Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Occurrence of fluorotelomer alcohols at two Alpine summits: sources, transport and temporal trends

Zhenlan Xu A B C E , Lingxiangyu Li D , Bernhard Henkelmann B and Karl-Werner Schramm B C E
+ Author Affiliations
- Author Affiliations

A Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

B Helmholtz Center Munich – National Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstädter Landstr.1, Neuherberg D85764, Germany.

C Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung und Landnutzung, Department für Biowissenschaften, Weihenstephaner Steig 23, Freising D85350, Germany.

D School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.

E Corresponding authors. Email: xuzhenlan330@163.com; schramm@helmholtz-muenchen.de

Environmental Chemistry 14(4) 215-223 https://doi.org/10.1071/EN16190
Submitted: 22 November 2016  Accepted: 14 April 2017   Published: 8 May 2017

Journal Compilation © CSIRO Publishing 2017 Open Access CC BY-NC-ND

Environmental context. The transport and fate of organic pollutants such as fluorotelomer alcohols (FTOHs) in the atmosphere affect their risks to the environment and human health. On the basis of hourly trajectory predictions, we found that, from 2007 to 2010, individual levels of 6:2, 8:2 and 10:2 FTOH were from non-detectable to 72.4 pg m–3 at two Alpine summits. Air mass origin was an important factor determining the Alpine atmospheric FTOH levels.

Abstract. The transport and fate of fluorotelomer alcohols (FTOHs) in the atmosphere affect their risks to the environment and human health. In this study, we aimed to investigate the sources, transport and temporal variations of FTOHs (6:2, 8:2 and 10:2 FTOH) at two Alpine summits (Sonnblick and Zugspitze). The active air sampler consisting of four XAD cartridges was applied to collect FTOHs from 2007 to 2010. Four separate cartridges were assigned for four air flow regimes (three European sectors and one mixed source origin), and switched and controlled on the basis of an hourly trajectory prediction. FTOH (6:2, 8:2 and 10:2) was measured with individual concentrations ranging from less than the limit of detection to 72.4 pg m–3. Also, 8:2 FTOH was the dominant compound, accounting for 41–72 % of the total FTOH (ΣFTOH) concentration. Significant differences were not observed in FTOH concentrations between Sonnblick and Zugspitze since the two sites are relatively close compared with the geographic extent of the area studied. Air-flow regime was an important factor determining the atmospheric FTOH levels. Particularly at Zugspitze, air mass from the NE (regions north-east of the Alps) showed the highest median ΣFTOH concentration (36.9 pg m–3), followed by S (the Po basin in Italy), NW (regions north-west of Alps) and M (mixed source origin, polar regions or high altitudes). Furthermore, the seasonal variation in FTOH concentrations was not correlated with the site temperatures, but was dependent on the wind speed. Overall, the results indicated low FTOH concentrations at these two Alpine summits compared with European populated cities and provided important information for understanding the fate of FTOHs in the Alpine atmosphere.


References

[1]  O. S. Arvaniti, A. S. Stasinakis, Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci. Total Environ. 2015, 524–525, 81.
Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment.Crossref | GoogleScholarGoogle Scholar |

[2]  Z. Wang, Z. Xie, A. Möller, W. Mi, H. Wolschke, R. Ebinghaus, Atmospheric concentrations and gas/particle partitioning of neutral poly- and perfluoroalkyl substances in northern German coast. Atmos. Environ. 2014, 95, 207.
Atmospheric concentrations and gas/particle partitioning of neutral poly- and perfluoroalkyl substances in northern German coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Cns77L&md5=7d3940c741c85166504cc9bdf5e9d08aCAS |

[3]  C. M. Butt, U. Berger, R. Bossi, G. T. Tomy, Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci. Total Environ. 2010, 408, 2936.
Levels and trends of poly- and perfluorinated compounds in the arctic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntV2isL0%3D&md5=8f5c704f3ab56208953258599493a39aCAS |

[4]  Y. Gao, J. Fu, H. Cao, Y. Wang, A. Zhang, Y. Liang, T. Wang, C. Zhao, G. Jiang, Differential accumulation and elimination behavior of perfluoroalkyl acid isomers in occupational workers in a manufactory in China. Environ. Sci. Technol. 2015, 49, 6953.
Differential accumulation and elimination behavior of perfluoroalkyl acid isomers in occupational workers in a manufactory in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsVantLc%3D&md5=6b54d2e0359a86560ebac5593850bae7CAS |

