Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Gold nanoparticle-dotted, ionic liquid-functionalised, carbon hybrid material for ultra-sensitive detection of bisphenol A

Yu Tian A , Jianbo Li A , Yanhui Wang A , Chaofan Ding A , Yuanling Sun A , Weiyan Sun A , Yanna Lin A and Chuannan Luo A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.

B Corresponding author. Email: chm_yfl518@163.com

Environmental Chemistry 14(6) 385-393 https://doi.org/10.1071/EN17081
Submitted: 11 April 2017  Accepted: 25 July 2017   Published: 28 November 2017

Environmental context. Bisphenol A, an important industrial material widely used as a plasticiser, fire retardant and resin polymer material, can cause endocrine disorders and precocious puberty. We developed a portable and efficient method for determining bisphenol A, and apply it to the detection of bisphenol A in bottles for infants and young children.

Abstract. A highly effective electrochemical sensor was developed for the highly sensitive detection of bisphenol A (BPA). The sensor is based on a glassy carbon electrode modified with a composite comprising 1-butyl-3-methyl imidazole hydrobromide (an ionic liquid, IL)-functionalised grapheme oxide (GO) to which gold nanoparticles (AuNPs) and carboxylic acid-functionalised carbon nanotubes (CNT) were absorbed. The negatively charged carboxylic acid-functionalised CNTs and AuNPs are adsorbed on the positively charged GO-IL composite film by electrostatic adsorption. The as-prepared GO-IL-CNT-AuNP hybrid nanocomposites exhibit excellent water solubility owing to the high hydrophilicity of the GO-IL components. Moreover, the excellent conductivity is attributed to the good conductivity of the IL, CNT and AuNP components. The hydrid materials enhance the preconcentration efficiency of BPA and accelerate the electron transfer rate at the electrode–electrolyte interface, as such the resultant fabricated electrochemical sensor displays a fast, stable and sensitive detection performance for trace amounts of BPA. Differential pulse voltammetry was used as a sensitive analytical method for the determination of BPA, and a much wider linear dynamic range of BPA determination was found between 5 and 100 nM. The limit of detection for BPA was found down to 1.5 nM based on a signal to nose ratio of 3. The modified electrode was successfully employed to detect BPA extracted from a plastic water bottle and milk carton.

Additional keywords: carbon nanotubes, graphene oxide, electrochemical sensors.


References

[1]  Y. Zhu, C. Q. Zhou, X. P. Yan, Y. Yan, Q. Wang, Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Anal. Chim. Acta 2015, 883, 81.
Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVCgs7o%3D&md5=b1da0236e09243eca6114881d14c2e65CAS |

[2]  J. Y. Hu, T. Aizawa, S. Ookubo, Products of aqueous chlorination of bisphenol A and their estrogenic activity. Environ. Sci. Technol. 2002, 36, 1980.
Products of aqueous chlorination of bisphenol A and their estrogenic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFamurk%3D&md5=64c0805841affe9239ea11857a066d18CAS |

[3]  T. Colborn, J. Peterson Myers, Problems beyond pesticides. Science 1996, 272, 1444.

[4]  E. Carlsen, A. Giwercman, N. Keiding, N. E. Skakkebaek, Declining semen quality and increasing incidence of testicular cancer: is there a common cause. Environ. Health Perspect. 1995, 103, 137.
Declining semen quality and increasing incidence of testicular cancer: is there a common cause.Crossref | GoogleScholarGoogle Scholar |

[5]  X. Long, R. Steinmetz, N. Ben-Jonathan, A. Caperell-Grant, P. C. M. Young, K. P. Nephew, R. M. Bigsby, Strain differences in vaginal responses to the xenoestrogen bisphenol A. Environ. Health Perspect. 2000, 108, 243.
Strain differences in vaginal responses to the xenoestrogen bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFOjt7o%3D&md5=ca6784f46903df4ff243bf320fcc8043CAS |

[6]  J. H. Kang, F. Kondo, Y. Katayama, Human exposure to bisphenol A. Toxicology 2006, 226, 79.
Human exposure to bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOhs7c%3D&md5=a88af7fc8d5891e72a6a95a623931469CAS |

