholar |

[10]  J. A. Hawkes, D. P. Connelly, M. J. A. Rijkenberg, E. P. Achterberg, The importance of shallow hydrothermal island arc systems in ocean biogeochemistry Geophys. Res. Lett. 2014, 41, 942.
The importance of shallow hydrothermal island arc systems in ocean biogeochemistryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslCrtLg%3D&md5=ca33e6ae3ad6a869510aa36ba2c48d08CAS |

[11]  C. J. Bjerrum, D. E. Canfield, Ocean productivity before about 1.9 Gyr limited by phosphorus adsorption onto iron oxides Nature 2002, 417, 159.
Ocean productivity before about 1.9 Gyr limited by phosphorus adsorption onto iron oxidesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Sqs7w%3D&md5=426d63d9e9171436c926c8d3d90d0a6dCAS |

[12]  O. J. Rouxel, A. Bekker, K. J. Edwards, Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state Science 2005, 307, 1088.
Iron isotope constraints on the Archean and Paleoproterozoic ocean redox stateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSrtbs%3D&md5=f7eacae1d5693c65281b67bd5e462227CAS |

[13]  C. Jones, S. Nomosatryo, C. J. Bjerrum, D. E. Canfield, Iron oxides, divalent cations, silica, and the early earth phosphorus crisis Geology 2015, 43, 135.
Iron oxides, divalent cations, silica, and the early earth phosphorus crisisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktF2mtrs%3D&md5=a8809da5699861e803a94e18720bd1b6CAS |

[14]  S. W. Poulton, D. E. Canfield, Ferruginous conditions: a dominant feature of the ocean through Earth’s history Elements 2011, 7, 107.
Ferruginous conditions: a dominant feature of the ocean through Earth’s historyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVCmsr8%3D&md5=b96c547984f61e3396993393124f7b6eCAS |

[15]  K. O. Konhauser, S. V. Lalonde, L. Amskold, H. D. Holland, Was there really an Archean Phosphate Crisis? Science 2007, 315, 1234.
Was there really an Archean Phosphate Crisis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFChsr8%3D&md5=4b2a01525816c8baf43828cbc2246de9CAS |

[16]  E. Chi Fru, C. Hemmingsson, M. Holm, B. Chiu, E. Iñiguez, Arsenic-induced phosphate limitation under experimental Early Proterozoic oceanic conditions Earth Planet. Sci. Lett. 2016, 434, 52.
Arsenic-induced phosphate limitation under experimental Early Proterozoic oceanic conditionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOls73J&md5=a8050db55e00b88db7c6ad9d8f21fca0CAS |

[17]  N. J. Planavsky, O. J. Rouxel, A. Bekker, S. V. Lalonde, K. O. Konhauser, C. T. Reinhard, T. W. Lyons, The evolution of the marine phosphate reservoir Nature 2010, 467, 1088.
The evolution of the marine phosphate reservoirCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCjtrvN&md5=a749756c8a06776cf8da5fbd59073af9CAS |

[18]  N. Planavsky, O. J. Rouxel, A. Bekker, A. Hoffman, C. T. S. Little, T. W. Lyons, Iron isotope composition of some Archean and Proterozoic iron formations Geochim. Cosmochim. Acta 2012, 80, 158.
Iron isotope composition of some Archean and Proterozoic iron formationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsleqtbk%3D&md5=a365ce6554da936326ce61b55db09726CAS |

[19]  I. Halevy, A. Bachan, The geologic history of seawater pH Science 2017, 355, 1069.
The geologic history of seawater pHCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjvVWjtbY%3D&md5=90d9e1bc2d7a553a4912bc8c0dd4801eCAS |

[20]  M. W. Bligh, T. D. Waite, Formation, reactivity, and ageing of ferric oxide particles formed from Fe(II) and Fe(III) sources: implications for iron bioavailability in the marine environment Geochim. Cosmochim. Acta 2011, 75, 7741.
Formation, reactivity, and ageing of ferric oxide particles formed from Fe(II) and Fe(III) sources: implications for iron bioavailability in the marine environmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVylurbF&md5=cc27b030edb3f773a9fc0e2c0d76143dCAS |

[21]  R. R. Large, I. Mukherjee, D. D. Gregory, J. A. Steadman, V. V. Maslennikov, S. Meffre, Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: implications for ore genesis in sedimentary basins Econ. Geol. 2017, 112, 423.
Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: implications for ore genesis in sedimentary basinsCrossref | GoogleScholarGoogle Scholar |

[22]  S. Choi, S. Hong, E. R. Baumann, Adsorption of ferrous iron on the lepidocrocite surface Environ. Technol. 2001, 22, 355.
Adsorption of ferrous iron on the lepidocrocite surfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFKku7k%3D&md5=f4ccc770e80b548e5204d57244b6a3a8CAS |

[23]  S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility Environ. Sci. Technol. 2003, 37, 4182.
Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobilityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOltr8%3D&md5=37545e189067b130b2f7a2d99138d9dfCAS |

[24]  U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization. 2nd edn. 2000, (Wiley-VCH: Weinheim, Germany).