[5]  R. A. Hoke, B. D. Ferrell, T. Ryan, T. L. Sloman, J. W. Green, D. L. Nabb, R. Mingoia, R. C. Buck, S. H. Korzeniowski, Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate. Chemosphere 2015, 128, 258.
Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisVOktrs%3D&md5=6570141ec4ac4930880e4195a0e81cb9CAS |

[6]  C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens, J. Seed, Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366.
Perfluoroalkyl acids: a review of monitoring and toxicological findings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKru7%2FI&md5=4ca05dfcad62931b405b4f99305d8457CAS |

[7]  M. H. Russell, M. W. Himmelstein, R. C. Buck, Inhalation and oral toxicokinetics of 6:2 FTOH and its metabolites in mammals. Chemosphere 2015, 120, 328.
Inhalation and oral toxicokinetics of 6:2 FTOH and its metabolites in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSqsbzI&md5=7ecc633c996ad9e1054aa2d92d584633CAS |

[8]  Z. Xie, Z. Wang, W. Mi, A. Möller, H. Wolschke, R. Ebinghaus, Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic. Sci. Rep. 2015, 5, 8912.
Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlWqtbw%3D&md5=3242d226c8414862996671170a3abe27CAS |

[9]  J. P. Benskin, V. Phillips, V. L. St. Louis, J. W. Martin, Source elucidation of perfluorinated carboxylic acids in remote Alpine lake sediment cores. Environ. Sci. Technol. 2011, 45, 7188.
Source elucidation of perfluorinated carboxylic acids in remote Alpine lake sediment cores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyhtb8%3D&md5=a16ba40385ceeb15f49dd6e9be61ba49CAS |

[10]  J. Li, S. D. Vento, J. Schuster, G. Zhang, P. Chakraborty, Y. Kobara, K. C. Jones, Perfluorinated compounds in the Asian atmosphere. Environ. Sci. Technol. 2011, 45, 7241.
Perfluorinated compounds in the Asian atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWntrfN&md5=5893f87edafa64478db6630b360399fcCAS |

[11]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=47e84f896a239d4c19bef2fba2efcfa5CAS |

[12]  M. Shoeib, T. Harner, P. Vlahos, Perfluorinated chemicals in the Arctic atmosphere. Environ. Sci. Technol. 2006, 40, 7577.
Perfluorinated chemicals in the Arctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SlsrzK&md5=4d262469b1093a4e2e8a222cf8ea6316CAS |

[13]  K. Y. Kwok, E. Yamazaki, N. Yamashita, S. Taniyasu, M. B. Murphy, Y. Horii, G. Petrick, R. Kallerborn, K. Kannan, K. Murano, P. K. S. Lam, Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources. Sci. Total Environ. 2013, 447, 46.
Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFemtrw%3D&md5=0cd5a03e8b0d81f9a24511fe8096e79dCAS |

[14]  D. A. Ellis, J. W. Martin, A. O. De Silva, S. A. Mabury, M. D. Hurley, S. M. P. Andersen, T. J. Wallington, Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316.
Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVShsb0%3D&md5=7a2479460ab1c318ae4882708c831728CAS |

[15]  M. I. Gomis, Z. Wang, M. Scheringer, I. T. Cousins, A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Sci. Total Environ. 2015, 505, 981.
A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVCrsr%2FF&md5=9830d25920716a4bf1c51ededdc70476CAS |

[16]  S. Fiedler, G. Pfister, K.-W. Schramm, Poly- and perfluorinated compounds in household consumer products. Toxicol. Environ. Chem. 2010, 92, 1801.
Poly- and perfluorinated compounds in household consumer products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSht7rN&md5=7e4424f0d7d870ea96db20fe3bacfb35CAS |

