Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Solubility of the nadorite group minerals: implications for mobility of Sb and Bi in oxidised settings

Adam J. Roper A B , Peter Leverett A , Timothy D. Murphy A and Peter A. Williams A
+ Author Affiliations
- Author Affiliations

A School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.

B Corresponding author. Email: adamr@ansto.gov.au

Environmental Chemistry 14(4) 224-230 https://doi.org/10.1071/EN17076
Submitted: 4 April 2017  Accepted: 24 April 2017   Published: 16 May 2017

Environmental context. The dispersion of antimony in the environment has been misunderstood over the last few decades. Investigating the solubility of naturally forming mineral phases such as nadorite resulted in determination of its limited role in Sb dispersion, providing evidence that nadorite can only limit antimony dispersion in mildly oxidising conditions. Nadorite can only play a significant role in Sb immobilisation in a particular redox window, which forms only a minor part of the framework of Sb dispersion.

Abstract. As part of a study of the control that secondary minerals exert on the dispersion of antimony and bismuth in the supergene environment, syntheses and stability studies of nadorite (PbSbO2Cl) and perite (PbBiO2Cl) have been undertaken. Solubilities in aqueous HNO3 were determined at 298.2 K and the data obtained used to calculate values of ΔGfθ(298.2 K). The ΔGfθ(s, 298.2 K) values for PbSbO2Cl (–622.0 ± 2.8 kJ mol–1) and PbBiO2Cl (–590.0 ± 1.3kJ mol–1) have been used in subsequent calculations to determine relative stabilities and relationships with other common secondary Sb and Bi minerals. While the role of nadorite in immobilising Sb is dependent upon the prevailing redox potential such that SbIII is stable, perite may be a significant phase in limiting the dispersion of Bi in certain supergene settings.

Additional keywords: antimony, chemical mineralogy, lead, mobility, perite, solubility, supergene zone.


References

[1]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Sci. Rev. 2002, 57, 125.
Antimony in the environment: a review focused on natural waters I. Occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Wgsr4%3D&md5=71f2430390dd171267e7de7b0dce9752CAS |

[2]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Sci. Rev. 2002, 59, 265.
Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCmsrw%3D&md5=211d3737935a9f800392bc526b20e8a7CAS |

[3]  M. Filella, P. M. May, Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochim. Cosmochim. Acta 2003, 67, 4013.
Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Slu74%3D&md5=9f07924f9a3d57e5e69e3f9f38dcbfbeCAS |

[4]  M. Filella, P. A. Williams, N. Belzile, Antimony in the environment: knowns and unknowns. Environ. Chem. 2009, 6, 95.
Antimony in the environment: knowns and unknowns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtr4%3D&md5=868ba2d613bc907f207e513a7e6d3c4bCAS |

[5]  J. Majzlan, B. Lalinská, M. Chovan, U. Bläß, B. Brecht, J. Göttlicher, R. Steininger, K. Hug, S. Ziegler, J. Gescher, A mineralogical, geochemical, and microbiogical assessment of the antimony-and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am. Mineral. 2011, 96, 1.
A mineralogical, geochemical, and microbiogical assessment of the antimony-and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1ejsw%3D%3D&md5=f32bd87660038944b8c78193c438c79dCAS |

[6]  M. Filella, P. A. Williams, Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds. Chem. Erde 2012, 72, 49.
| 1:CAS:528:DC%2BC38XktlGrsr8%3D&md5=a74f32c66c217606cd2cf662a44a4627CAS |

[7]  A. J. Roper, P. A. Williams, M. Filella, Secondary antimony minerals: phases that control the dispersion of antimony in the supergene zone. Chem. Erde 2012, 72, 9.
| 1:CAS:528:DC%2BC38XktVKisb0%3D&md5=4b366a0b642811ed4ffe1ca3f4fa4589CAS |

[8]  A. J. Roper, P. Leverett, T. D. Murphy, P. A. Williams, The stability of onoratoite, Sb8O11Cl2, in the supergene environment. Mineral. Mag. 2014, 78, 1671.
The stability of onoratoite, Sb8O11Cl2, in the supergene environment.Crossref | GoogleScholarGoogle Scholar |

[9]  A. J. Roper, P. Leverett, T. D. Murphy, P. A. Williams, Klebelsbergite, Sb4O4SO4(OH)2: stability relationships and refinement of its structure. Am. Mineral. 2015, 100, 602.
Klebelsbergite, Sb4O4SO4(OH)2: stability relationships and refinement of its structure.Crossref | GoogleScholarGoogle Scholar |