[7]  T. Goloubkova, M. F. Ribeiro, L. P. Rodrigues, A. L. Cecconello, P. M. Spritzer, Effects of xenoestrogen bisphenol A on uterine and pituitary weight, serum prolactin levels and immunoreactive prolactin cells in ovariectomized Wistar rats. Arch. Toxicol. 2000, 74, 92.
Effects of xenoestrogen bisphenol A on uterine and pituitary weight, serum prolactin levels and immunoreactive prolactin cells in ovariectomized Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVGltrg%3D&md5=81187590a72c3f2d5e63e15f3a9be7c3CAS |

[8]  M. Muñoz-de-Toro, C. M. Markey, P. R. Wadia, E. H. Luque, B. S. Rubin, C. Sonnenschein, A. M. Soto, Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 2005, 146, 4138.
Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice.Crossref | GoogleScholarGoogle Scholar |

[9]  B. M. Thomson, P. R. Grounds, Bisphenol A in canned foods in New Zealand: An exposure assessment. Food Addit. Contam. 2005, 22, 65.
Bisphenol A in canned foods in New Zealand: An exposure assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFyjsLY%3D&md5=41ef42db9479a413a5cd793f00fd3354CAS |

[10]  J. Sajiki, F. Miyamoto, H. Fukata, C. Mori, J. Yonekuno, K. Hayakawa, A. Bisphenol, (BPA) and its source in foods in Japanese markets. Food Addit. Contam. 2007, 24, 103.
(BPA) and its source in foods in Japanese markets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFaru78%3D&md5=8f3d526daf84a1918648802ecb432aa0CAS |

[11]  X. L. Cao, J. Corriveau, S. Popovic, Levels of bisphenol A in canned soft drink products in Canadian markets. J. Agric. Food Chem. 2009, 57, 1307.
Levels of bisphenol A in canned soft drink products in Canadian markets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2lt7c%3D&md5=e73ec3066e54a83194f0d933f0419a10CAS |

[12]  J. Yonekubo, K. Hayakawa, J. Sajiki, Concentrations of bisphenol A, bisphenol A diglycidyl ether, and their derivatives in canned foods in Japanese markets. J. Agric. Food Chem. 2008, 56, 2041.
Concentrations of bisphenol A, bisphenol A diglycidyl ether, and their derivatives in canned foods in Japanese markets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFOhtbs%3D&md5=9cf0370e52d747f0e1e4020d1cf7725dCAS |

[13]  M. C. Estévez, R. Galve, F. Sánchez-Baeza, M. P. Marco, Direct competitive enzyme-linked immunosorbent assay for the determination of the highly polar short-chain sulfophenyl carboxylates. Anal. Chem. 2005, 77, 5283.
Direct competitive enzyme-linked immunosorbent assay for the determination of the highly polar short-chain sulfophenyl carboxylates.Crossref | GoogleScholarGoogle Scholar |

[14]  K. Inoue, K. Kato, Y. Yoshimura, T. Makino, H. Nakazawa, Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 2000, 749, 17.
Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFSksbc%3D&md5=9ccbe340c960a0e9db8292cc4c0cd12aCAS |

[15]  M. Liu, Y. Hashi, F. Pan, J. Yao, G. Song, J. Lin, Automated on-line liquid chromatography-photodiode array-mass spectrometry method with dilution line for the determination of bisphenol A and 4-octylphenol in serum. J. Chromatogr. A 2006, 1133, 142.
Automated on-line liquid chromatography-photodiode array-mass spectrometry method with dilution line for the determination of bisphenol A and 4-octylphenol in serum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWitb%2FF&md5=430d4e8b9b40ae64b98433e8864fbc96CAS |

[16]  R. J. W. Meesters, H. F. Schroder, Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Anal. Chem. 2002, 74, 3566.
Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFahtL8%3D&md5=40fa75d3c1a441ee6cb4b11865e14a64CAS |