[17]  A. Gawor, C. Shunthirasingham, S. J. Hayward, Y. D. Lei, T. Gouin, B. T. Mmereki, W. Masamba, C. Ruepert, L. E. Castillo, M. Shoeib, S. C. Lee, T. Harner, F. Wania, Neutral plyfluoroalkyl substances in the global atmosphere. Environ. Sci. Process. Impacts 2014, 16, 404.
Neutral plyfluoroalkyl substances in the global atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1alsr4%3D&md5=281441d69a6595744fd1a52cca8c9ab8CAS |

[18]  H. Kim, H. Seok, H. Kwon, S. Choi, K. Seok, J. E. Oh, A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea. Sci. Total Environ. 2016, 563–564, 530.
A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea.Crossref | GoogleScholarGoogle Scholar |

[19]  D. A. Ellis, J. W. Martin, S. A. Mabury, Atmospheric lifetime of fluorotelomer alcohols. Environ. Sci. Technol. 2003, 37, 3816.
Atmospheric lifetime of fluorotelomer alcohols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlaqt7o%3D&md5=96280ab4222d28b795ea42671f2595c3CAS |

[20]  M. Shoeib, P. Vlahos, T. Harner, A. Peters, M. Graustein, J. Narayan, Survey of polyfluorinated chemicals (PFCs) in the atmosphere over the northeast Atlantic Ocean. Atmos. Environ. 2010, 44, 2887.
Survey of polyfluorinated chemicals (PFCs) in the atmosphere over the northeast Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFOisrw%3D&md5=be272f585a03eb5be5dd41daefc26167CAS |

[21]  L. Ahrens, M. Shoeib, S. D. Vento, G. Codling, C. Halsall, Polyfluoroalkyl compounds in the Canadian Arctic atmosphere. Environ. Chem. 2011, 8, 399.
Polyfluoroalkyl compounds in the Canadian Arctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaqsLrM&md5=0fde8fbf0f6845445917d733bd88917dCAS |

[22]  M. Cai, Z. Xie, A. Möller, Z. Yin, P. Huang, M. Cai, H. Yang, R. Sturm, J. He, R. Ebinghasu, Polyfluorinated compounds in the atmosphere along a cruise pathway from the Japan Sea to the Arctic Ocean. Chemosphere 2012, 87, 989.
Polyfluorinated compounds in the atmosphere along a cruise pathway from the Japan Sea to the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltValurs%3D&md5=43874ca0b504483e6084f63282fc6888CAS |

[23]  R. Bossi, K. Vorkamp, H. Skov, Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland. Environ. Pollut. 2016, 217, 4.
Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFOksLs%3D&md5=d1d33353c18dcb66065f623bdcc05857CAS |

[24]  M. Loewen, F. Wania, F. Y. Wang, G. Tomy, Altitude transect of atmospheric and aqueous fluorinated organic compounds in Western Canada. Environ. Sci. Technol. 2008, 42, 2374.
Altitude transect of atmospheric and aqueous fluorinated organic compounds in Western Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFWkt7Y%3D&md5=503a59008d74f383cf13bc03be478f5dCAS |

[25]  A. M. Piekarz, T. Primbs, J. A. Field, D. F. Barofsky, S. Simonich, Semi-volatile fluorinated organic compounds in Asian and Western U.S. air masses. Environ. Sci. Technol. 2007, 41, 8248.
Semi-volatile fluorinated organic compounds in Asian and Western U.S. air masses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSgurzM&md5=0426be178a9e627d2fa02ed62b4cd624CAS |

[26]  T. Kirchgeorg, A. Dreyer, J. Gabrieli, N. Kehrwald, M. Sigl, M. Schwikowski, C. Boutron, A. Gambaro, C. Barbante, R. Ebinghaus, R. Ossi, K. Vorkamp, H. Skov, Temporal variations of perfluoroalkyl substances and polybrominated diphenyl ethers in alpine snow. Environ. Pollut. 2013, 178, 367.
Temporal variations of perfluoroalkyl substances and polybrominated diphenyl ethers in alpine snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlCqtbk%3D&md5=bb36bbb56f59f1dfbaad8a3a1809bab4CAS |

[27]  I. Offenthaler, R. Bassan, C. Belis, I. Garo-Stach, S. Ganz, S. Iozza, G. Jakobi, A. Kaiser, M. Kirchner, W. Knoth, N. Kräuchi, W. Levy, W. Moche, J. Nurmi-Legat, S. Raccanelli, K.-W. Schramm, P. Schröder, I. Sedivy, P. Simoncic, M. Staudinger, G. Thanner, M. Uhl, U. Vilhar, P. Weiss, Monarpop Technical Report 2009 (Federal Ministry of Agriculture, Forestry, Environment and Water Management: Wien, Austria).