[10]  J. Majzlan, M. Števko, T. Lánczos, Soluble secondary minerals of antimony in Pezinok and Kremnica (Slovakia) and the question of mobility or immobility of antimony in mine waters. Environ. Chem. 2016, 13, 927.
Soluble secondary minerals of antimony in Pezinok and Kremnica (Slovakia) and the question of mobility or immobility of antimony in mine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVKgsLzE&md5=f670b2e3cee75e88da27d11668692c80CAS |

[11]  R. S. Multani, T. Feldmann, G. P. Demopoulos, Antimony in the metallurgical industry: a review of its chemistry and environmental stabilization options. Hydrometallurgy 2016, 164, 141.
Antimony in the metallurgical industry: a review of its chemistry and environmental stabilization options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVCkurvO&md5=28b77a977fd511eb27db53070e80c98cCAS |

[12]  M. Filella, How reliable are environmental data on ‘orphan’ elements? The case of bismuth concentrations in surface waters. J. Environ. Monit. 2010, 12, 90.
How reliable are environmental data on ‘orphan’ elements? The case of bismuth concentrations in surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvF2rsg%3D%3D&md5=3eeb61737fc2bd78d6ae5e452f1b06f1CAS |

[13]  G. A. Diemar, M. Filella, P. Leverett, P. A. Williams, Dispersion of antimony from oxidizing ore deposits. Pure Appl. Chem. 2009, 81, 1547.
Dispersion of antimony from oxidizing ore deposits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyru7rO&md5=446923b5843ac39c957bddb2b35f0da9CAS |

[14]  P. Leverett, J. K. Reynolds, A. J. Roper, P. A. Williams, Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment. Mineral. Mag. 2012, 76, 891.
Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GhsbrP&md5=2272e2d92a1519a5c0c44a260623144dCAS |

[15]  I. Drescher, P. Susse, Crystal structural investigation of a carbonate richelsdorfite. Eur. J. Mineral. 1997, 9, 81.

[16]  J. Gröbner, Neue Mineralienfunde aus Österreich (2). Mineralien-Welt 2000, 11, 49.

[17]  K. Walenta, Richelsdorfitähnliche Mineralien aus dem Schwarzwald. Der Erzgräber 2000, 14, 1.

[18]  H. Effenberger, The crystal structure of mammothite, Pb6Cu4AlSbO2(OH)16Cl4(SO4)2. Tschermaks Mineral. Petrogr. Mitt. 1985, 34, 279.
The crystal structure of mammothite, Pb6Cu4AlSbO2(OH)16Cl4(SO4)2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltlOgtg%3D%3D&md5=c5f20d082acef044dbbacb2b03cca606CAS |

[19]  D. R. Peacor, P. J. Dunn, G. Schnorrer-Köhler, R. A. Bideaux, Mammothite, a new mineral from Tiger, Arizona and Laurium, Greece. Mineral. Rec. 1985, 16, 117.
| 1:CAS:528:DyaL2MXksleqsbk%3D&md5=748e7e1f9edfccddcd68e69dc243f683CAS |

[20]  G. Cerutti, D. Preite, Mineralien der Etruskerschlacken von Baratti, Toskana. Lapis 1995, 20, 13.

[21]  P. Gelaude, P. van Kalmthout, C. Rewitzer, Laurion: The Minerals in the Ancient Slags 1996 (Janssen Print: Nijmegen).

[22]  P. J. Dunn, R. C. Rouse, Freedite and thorikosite from Långban, Sweden, and Laurion, Greece: two new species related to the synthetic bismuth oxyhalides. Am. Mineral. 1985, 70, 845.
| 1:CAS:528:DyaL2MXlsVCqsLw%3D&md5=be01957a0c03b55f19d9265b02bbf107CAS |

[23]  V. I. Vasil’ev, Y. G. Lavrent’ev, N. A. Pal’chik, Kelyanite, Hg36Sb3(Cl,Br)9O28, a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 1982, 111, 330. [In Russian]
| 1:CAS:528:DyaL3sXhvFGksQ%3D%3D&md5=97b11a32d96cff72366fff2e0f6ca3c0CAS |

[24]  C. Sabelli, G. Brizzi, Alteration minerals of the Cetine mine, Tuscany, Italy. Mineral. Rec. 1984, 15, 27.
| 1:CAS:528:DyaL2cXovV2itA%3D%3D&md5=7a59a8c43107ce897dec550d5c6dcdceCAS |

[25]  G. Brizzi, I. Ciselli, A. Santucci, Le Cetine di Cotorniano: storia e mineralogia. Riv. Mineral. Ital. 1985, 9, 1.