[17]  B. J. Sanghavi, A. K. Srivastava, Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim. Acta 2011, 56, 4188.
Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCntLk%3D&md5=05ca2479b8f86cbd4c34a586a2c73570CAS |

[18]  V. K. Gupta, M. L. Yola, N. Atar, A novel molecular imprinted nanosensor based quartz crystal microbalance for determination of kaempferol. Sens. Actuators B Chem. 2014, 194, 79.
A novel molecular imprinted nanosensor based quartz crystal microbalance for determination of kaempferol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitF2gs7c%3D&md5=f2a57692942bba81589547ab958671c1CAS |

[19]  L. M. Yola, N. Atar, Z. Ustundag, A. O. Solak, A novel voltammetric sensor based on p-amino thiophenol functionalized grapheme oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 2013, 698, 9.
A novel voltammetric sensor based on p-amino thiophenol functionalized grapheme oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlWjtr8%3D&md5=94371ffd227a76f673d6a2c17cb04dbcCAS |

[20]  H. S. Yin, Y. L. Zhou, J. Xu, S. Y. Ai, L. Cui, L. S. Zhu, Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal. Chim. Acta 2010, 659, 144.
Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wnsb3P&md5=675c3e060d9abf361f6c438fc4081d57CAS |

[21]  A. Martín, J. Hernández-Ferrer, L. Vázquez, M.-T. Martínez, A. Escarpa, Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Advances 2014, 4, 132.
Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection.Crossref | GoogleScholarGoogle Scholar |

[22]  Y. Qu, M. Ma, Z. G. Wang, G. Q. Zhan, B. H. Li, X. Wang, H. F. Fang, H. J. Zhang, C. Y. Li, Sensitive amperometric biosensor for phenolic compounds based on graphene–silk peptide/tyrosinase composite nanointerface. Biosens. Bioelectron. 2013, 44, 85.
Sensitive amperometric biosensor for phenolic compounds based on graphene–silk peptide/tyrosinase composite nanointerface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVems7c%3D&md5=01ac7e16918b08e142c46a6a250a526cCAS |

[23]  Y. Lin, K. Liu, C. Liu, L. Yin, Q. Kang, L. Li, B. Li, Electrochemical sensing of bisphenol A based on polyglutamicacid/amino-functionalised carbon nanotubes nano composite. Electrochim. Acta 2014, 133, 492.
Electrochemical sensing of bisphenol A based on polyglutamicacid/amino-functionalised carbon nanotubes nano composite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12jtrk%3D&md5=55e8a820c3429feaf344ddd14eaa65e2CAS |

[24]  L. Yang, H. Zhao, S. Fan, B. Li, C. P. Li, A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle@TiO2 functionalized SiC. Anal. Chim. Acta 2014, 852, 28.
A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle@TiO2 functionalized SiC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWqtbfE&md5=09893cb8bf11578c764a17e3799301a4CAS |

[25]  X. M. Chen, T. Q. Ren, M. Ma, Z. G. Wang, G. Q. Zhan, Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode. Electrochim. Acta 2013, 111, 49.
Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrurzJ&md5=ec1830191bbf0b949bd7943a9208c1a2CAS |

[26]  M. L. Wang, Y. Q. Gao, J. J. Zhang, J. W. Zhao, Highly dispersed carbon nanotube in new ionic liquid-graphene oxides aqueous dispersions for ultrasensitive dopamine detection. Electrochim. Acta 2015, 155, 236.
Highly dispersed carbon nanotube in new ionic liquid-graphene oxides aqueous dispersions for ultrasensitive dopamine detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Sgurs%3D&md5=d67a0b7d39d48ac80166f59d6ac1cd80CAS |

[27]  Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, R. S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010, 48, 2118.
Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Crur4%3D&md5=0394c4cf7d47e9faf4092b287f07e6d3CAS |

[28]  W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P. M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxidefilms. Nat. Nanotechnol. 2011, 6, 496.
Direct laser writing of micro-supercapacitors on hydrated graphite oxidefilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFaitLk%3D&md5=9e2ece8afc5ec8b05b5cf704bc10458eCAS |

