Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Theoretical study of the gaseous hydrolysis of NO2 in the presence of NH3 as a source of atmospheric HONO

Xu Wang A , Feng-Yang Bai A , Yan-Qiu Sun A , Rong-Shun Wang A , Xiu-Mei Pan A C and Fu-Ming Tao B C
+ Author Affiliations
- Author Affiliations

A Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, 130024 Changchun, P.R. China.

B Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834, USA.

C Corresponding authors. Email: panxm460@nenu.edu.cn; ftao@fullerton.edu

Environmental Chemistry 13(4) 611-622 https://doi.org/10.1071/EN15076
Submitted: 7 April 2015  Accepted: 18 July 2015   Published: 23 November 2015

Environmental context. Nitrous acid is an important atmospheric trace gas, but the sources and the chemical mechanisms of its production are not well understood. This study explores the effects of ammonia and water on the hydrolysis of nitrogen dioxide and nitrous acid production. The calculated results show that ammonia is more effective than water in promoting the hydrolysis reaction of nitrogen dioxide.

Abstract. The effects of ammonia and water molecules on the hydrolysis of nitrogen dioxide as well as product accumulation are investigated by theoretical calculations of three series of the molecular clusters 2NO2mH2O (m = 1–3), 2NO2mH2O–NH3 (m = 1, 2) and 2NO2mH2O–2NH3 (m = 1, 2). The gas-phase reaction 2NO2 + H2O → HONO + HNO3 is thermodynamically unfavourable. The additional water or ammonia in the clusters can not only stabilise the products by forming stable complexes, but also reduce the energy barrier for the reaction. There is a considerable energy barrier for the reaction at the reactant cluster 2NO2–H2O: 11.7 kcal mol–1 (1 kcal mol–1 = 4.18 kJ mol–1). With ammonia and an additional water in the cluster, 2NO2–H2O–NH3, the thermodynamically stable products t-HONO + NH4NO3–H2O can be formed without an energy barrier. With two ammonia molecules, as in the cluster 2NO2mH2O–2NH3 (m = 1, 2), the reaction is barrierless and the product complex NH4NO2–NH4NO3 is further stabilised. The present study, including natural bond orbital analysis on a series of species, shows that ammonia is more effective than water in promoting the hydrolysis reaction of NO2. The product cluster NH4NO2–NH4NO3 resembles an alternating layered structure containing the ion units NH4+NO2 and NH4+NO3. The decomposition processes of NH4NO2–NH4NO3 and its monohydrate are all spontaneous and endothermic.


References

[1]  B. J. Finlayson-Pitts, J. N. Pitts Jr, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications 2000 (Academic Press: San Diego, CA).

[2]  A. M. Winer, H. W. Biermann, Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California South Coast air basin. Res. Chem. Intermed. 1994, 20, 423.
Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California South Coast air basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1Cnsb8%3D&md5=99afcd6fb657959320e9ac0a8b87958fCAS |

[3]  T. W. Kirchstetter, R. A. Harley, D. Littlejohn, Measurement of nitrous acid in motor vehicle exhaust. Environ. Sci. Technol. 1996, 30, 2843.
Measurement of nitrous acid in motor vehicle exhaust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFKjsr8%3D&md5=d7c7fffe41857a9fe66608eaba8d5fdcCAS |

[4]  F. Stuhl, H. Niki, Flash photochemical study of the reaction OH + NO + M using resonance fluorescent detection of OH. J. Chem. Phys. 1972, 57, 3677.
Flash photochemical study of the reaction OH + NO + M using resonance fluorescent detection of OH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXit1Cnsg%3D%3D&md5=6eeeede196e40a0d657a727f0e941eaaCAS |

[5]  P. Pagsberg, E. Bjergbakke, E. Ratajczak, A. Sillesen, Kinetics of the gas phase reaction OH + NO (+M) → HONO(+M) and the determination of the UV absorption cross-sections of HONO. Chem. Phys. Lett. 1997, 272, 383.
Kinetics of the gas phase reaction OH + NO (+M) → HONO(+M) and the determination of the UV absorption cross-sections of HONO.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVWqtLk%3D&md5=88d86d3410c12c0cbfba234ffcb1748dCAS |