[26]  D. Preite, Le Cetine, Pereta und Poggio Peloso: Beruhmte antimonerz-Minen der Toskana. Lapis 1992, 17, 17.

[27]  M. Flajolot, Note sur des combinaisons cristallisées d’oxyde de plomb et d’oxyde d’antimoine, d’oxyde de plomb et d’acide antimonique, de la province de Constantine (Algérie). C. R. Acad. Sci. 1870, 71, 237.

[28]  C. Palache, H. Berman, C. Frondel, Dana’s System of Mineralogy, 7th edn, Vol. II 1951 (John Wiley and Sons: New York).

[29]  S. Weiss, Mineralfundstellen, Deutschland West 1990 (Christian Weise Verlag: Munich).

[30]  Z. M. Protodiakonova, T. S. Timofeeva, R. R. Isanov, L. A. Sokolova, Nadorite and laurionite in ores of Kara-Elchi (TurkmSSR). Zapiski Uzbekistanskogo Otdeleniya Vsesoyuznogo Mineralogicheskogo Obshchestva 1974, 27, 95.

[31]  A. K. Hamilton Jenkin, Mines and Miners of Cornwall. Part 14. St Austell to Saltash 1967 (Truro Bookshop: Truro).

[32]  P. Golley, R. Williams, Cornish Mineral Reference Manual 1995 (Endsleigh Publications: Truro).

[33]  A. S. Eakle, Minerals associated with crystalline limestone at Crestmore, Riverside County, California. Bulletin of the Department of Geology of the University of California 1917, 10, 327.
| 1:CAS:528:DyaC1cXivVWq&md5=4db2c0536f499fb0580f653b82626550CAS |

[34]  A. O. Woodford, R. A. Crippin, K. B. Garner, Section across Commercial quarry, Crestmore, California. Am. Mineral. 1941, 26, 351.
| 1:CAS:528:DyaH3MXksleksg%3D%3D&md5=0193f7faf1c8770142d394f8750f53bcCAS |

[35]  W. E. Wilson, What’s new in minerals? Mineral. Rec. 1988, 19, 209.

[36]  W. D. Birch (Ed.) The Minerals of Broken Hill 1999 (Broken Hill City Council and Museum Victoria: Broken Hill).

[37]  V. V. Breskovska, Silver-antimony mineralization in the Madjarovo polimetallic ore deposit. Dokl. Bulg. Akad. Nauk. 1976, 29, 395.
| 1:CAS:528:DyaE28Xlt1Oiu7g%3D&md5=a79a93bdd89a66ccde7b646555617a2aCAS |

[38]  V. V. Breskovska, Ardaite – a new lead-antimony chlorosuphosalt. Mineral. Mag. 1982, 46, 357.
Ardaite – a new lead-antimony chlorosuphosalt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xls1KhtL4%3D&md5=cb9c292c752b83cc28c68111a5e7181dCAS |

[39]  P. Keller, J. Innes, Neue Minerale von Tsumeb. Lapis 1986, 11, 28.

[40]  P. Nysten, D. Holtstam, E. Jonsson, The Långban minerals, in Långban – The Mines, their Minerals, Geology and Explorers (Eds D. Holtstam, J. Langhof) 1999, pp. 89–183. (Swedish Museum of Natural History, Stockholm).

[41]  H. Dewey, The mineral zones of Cornwall. Proceedings of the Geological Association, London 1925, 36, 107.

[42]  R. E. Clayton, R. C. Scrivener, C. J. Stanley, Mineralogical and preliminary fluid inclusion studies of lead-antimony mineralisation in north Cornwall. Proceedings of the Ussher Society 1990, 7, 258.