[28]  I. Offenthaler, G. Jakobi, A. Kaiser, M. Kirchner, N. Kräuchi, B. Niedermoser, K.-W. Schramm, I. Sedivy, M. Staudinger, G. Thanner, P. Weiss, W. Moche, Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment. Environ. Pollut. 2009, 157, 3290.
Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrurbK&md5=65512ac514d7b85c9e242de59f96465eCAS |

[29]  A. Dreyer, V. Matthias, C. Temme, R. Ebinghaus, Annual time series of air concentrations of polyfluorinated compounds. Environ. Sci. Technol. 2009, 43, 4029.
Annual time series of air concentrations of polyfluorinated compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVKks7w%3D&md5=bcf7f67429809e44471c889e7a2121f2CAS |

[30]  A. Dreyer, I. Weinberg, C. Temme, R. Ebinghaus, Polyfluorinatedcompounds in the atmosphere of the Atlantic and Southern Oceans: evidence for a global distribution. Environ. Sci. Technol. 2009, 43, 6507.
Polyfluorinatedcompounds in the atmosphere of the Atlantic and Southern Oceans: evidence for a global distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSmsLc%3D&md5=138cd5f0e563091c65673fbb85bf7d25CAS |

[31]  M. Kirchner, G. Jakobi, W. Körner, W. Levy, W. Moche, B. Niedermoser, M. Schaub, L. Ries, P. Weiss, F. Antritter, N. Fischer, B. Henkelmann, K.-W. Schramm, Ambient air levels of organochlorine pesticides at three high Alpine monitoring stations: trends and dependencies on geographical origin. Aerosol Air Qual. Res. 2016, 16, 738.
Ambient air levels of organochlorine pesticides at three high Alpine monitoring stations: trends and dependencies on geographical origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVyjsLg%3D&md5=6a261b8fea96ffdf985379ce9288e573CAS |

[32]  Z. Xu, S. Fiedler, G. Pfister, B. Henkelmann, C. Mosch, W. Völkel, H. Fromme, K.-W. Schramm, Human exposure to fluorotelomer alcohols, perfluorooctane sulfonate and perfluorooctanoate via house dust in Bavaria, Germany. Sci. Total Environ. 2013, 443, 485.
Human exposure to fluorotelomer alcohols, perfluorooctane sulfonate and perfluorooctanoate via house dust in Bavaria, Germany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKnsbc%3D&md5=cfef49b95543384fc285ec9cf5065787CAS |

[33]  Estimation Program Interface (EPI) Suite TM Suite Version 4.11. http://www.epa.gov/oppt/exposure/pubs/episuite.htm [accessed May 2013].

[34]  P. J. Krusic, A. A. Marchione, F. Davidson, M. A. Kaiser, C.-P. C. Kao, R. E. Richardson, M. Botelho, R. L. Waterland, R. C. Buck, Vapor pressure and intramolecular hydrogen bonding in fluorotelomer alcohols. J. Phys. Chem. A 2005, 109, 6232.
Vapor pressure and intramolecular hydrogen bonding in fluorotelomer alcohols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFWmsrg%3D&md5=02813a0cb2daeecfc2d8e611343db939CAS |

[35]  S. Thuens, A. Dreyer, R. Sturm, C. Temme, R. Ebinghaus, Determination of the octanol–air partition coefficient (KOA) of fluorotelomeralcohols. J. Chem. Eng. Data 2008, 53, 223.
Determination of the octanol–air partition coefficient (KOA) of fluorotelomeralcohols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlans7nN&md5=af15040cc0a8750bd730352bb5db8f76CAS |

[36]  K.-A. Goss, G. Bronner, T. Harner, M. Hertel, T. C. Schmidt, The partition behavior of fluorotelomer alcohols and olefins. Environ. Sci. Technol. 2006, 40, 3572.
The partition behavior of fluorotelomer alcohols and olefins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yhs70%3D&md5=e25d3ca805e3a2dda83f8c56af069b02CAS |