[6]  M. Ammann, M. Kalberer, D. T. Jost, L. Tobler, E. Rössler, D. Piguet, H. W. Gäggeler, U. Baltensperger, Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 1998, 395, 157.
Heterogeneous production of nitrous acid on soot in polluted air masses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVersro%3D&md5=2f6e9a551d769334530c955aaeaf4864CAS |

[7]  M. Kalberer, M. Ammann, F. Arens, H. W. Gäggeler, U. Baltensperger, Heterogeneous formation of nitrous acid (HONO) on soot aerosol particles. J. Geophys. Res. Atmos. 1999, 104, 13 825.
Heterogeneous formation of nitrous acid (HONO) on soot aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Ort7s%3D&md5=8350e3511efe6b1c96d302c02e0e8043CAS |

[8]  C. A. Longfellow, A. R. Ravishankara, D. R. Hanson, Reactive uptake on hydrocarbon soot: focus on NO2. J. Geophys. Res. 1999, 104, 13 833.
Reactive uptake on hydrocarbon soot: focus on NO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Ort7g%3D&md5=a28211425147bbe553a9dd0b47514ec2CAS |

[9]  B. J. Finlayson-Pitts, L. M. Wingen, A. L. Sumner, D. Syomin, K. A. Ramazan, The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys. Chem. Chem. Phys. 2003, 5, 223.
The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1U%3D&md5=b04da02850926867ab38b24d376b7ee9CAS |

[10]  K. Stemmler, M. Ammann, C. Donders, J. Kleffmann, C. George, Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 2006, 440, 195.
Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFGitbk%3D&md5=b94cbb203787c11fec2789428a5146fbCAS | 16525469PubMed |

[11]  J. Notholt, J. Hjorth, F, Raes, Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2. Atmos. Environ. 1992, 26, 211.
Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2.Crossref | GoogleScholarGoogle Scholar |

[12]  M. D. Andrés-Hernández, J. Notholt, J. Hjorth, O. Schrems, A DOAS study on the origin of nitrous acid at urban and non-urban sites. Atmos. Environ. 1996, 30, 175.
A DOAS study on the origin of nitrous acid at urban and non-urban sites.Crossref | GoogleScholarGoogle Scholar |

[13]  G. Lammel, J. N. Cape, Nitrous acid and nitrite in the atmosphere. Chem. Soc. Rev. 1996, 25, 361.
Nitrous acid and nitrite in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFen&md5=cc4d4d45ace99501c5ce369aee7ae5ffCAS |

[14]  J. Stutz, B. Alicke, R. Ackerman, A. Geyer, S. Wang, A. B. White, E. J. Williams, C. W. Spicer, J. D. Fast, Relative humidity dependence of HONO chemistry in urban areas. J. Geophys. Res. 2004, 109, D03307.
Relative humidity dependence of HONO chemistry in urban areas.Crossref | GoogleScholarGoogle Scholar |

[15]  K. Acker, D. Beysens, D. Möller, Nitrite in dew, fog, cloud and rain water: an indicator for heterogeneous processes on surfaces. Atmos. Res. 2008, 87, 200.
Nitrite in dew, fog, cloud and rain water: an indicator for heterogeneous processes on surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFarsrs%3D&md5=a2ee913b10046977a267e0daec4eadc4CAS |

[16]  H. Wang, D. Shooter, Atmospheric concentrations of HCl, HONO, HNO3, SO2 and NH3 in Auckland, New Zealand. Clean Air Environ. Qual. 2004, 38, 28.