[29]  D. Cai, M. Song, C. Xu, Highly conductive carbon-nanotube/graphite-oxide hybridfilms. Adv. Mater. 2008, 20, 1706.
Highly conductive carbon-nanotube/graphite-oxide hybridfilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslSqu74%3D&md5=1d06aced47f97af3b96be8d6470135e6CAS |

[30]  R. Y. Li, Q. F. Xia, Z. J. Li, X. L. Sun, J. K. Liu, Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosens. Bioelectron. 2013, 44, 235.
Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition.Crossref | GoogleScholarGoogle Scholar |

[31]  I. Dumitrescu, P. R. Unwin, J. V. Macpherson, Electrochemistry at carbon nanotubes: perspective and issues. Chem. Commun. 2009, 45, 6886.
Electrochemistry at carbon nanotubes: perspective and issues.Crossref | GoogleScholarGoogle Scholar |

[32]  T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 2003, 300, 2072.
Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVOrsLY%3D&md5=1f41f9390761af4302a5b78aa307776fCAS |

[33]  K. Saha, S. S. Agasti, C. Kim, X. N. Li, V. M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739.
Gold nanoparticles in chemical and biological sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ehtL0%3D&md5=f9bbf3c5843aeecdf2cb6e461dcf7960CAS |

[34]  W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Preparation of graphitic oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXlt1yjuw%3D%3D&md5=fd47f330a658ed3158d1e377506a9c8cCAS |

[35]  H. Gong, S. T. Kim, J. D. Lee, S. Yim, Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Appl. Surf. Sci. 2013, 266, 219.
Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOjsA%3D%3D&md5=10578c22724a96717af680d531f48135CAS |

[36]  N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, A. D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771.
Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFClsA%3D%3D&md5=820525895521ba5ba721fd5155bbf8dcCAS |

[37]  Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010, 48, 1124.
Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1aluw%3D%3D&md5=628dfee198876ce524f990245ab18225CAS |

[38]  C. W. Liew, K. H. Arifin, J. Kawamura, Y. Iwaib, S. Ramesh, A. K. Arof, Electrical and structural studies of ionic liquid-based poly (vinyl alcohol) proton conductors. J. Non-Cryst. Solids 2015, 425, 163.
Electrical and structural studies of ionic liquid-based poly (vinyl alcohol) proton conductors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFChtr7E&md5=e6e9d230c22ee21fcbc1b636668afa4bCAS |

[39]  C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 2009, 47, 2054.
Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOhsrg%3D&md5=d90c5734d2e06e864667482f39bfd7cfCAS |

[40]  A. M. Gurban, L. Rotariu, M. Baibarac, I. Balto, C. Bala, Sensitive detection of endocrine disrupters using ionic liquid-single walled carbon nanotubes modified screen-printed based biosensors. Talanta 2011, 85, 2007.
Sensitive detection of endocrine disrupters using ionic liquid-single walled carbon nanotubes modified screen-printed based biosensors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rurfM&md5=e5609af2ab761e70464da3b08b510038CAS |

[41]  R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron. 1997, 12, 29.
Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFahu7o%3D&md5=8429fa59b0ca973643e6ce7e6f1c9edaCAS |

[42]  Y. X. Zhang, Y. X. Cheng, Y. Y. Zhou, B. Y. Li, W. Gu, X. H. Shi, Y. Z. Xian, Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 2013, 107, 211.
Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Wht7k%3D&md5=584f5e49b134886cc2277803490e71e7CAS |

[43]  X. W. Yu, Y. K. Chen, L. P. Chang, L. Zhou, F. X. Tang, X. P. Wu, β-cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sens. Actuators B Chem. 2013, 186, 648.
β-cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgsLvF&md5=3092c3461c077565eba4df5245df4706CAS |

[44]  C. Wu, Q. Cheng, K. Wu, G. Wu, Q. Li, Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Anal. Chim. Acta 2014, 825, 26.
Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvVSqurs%3D&md5=a3f5dcd3934316811e4d3a6e29cbb5c7CAS |