[43]  R. E. Clayton, B. Spiro, Sulphur, carbon and oxygen isotope studies of early Variscan mineralisation and Pb-Sb vein deposits in the Cornubian orefield: implications for the scale of fluid movements during Variscan deformation. Miner. Depos. 2000, 35, 315.
Sulphur, carbon and oxygen isotope studies of early Variscan mineralisation and Pb-Sb vein deposits in the Cornubian orefield: implications for the scale of fluid movements during Variscan deformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wmtrg%3D&md5=21dcc7e819197cf788263a3435df56b6CAS |

[44]  F. Demartin, C. M. Gramaccioli, I. Campostrini, T. Pilati, Aiolosite, Na2(Na2Bi) (SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Am. Mineral. 2010, 95, 382.
Aiolosite, Na2(Na2Bi) (SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVKjs7s%3D&md5=3de7df68ac6f3fe8c3ecd66c27533bb1CAS |

[45]  V. I. Popova, V. A. Popov, N. S. Rudashevsky, S. F. Glavatskikh, V. O. Polyakov, A. F. Bushmakin, Nabakoite, Cu7TeO4(SO4)5.KCl, and atlasovite, Cu6Fe3+Bi3+O4(SO4)5.KCl – new minerals of volcanic exhalations. Zap Vses Mineral Obshch 1987, 116, 358. [In Russian]
| 1:CAS:528:DyaL2sXlvVShurg%3D&md5=73eb78b5cca805cd9f867b749076bffbCAS |

[46]  A. Pring, B. M. Gatehouse, W. D. Birch, Francisite, Cu3Bi(SeO3)2O2Cl, a new mineral from Iron Monarch, South Australia: description and crystal structure. Am. Mineral. 1990, 75, 1421.
| 1:CAS:528:DyaK3MXosFGhuw%3D%3D&md5=8e51b4a5190d6094157532b9f9543503CAS |

[47]  A. Pring, U. Kolitsch, G. Francis, Additions to the mineralogy of the Iron Monarch deposit, Middleback Ranges, South Australia. Australian Journal of Mineralogy 2000, 6, 9.

[48]  I. Campostrini, C. M. Gramaccioli, Selenium-rich secondary minerals from the Baccu Locci mine (Sardinia, Italy). Neues Jahrb. Miner. Abh. 2001, 177, 37.
Selenium-rich secondary minerals from the Baccu Locci mine (Sardinia, Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvF2qsw%3D%3D&md5=3de98da46c8400c3ee7e9afaafdde566CAS |

[49]  F. Schlegel, Découverte de minéraux secondaires de bismuth dans les haldes de Schneeberg (Erzgebirge). Lapis 1992, 17, 29.

[50]  M. Gillberg, Perite, a new oxyhalide mineral from Långban, Sweden. Arkiv for Mineralogi och Geologi 1960, 2, 565. [Am. Mineral. 1960, 46, 765]

[51]  P. J. Bridge, A second occurrence of perite. Mineral. Mag. 1976, 40, 537.
A second occurrence of perite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1Cnt7s%3D&md5=63822e1caa72ec416ec411fc4ff2dfe3CAS |

[52]  A. Deschanvres, J. Gallay, J. M. Hunout, M. T. Thiault, C. Victor, Préparation de quelques composés du plomb appurtenant aux phases X1 ey X1X2 du Sillen. C. R. Acad. Sci., Ser. IIC: Chim. 1970, 270, 696.
| 1:CAS:528:DyaE3cXhtl2jurg%3D&md5=03545879810af3c429ce78629b75b607CAS |

[53]  J. Ketterer, V. Krämer, Structural characterisation of the synthetic perites PbBiO2X, X = I, Br, Cl. Mater. Res. Bull. 1985, 20, 1031.
Structural characterisation of the synthetic perites PbBiO2X, X = I, Br, Cl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmt1Cru7o%3D&md5=a0e65af30a78a18648af0ce73a9ac9faCAS |

[54]  S. S. Lopatkin, The layer oxide chlorides MBiO2Cl. Russ. J. Inorg. Chem. 1987, 32, 1006.

[55]  G. Brizzi, E. Cocco, F. Olmi, C. Sabelli, Nuovi ritrovamenti di minerali nella Sardegna nord-occidentale. 2° Sa Duchessa (Domusnovas). Rivista Mineralogica Italiana 1989, 3/1989, 121.

[56]  F. Olmi, C. Sabelli, G. Brizzi, Agardite-(Y), Gysinite-(Nd) and other rare minerals from Sardinia. Mineral. Rec. 1988, 19, 305.
| 1:CAS:528:DyaL1MXkt1WmsQ%3D%3D&md5=8f61661096e9891314fb0c8857ac6c8fCAS |

[57]  M. E. Ciriotti, U. Kolitsch, G. Blass, A. Sancassani, P. Ambrino, Secondo ritrovamento di perite in Sardegna: Sa Duchessa, Oridda, Domusnovas. Micro (UK Report) 2010, 1/2010, 128.