[17]  K. A. Ramazan, L. M. Wingen, Y. Miller, G. M. Chaban, R. B. Gerber, S. S. Xantheas, B. J. Finlayson-Pitts, New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. J. Phys. Chem. A 2006, 110, 6886.
| 1:CAS:528:DC%2BD28Xhs1Cju78%3D&md5=acbec1864630bc09af3f6f3adc7410e0CAS | 16722704PubMed |

[18]  M. T. Cheng, S. P. Chen, Y. C. Lin, C. C. Jung, C. L. Horng, Concentrations and formation rates of ambient nitrous acid in Taichung City, Taiwan. Environ. Eng. Sci. 2008, 25, 1149.
Concentrations and formation rates of ambient nitrous acid in Taichung City, Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SlsbjJ&md5=834eed2ff3df49b5af9b29107c6c1c5eCAS |

[19]  Y. Miller, B. J. Finlayson-Pitts, R. B. Gerber, Ionization of N2O4 in contact with water: mechanism, time scales and atmospheric implications. J. Am. Chem. Soc. 2009, 131, 12 180.
Ionization of N2O4 in contact with water: mechanism, time scales and atmospheric implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFers70%3D&md5=e7fd592b9ed9453389d17d35f8de3f34CAS |

[20]  B. Q. Zhang, F. M. Tao, Direct homogeneous nucleation of NO2, H2O, and NH3 for the production of ammonium nitrate particles and HONO gas. Chem. Phys. Lett. 2010, 489, 143.
Direct homogeneous nucleation of NO2, H2O, and NH3 for the production of ammonium nitrate particles and HONO gas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Kgtbo%3D&md5=77d0e6e1876eb71ca067e963d112ceceCAS |

[21]  B. H. Lee, G. W. Santoni, E. C. Wood, S. C. Herndon, R. C. Miake-Lye, M. S. Zahniser, S. C. Wofsy, J. W. Munger, Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment. Environ. Sci. Technol. 2011, 45, 7648.
Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrsbvP&md5=63c980225acd0e51b4eec994e2912712CAS | 21809872PubMed |

[22]  G. F. Luo, X. B. Chen, Ground-state intermolecular proton transfer of N2O4and H2O: an important source of atmospheric hydroxyl radical? J. Phys. Chem. Lett. 2012, 3, 1147.
Ground-state intermolecular proton transfer of N2O4and H2O: an important source of atmospheric hydroxyl radical?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVaru78%3D&md5=3b33eb87aa72d4c51b3f5ee6e2047ba8CAS |

[23]  S. S. Wang, R. Zhou, H. Zhao, Z. R. Wang, L. M. Chen, B. Zhou, Long-term observation of atmospheric nitrous acid (HONO) and its implication to local NO2 levels in Shanghai, China. Atmos. Environ. 2013, 77, 718.
Long-term observation of atmospheric nitrous acid (HONO) and its implication to local NO2 levels in Shanghai, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1altrvO&md5=8ff7e2637f9747f373c208bdfa2ba2d6CAS |

[24]  R. Oswald, M. Ermel, K. Hens, A. Novelli, H. G. Ouwersloot, P. Paasonen, T. Petäjä, M. Sipilä, P. Keronen, J. Bäck, R. Königstedt, Z. Hosaynali Beygi, H. Fischer, B. Bohn, D. Kubistin, H. Harder, M. Martinez, J. Williams, T. Hoffmann, I. Trebs, M. Sörgel, A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland. Atmos. Chem. Phys. 2015, 15, 799.
A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland.Crossref | GoogleScholarGoogle Scholar |

[25]  F. M. Tao, Solvent effects of individual water molecules, in Water in Confining Geometries 2003, pp. 79–99 (Springer-Verlag: Berlin)10.1007/978-3-662-05231-0

[26]  R. Cazar, A. Jamka, F. M. Tao, Proton transfer reaction of hydrogen chloride with ammonia: is it possible in the gas phase? Chem. Phys. Lett. 1998, 287, 549.
Proton transfer reaction of hydrogen chloride with ammonia: is it possible in the gas phase?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtl2lsLc%3D&md5=a85e1ebf76792f97f674920bda0b8beeCAS |