[25]  K. Müller, V. S. T. Ciminelli, M. S. S. Dantas, S. Willscher, A Comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by raman spectroscopy Water Res. 2010, 44, 5660.
A Comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by raman spectroscopyCrossref | GoogleScholarGoogle Scholar |

[26]  S. Das, M. J. Hendry, Application of raman spectroscopy to identify iron minerals commonly found in mine wastes Chem. Geol. 2011, 290, 101.
Application of raman spectroscopy to identify iron minerals commonly found in mine wastesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWlur7F&md5=69d6d31714f0385312230147387e4d40CAS |

[27]  T. D. Mayer, W. M. Jarrell, Formation and stability of iron(II) oxidation products under natural concentrations in dissolved silica Water Res. 1996, 30, 1208.
Formation and stability of iron(II) oxidation products under natural concentrations in dissolved silicaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFGis7k%3D&md5=13180a00c164639d4bcded41dcf9ac54CAS |

[28]  S. Bang, X. Meng, A review of arsenic interactions with anions and iron hydroxides Environ. Eng. Res. 2004, 9, 184.
A review of arsenic interactions with anions and iron hydroxidesCrossref | GoogleScholarGoogle Scholar |

[29]  A. Zegeye, S. Bonneville, L. G. Henning, A. Sturm, D. A. Bowle, C. Jones, D. E. Canfield, C. Ruby, L. C. MacLean, S. Nomosatryo, S. A. Crowe, S. W. Poulton, Green rust formation controls nutrient availability in a ferruginous water column Geology 2012, 40, 599.
Green rust formation controls nutrient availability in a ferruginous water columnCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ShtL%2FI&md5=88e07f64b4e9d2c54a7f34f81fdbab89CAS |

[30]  T. Barber, Phosphate adsorption by mixed and reduced iron phases in static and dynamic systems, MSc Thesis, Stanford University, Stanford, CA, 2002.

[31]  J. Wan, S. Simon, V. Deluchat, M. Dictor, C. Dagot, Adsorption of As(III), As(V) and dimethylarsinic acid onto synthesized lepidocrocite J. Environ. Sci. health, Part A 2013, 48, 1272.
| 1:CAS:528:DC%2BC3sXntFaisbc%3D&md5=b986df50419e11d2d56a8b70f770bf38CAS |

[32]  S. R. Chowdhury, E. K. Yanful, Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal J. Environ. Manage. 2010, 91, 2238.
Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removalCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSmt77O&md5=566a8367f2415f43cddfb4ef2e1674e2CAS |

[33]  H. Zeng, B. Fisher, D. E. Glammar, Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent Environ. Sci. Technol. 2008, 42, 147.
Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCks7zP&md5=e566e824e5b46d95b7514fa10516f432CAS |

[34]  A. Paytan, K. McLaughlin, The oceanic phosphorus cycle Chem. Rev. 2007, 107, 563.
The oceanic phosphorus cycleCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOmsrk%3D&md5=340911c741b336013aa9b9cdddc42f7fCAS |

[35]  S. Matijević, Z. Kljaković-Gašpić, D. Bogner, A. Gugić, D. Marintovićartinovic, Vertical distribution of phosphorus species and iron in sediment at open sea stations in the Adriatic region Acta Adriat. 2008, 49, 165.

[36]  H. S. Jensen, P. B. Mortensen, F. Ø. Andersen, E. K. Rasmussen, A. Jensen, Phosphorus cycling in coastal marine sediment Limnol. Oceanogr. 1995, 40, 908.
Phosphorus cycling in coastal marine sedimentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFentrc%3D&md5=046235a7ba613400d4c06acb8fdb114eCAS |

[37]  C. P. Slomp, E. H. Epping, G. W. Helder, W. van Raaphorst, A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments J. Mar. Res. 1996, 54, 1179.
A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sedimentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVSnurw%3D&md5=673261498d2aea54b4814f0079ade7dbCAS |

[38]  P. Anschutz, S. Zhong, B. Sundby, Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments Limnol. Oceanogr. 1998, 43, 53.
Burial efficiency of phosphorus and the geochemistry of iron in continental margin sedimentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslSntrc%3D&md5=7c64469cdb5542f7f01aececfb2c60f5CAS |

[39]  R. A. Feely, G. J. Massoth, E. T. Baker, G. T. Lebon, T. Geiselman, Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions J. Geophys. Res. 1992, 97, 3457.
Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositionsCrossref | GoogleScholarGoogle Scholar |

[40]  R. A. Feely, G. J. Massoth, J. H. Trefry, E. T. Baker, A. J. Paulson, G. T. Lebon, Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge J. Geophys. Res. 1994, 99, 4985.
Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca RidgeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlOruro%3D&md5=bb2a2ce3c15061f8383d9969ceb114ffCAS |