[58]  P. M. Kartashov, I. V. Pekov, I. M. Marsiy, The first occurrence of perite in the CIS. Dokl. Earth Sci. 1995, 333, 74.

[59]  L. P. Ermilova, Minerals of the Wolfram-Molybdenum Deposit of Karaoba in Central Kazakhstan 1964 (Akad. Nauk S.S.S.R., Inst Geol. Rudn. Mestorozhd., Petrogr., Mineral. I Geokhim: Nauka, Moscow).

[60]  V. Jeremolenko, Kara-Oba: Mineralogische Perle der Betpak-Ebene bei Dzhambul, Kasachstan. Lapis 2002, 27, 13.

[61]  P. M. Adams, The Brown Monster and Reward Mines, Inyo County, California. Mineral. Rec. 2010, 41, 175.
| 1:CAS:528:DC%2BC3cXkvVCntL8%3D&md5=35e91f7bd3c5edb0d5dd9622c80fe639CAS |

[62]  S. B. Castor, G. C. Ferdock, Minerals of Nevada 2004 (University of Nevada Press: Reno).

[63]  P. Adams, Recent finds from the majuba hill and willward miners, Pershing Co., Nevada, in The 818th Meeting of the Mineralogical Society of Southern California, 14 April 2006 (MSSC) [Bulletin of the Mineralogical Society of Southern California 2006, 76].

[64]  J. W. Anthony, R. A. Bideaux, K. W. Bladh, M. C. Nichols, Handbook of Mineralogy. IV. Arsenates, Phosphates, Vanadates 2000 (Mineral Data Publishing: Tucson).

[65]  Y. Porter, P. S. Halasyamani, Synthesis and characterization of nadorite: PbSbO2Cl. Zeitschrift für Naturforschung B 2002, 57, 360.
| 1:CAS:528:DC%2BD38XjvVygtr4%3D&md5=b2526bc482fa41969255abf0b914997fCAS |

[66]  J. I. Langford, Least-squares refinement of cell dimensions from powder data by Cohen’s method. J. Appl. Cryst. 1973, 6, 190.
Least-squares refinement of cell dimensions from powder data by Cohen’s method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktlGqsL8%3D&md5=0c21ed43eedb3f6b3aba11e2ad712559CAS |

[67]  G. Giuseppetti, C. Tadini, Riesame della struttura cristallina della nadorite: PbSbO2Cl. Period. Mineral. 1973, 42, 335.
| 1:CAS:528:DyaE2MXhtlaht7c%3D&md5=2fbc7c68e7d3502f7c4919f350138944CAS |

[68]  D. D. Perrin, I. G. Sayce, Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species. Talanta 1967, 14, 833.
Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkvVGns74%3D&md5=0542fa753dc3485d5cd5d2ed0402ee10CAS |

[69]  C. F. Baes, Jr, R. E. Mesmer, The Hydrolysis of Cations 1976 (Wiley Interscience: New York).

[70]  J. van der Lee, C. Lomenech, Towards a common thermodynamic database for speciation models. Radiochim. Acta 2004, 92, 811.
Towards a common thermodynamic database for speciation models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptFOksQ%3D%3D&md5=98b3c2f93499c5d32aec0459318f559fCAS |

[71]  R. M. Smith, A. E. Martell, Critical Stability Constants. Volume 4. Inorganic Complexes 1976 (Plenum Press: New York).

[72]  A. V. Zotov, N. D. Shikina, N. N. Akinfiev, Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions. Geochim. Cosmochim. Acta 2003, 67, 1821.
Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFOlsrY%3D&md5=2646ca1051b22366c972bfbf264ef985CAS |

[73]  G. W. C. Kaye, Kaye & Laby-Tables of Physical and Chemical Constants 1995 (National Physical Laboratory).

[74]  J. D. Cox, D. D. Wagman, V. A. Medvedev, CODATA Key Values for Thermodynamics 1989 (Hemisphere Press: New York).

[75]  R. A. Robie, B. S. Hemingway, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10^5 Pascals) Pressure and at Higher Temperatures 1995 (USGPO).

[76]  V. B. Parker, I. L. Khodakovskii, Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron. J. Phys. Chem. Ref. Data 1995, 24, 1699.
Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGhsQ%3D%3D&md5=f2ea21d52f8cd9d15aa0cc99620e4f70CAS |