[27]  J. A. Snyder, D. Hanway, J. Mendez, A. J. Jamka, F. M. Tao, A density functional theory study of the gas-phase hydrolysis of dinitrogen pentoxide. J. Phys. Chem. A 1999, 103, 9355.
A density functional theory study of the gas-phase hydrolysis of dinitrogen pentoxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFCrsLc%3D&md5=a7f0549a263b7fc16e0676a0fb95b28cCAS |

[28]  R. A. Cazar, A. J. Jamka, F. M. Tao, Ab initio investigation of proton transfer in ammonia–hydrogen chloride and the effect of water molecules in the gas phase. J. Phys. Chem. A 1998, 102, 5117.
Ab initio investigation of proton transfer in ammonia–hydrogen chloride and the effect of water molecules in the gas phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1SrsLk%3D&md5=80ba6d4a3c511b6c6df110748d1f67c3CAS |

[29]  J. A. Snyder, R. A. Cazar, A. J. Jamka, F. M. Tao, Ab initio study of gas-phase proton transfer in ammonia–hydrogen halides and the influence of water molecules. J. Phys. Chem. A 1999, 103, 7719.
| 1:CAS:528:DyaK1MXlsFSrtrw%3D&md5=a333394475889d5b0d3e2295d5f689f0CAS |

[30]  M. T. Nguyen, A. J. Jamka, R. A. Cazar, F. M. Tao, Structure and stability of the nitric acid–ammonia complex in the gas phase and in water. J. Phys. Chem. 1997, 106, 8710.
Structure and stability of the nitric acid–ammonia complex in the gas phase and in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsV2rsb0%3D&md5=acb7c76878418f6f8cc87a2785e2351fCAS |

[31]  F. M. Tao, Gas-phase proton-transfer reaction of nitric acid–ammonia and the role of water. J. Chem. Phys. 1998, 108, 193.
Gas-phase proton-transfer reaction of nitric acid–ammonia and the role of water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVSlsg%3D%3D&md5=8d95b1579c7b39cda9082fc4165e16a1CAS |

[32]  A. Chou, Z. Li, F. M. Tao, Density functional studies of the formation of nitrous acid from the reaction of nitrogen dioxide and water vapor. J. Phys. Chem. A 1999, 103, 7848.
Density functional studies of the formation of nitrous acid from the reaction of nitrogen dioxide and water vapor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1OjtrY%3D&md5=794122a836e6d57fbc60335686cda670CAS |

[33]  G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, R. Kincaid, Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet. Atmos. Environ. 2002, 36, 1799.
Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivValt7c%3D&md5=8e0e1e5cba63d2b0fdc1ac780c138e3bCAS |

[34]  S. M. Wilson, M. L. Serre, Examination of atmospheric ammonia levels near hog CAFOs, homes, and schools in eastern North Carolina. Atmos. Environ. 2007, 41, 4977.
Examination of atmospheric ammonia levels near hog CAFOs, homes, and schools in eastern North Carolina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWhtbY%3D&md5=236045481572f92becc16fb678e4468cCAS |

[35]  A. Bari, V. Ferraro, L. R. Wilson, D. Luttinger, L. Husain, Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmos. Environ. 2003, 37, 2825.
Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktF2nurw%3D&md5=5f333ae6fd3e7b291e9816b6dd25eccbCAS |

[36]  J. D. Spengler, M. Brauer, J. M. Samet, W. E. Lambert, Nitrous acid in Albuquerque, New Mexico, homes. Environ. Sci. Technol. 1993, 27, 841.
Nitrous acid in Albuquerque, New Mexico, homes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFyls70%3D&md5=5ed619cbc9b9fdf8de906eff2d2dfa07CAS |

[37]  B. Vogel, H. Vogel, J. Kleffmann, R. Kurtenbach, Measured and simulated vertical profiles of nitrous acid. Part II. Model simulations and indications for a photolytic source. Atmos. Environ. 2003, 37, 2957.
Measured and simulated vertical profiles of nitrous acid. Part II. Model simulations and indications for a photolytic source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlOhtrs%3D&md5=79767b4e4c4df8c9dd254913e4796db8CAS |