[41]  P. Lopez, Spatial distribution of sedimentary P pools in a Mediterranean coastal lagoon ‘Albufera d’es Grau’ (Minorca Island, Spain) Mar. Geol. 2004, 203, 161.
Spatial distribution of sedimentary P pools in a Mediterranean coastal lagoon ‘Albufera d’es Grau’ (Minorca Island, Spain)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKj&md5=78acff7941488e39c4f4ef8d3b5f15d1CAS |

[42]  K. A. Weber, L. A. Achenbach, J. D. Coates, Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction Nat. Rev. Microbiol. 2006, 4, 752.
Microorganisms pumping iron: anaerobic microbial iron oxidation and reductionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFOktLg%3D&md5=c12f162e5375d06ade16cc7d36a05243CAS |

[43]  C. M. Johnson, B. L. Beard, E. E. Roden, The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth Annu. Rev. Earth Planet. Sci. 2008, 36, 457.
The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient EarthCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFWmu7s%3D&md5=daf4d426951fd42657b8e6717e78e2c4CAS |

[44]  P. R. Craddock, N. Dauphas, Iron and carbon isotope evidence for microbial iron respiration throughout the Archean Earth Planet. Sci. Lett. 2011, 303, 121.
Iron and carbon isotope evidence for microbial iron respiration throughout the ArcheanCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFags7w%3D&md5=c740e115103d63e95735789da048e825CAS |

[45]  H. D. Holland, The Chemical Evolution of the Atmosphere and Oceans 1984 (Princeton University Press: Princeton, NJ).

[46]  R. Siever, The silica cycle in the Precambrian Geochim. Cosmochim. Acta 1992, 56, 3265.
The silica cycle in the PrecambrianCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtFKgsb4%3D&md5=8119506a38395443799dfa57ae2edf7eCAS |

[47]  S. W. Poulton, P. W. Fralick, D. E. Canfield, Spatial variability in oceanic redox structure 1.8 billion years ago Nat. Geosci. 2010, 3, 486.
Spatial variability in oceanic redox structure 1.8 billion years agoCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVKmtr0%3D&md5=3a5dd13f937f8f0db38286ddd37bc275CAS |

[48]  J. A. Baross, S. E. Hoffman, Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life Orig. Life 1985, 15, 327.
Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of lifeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtV2gsL0%3D&md5=15eadc7ce6674b626ad9828d5f54224eCAS |

[49]  C. R. German, A. C. Campbell, J. M. Edmond, Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes Earth Planet. Sci. Lett. 1991, 107, 101.
Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFSlug%3D%3D&md5=b8f48e62713a1fb56695bd073f66c4adCAS |

[50]  L. R. Kump, W. E. Seyfried, Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers Earth Planet. Sci. Lett. 2005, 235, 654.
Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVCrtrg%3D&md5=3bb47e93565f82dc27f4f57e44684135CAS |

[51]  G. A. Cutter, L. S. Cutter, Biogeochemistry of arsenic and antimony in the North Pacific Ocean Geochem. Geophys. Geosyst. 2006, 7, Q05M08.
Biogeochemistry of arsenic and antimony in the North Pacific OceanCrossref | GoogleScholarGoogle Scholar |

[52]  S. T. Dyhrman, S. T. Haley, Arsenic resistance in the unicellular marine diazotroph Crocosphaera Watsonii Front. Microbiol. 2011, 2, 214.
Arsenic resistance in the unicellular marine diazotroph Crocosphaera WatsoniiCrossref | GoogleScholarGoogle Scholar |

[53]  O. Wurl, L. Zimmer, G. A. Cutter, Arsenic and phosphorus biogeochemistry in the ocean: arsenic species as proxies for P-limitation Limnol. Oceanogr. 2013, 58, 729.
Arsenic and phosphorus biogeochemistry in the ocean: arsenic species as proxies for P-limitationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFyksLs%3D&md5=57ad7a7fbede6cc191495784bfabdb47CAS |

[54]  M. Elias, A. Wellner, K. Goldin-Azulay, E. Chabriere, J. A. Vorholt, T. J. Erb, D. S. Tawfik, The molecular basis of phosphate discrimination in arsenate-rich environments Nature 2012, 491, 134.
The molecular basis of phosphate discrimination in arsenate-rich environmentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGjsb7J&md5=6c69b6ba6e7b4da92cc01d620de2d48cCAS |

[55]  E. Chi Fru, N. Arvestål, N. Callac, A. El Albani, S. Kilias, A. Argyraki, M. Jakobsson, Arsenic stress after the Proterozoic glaciations Sci. Rep. 2015, 5, 17 789.
Arsenic stress after the Proterozoic glaciationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFKisbfO&md5=e2b2861293812c3d2e4119f58531ea93CAS |