[37]  J. L. Barber, U. Berger, C. Chaemfa, S. Huber, A. Jahnke, C. Temme, K. C. Jones, Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J. Environ. Monit. 2007, 9, 530.
Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFemsrw%3D&md5=e29ee3f90b49151c3630872d98a56600CAS |

[38]  A. Jahnke, L. Ahrens, R. Ebinghaus, U. Berger, J. L. Barber, C. Temme, An improved method for the analysis of the volatile polyfluorinated alkyl substances in environmental air samples. Anal. Bioanal. Chem. 2007, 387, 965.
An improved method for the analysis of the volatile polyfluorinated alkyl substances in environmental air samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wiu7k%3D&md5=de6ef1fa83b2c797ceed1908392084aeCAS |

[39]  A. Jahnke, U. Berger, R. Ebinghaus, U. Berger, C. Temme, Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53°N–33°S). Environ. Sci. Technol. 2007, 41, 3055.
Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53°N–33°S).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslWgsb0%3D&md5=0aa4c74cc8ac4ced0fb0f402554d990dCAS |

[40]  S. Oono, K. H. Harada, M. A. M. Mahmoud, K. Inoue, A. Koizumi, Current levels of airborne polyfluorinated telomers in Japan. Chemosphere 2008, 73, 932.
Current levels of airborne polyfluorinated telomers in Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCkt7%2FL&md5=72b4661f16ca34b0b000bd05f1a00667CAS |

[41]  A. Dreyer, M. Shoeib, S. Fiedler, J. Barber, T. Harner, K.-W. Schramm, K. C. Jones, R. Ebinghaus, Field intercomparison on the determination of volatile and semi-volatile polyfluorinated compounds in air. Environ. Chem. 2010, 7, 350.
Field intercomparison on the determination of volatile and semi-volatile polyfluorinated compounds in air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jsbzN&md5=664fea92120f150fdadc8d4cd41c6812CAS |

[42]  L. Nizzetto, C. Cassani, A. D. Guardo, Deposition of PCBs in mountains: the forest filter effect of different forest ecosystem types. Ecotoxicol. Environ. Saf. 2006, 63, 75.
Deposition of PCBs in mountains: the forest filter effect of different forest ecosystem types.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFylug%3D%3D&md5=ad25b384caba6156df4a52f0735e2f41CAS |

[43]  M. McLachlan, M. Horstmann, Forests as filters of airborne organic pollutants: a model. Environ. Sci. Technol. 1998, 32, 413.
Forests as filters of airborne organic pollutants: a model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVem&md5=af7b952a7da54051397734cc46543691CAS |

[44]  S. A. Fiedler, Method development and determination of anthropogenic poly- and perfluorinated compounds in air, water, soil, house dust and several consumer products 2010, Ph.D. Dissertation, Technische Universität München, Munich.

[45]  NoMiracle, Report on the large-scale, predicted fate and exposure of perfluorooctanoic acid including evaluation against monitoring data 2007 (Stockholm University: Sweden). Available at http://nomiracle.jrc.ec.europa.eu/webapp/ViewPublicDeliverables.aspx [accessed May 2013].

[46]  A. Kaiser, Origin of polluted air masses in the Alps. An overview and first results for MONARPOP. Environ. Pollut. 2009, 157, 3232.
Origin of polluted air masses in the Alps. An overview and first results for MONARPOP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrurnF&md5=d29e65e8c0d5f00d087561fe894c15c8CAS |

[47]  C. N. Hewitt, R. M. Harrison, Tropospheric concentrations of the hydroxyl radical – a review. Atmos. Environ. 1985, 19, 545.
Tropospheric concentrations of the hydroxyl radical – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkt1GjtLg%3D&md5=f729b45d721b25f67591c509de005f06CAS |

[48]  F. Wania, J. E. Haugen, Y. D. Lei, D. Mackay, Temperature dependence of atmospheric concentrations of semi-volatile organic compounds. Environ. Sci. Technol. 1998, 32, 1013.
Temperature dependence of atmospheric concentrations of semi-volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFOqurY%3D&md5=67fc3fd06cf426fa0ea0dd308e41ba14CAS |