[38]  C. H. Song, M. E. Park, E. J. Lee, J. H. Lee, B. K. Lee, D. S. Lee, J. Kim, J. S. Han, K. J. Moon, Y. Kondo, Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmos. Environ. 2009, 43, 2168.
Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslWks70%3D&md5=dc956963471b06df390d4f460c029daaCAS |

[39]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. W. M. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Allaham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, J. A. Pople, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[40]  C. Møller, M. S. Plesset, Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618.
Note on an approximation treatment for many-electron systems.Crossref | GoogleScholarGoogle Scholar |

[41]  A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
Density-functional thermochemistry. III. The role of exact exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=3791cfa878410070b665d12505501d8aCAS |

[42]  C. Lee, W. T. Yang, R. G. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=8f62a3c11477ca21b6f38cd568a4b208CAS |

[43]  Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215.
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=8bf3e357eeabd63c020a554469734dd1CAS |

[44]  C. Gonzalez, H. B. Schlegel, Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523.
Reaction path following in mass-weighted internal coordinates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=89671568723ec6032de0aa793d5614dbCAS |

[45]  J. Čížek, On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys. 1969, 14, 35.
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules.Crossref | GoogleScholarGoogle Scholar |

[46]  J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces. Int. J. Quantum Chem. 1978, 14, 545.
Electron correlation theories and their application to the study of simple reaction potential surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXos1Gluw%3D%3D&md5=d918028b7843cfbe95bc2f0e1d1a760eCAS |

[47]  R. J. Bartlett, Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J. Phys. Chem. 1989, 93, 1697.
Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1WmtbY%3D&md5=39957856fda1fd774743d106d061febfCAS |

[48]  D. Jayatilaka, T. J. Lee, Open-shell coupled-cluster theory. J. Chem. Phys. 1993, 98, 9734.
Open-shell coupled-cluster theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVSnurc%3D&md5=2016da5738c0408c149e127c8b6b0a1fCAS |

[49]  T. J. Lee, M. Head-Gordon, A. P. Rendell, Investigation of a diagnostic for perturbation theory. Comparison to the T1 diagnostic of coupled-cluster theory. Chem. Phys. Lett. 1995, 243, 402.
Investigation of a diagnostic for perturbation theory. Comparison to the T1 diagnostic of coupled-cluster theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFCmt7c%3D&md5=9155e77cbe70eae15cf3d6dc6fdec954CAS |

[50]  J. C. Rienstra-Kiracofe, W. D. Allen, H. F. Schaefer, The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J. Phys. Chem. A 2000, 104, 9823.
The C2H5 + O2 reaction mechanism: high-level ab initio characterizations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Sksbk%3D&md5=7a77e67d9433e0a119a3c2bfaf6e532bCAS |

[51]  W. G. Liu, W. A. Goddard, First-principles study of the role of interconversion between NO2, N2O4, cis-ONO–NO2, and trans-ONO–NO2 in chemical processes. J. Am. Chem. Soc. 2012, 134, 12 970.
First-principles study of the role of interconversion between NO2, N2O4, cis-ONO–NO2, and trans-ONO–NO2 in chemical processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVWht7bN&md5=b573fcd17b86670c0a495487a7be96a4CAS |

[52]  A. S. Pimentel, F. C. A. Lima, A. B. F. da Silva, The isomerization of dinitrogen tetroxide: O2N–NO2 → ONO–NO2. J. Phys. Chem. A 2007, 111, 2913.
The isomerization of dinitrogen tetroxide: O2N–NO2 → ONO–NO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGrtrs%3D&md5=22c1a58f154938aab15a312b328f41ffCAS | 17388577PubMed |

[53]  F. R. Ornellas, S. M. Resende, F. B. C. Machado, O. Roberto-Neto, A high-level theoretical investigation of the N2O4 → 2NO2 dissociation reaction: is there a transition state? J. Chem. Phys. 2003, 118, 4060.
A high-level theoretical investigation of the N2O4 → 2NO2 dissociation reaction: is there a transition state?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Clur0%3D&md5=75c578addb30854c8cb8458f7919f4a7CAS |

[54]  Y. Song, R. J. Hemley, H. Mao, Z. X. Liu, D. R. Herschbach, New phases of N2O4 at high pressures and high temperatures. Chem. Phys. Lett. 2003, 382, 686.
New phases of N2O4 at high pressures and high temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOmu7s%3D&md5=1e797e49196b16a51c11db6f9f0273ceCAS |

[55]  L. E. S. de Souza, U. K. Deiters, Modeling of the N2O4–NO2 reacting system. Phys. Chem. Chem. Phys. 2000, 2, 5606.
Modeling of the N2O4–NO2 reacting system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslSntL0%3D&md5=3b86faf281ccc6948aa9b715b5989213CAS |

[56]  Q. Shen, K. Hedberg, Investigation of the equilibrium N2O4 ↔ 2NO2 by electron diffraction: molecular structures and effective temperature and pressure of the expanding gas with implications for studies of other dimer–monomer equilibria. J. Phys. Chem. A 1998, 102, 6470.
Investigation of the equilibrium N2O4 ↔ 2NO2 by electron diffraction: molecular structures and effective temperature and pressure of the expanding gas with implications for studies of other dimer–monomer equilibria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFChtLs%3D&md5=d18bf1fc7dc2136320892ed21af93ff8CAS |

[57]  M. L. McKee, Ab initio study of the N2O4 potential energy surface. J. Am. Chem. Soc. 1995, 117, 1629.
Ab initio study of the N2O4 potential energy surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtlKltL0%3D&md5=237266b01421bcdf88e435692dbbbbd6CAS |

[58]  K. Y. Lai, R. S. Zhu, M. C. Lin, Why mixtures of hydrazine and dinitrogen tetroxide are hypergolic? Chem. Phys. Lett. 2012, 537, 33.
Why mixtures of hydrazine and dinitrogen tetroxide are hypergolic?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ahsrg%3D&md5=6b0320f3e91ecbb78f11fb5ccc49be66CAS |

[59]  B. Njegic, J. D. Raff, B. J. Finlayson-Pitts, M. S. Gordon, R. B. Gerber, Catalytic role for water in the atmospheric production of ClNO. J. Phys. Chem. A 2010, 114, 4609.
Catalytic role for water in the atmospheric production of ClNO.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1CqtLc%3D&md5=8f84500dee639233b26100cd13c722ddCAS | 20232807PubMed |

[60]  J. D. Raff, B. Njegic, W. L. Chang, M. S. Gordon, D. Dabdub, R. B. Gerber, B. J. Finlayson-Pitts, Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride. Proc. Natl. Acad. Sci. USA 2009, 106, 13 647.
Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride.Crossref | GoogleScholarGoogle Scholar |

[61]  S. Koda, K. Yoshikawa, J. Okada, K. Akita, Reaction kinetics of nitrogen dioxide with methanol in the gas phase. Environ. Sci. Technol. 1985, 19, 262.
Reaction kinetics of nitrogen dioxide with methanol in the gas phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXotlKjtw%3D%3D&md5=bb75b68a2019f818ff1bf6a9bb0798dcCAS | 22296015PubMed |

[62]  R. S. Zhu, K. Y. Lai, M. C. Lin, Ab initio chemical kinetics for the hydrolysis of N2O4 isomers in the gas phase. J. Phys. Chem. A 2012, 116, 4466.
Ab initio chemical kinetics for the hydrolysis of N2O4 isomers in the gas phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1yqt7k%3D&md5=dde6b51d314112c17627443b2c73bb98CAS | 22506560PubMed |

[63]  M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Laferly, A. G. Marki, Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods. J. Phys. Chem. Ref. Data 1979, 8, 619.
Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktVOksQ%3D%3D&md5=c46d645cfcfc5037f7bce56de59fd16eCAS |

[65]  D. de Jesus Medeiros, A. S. Pimentel, New insights in the atmospheric HONO formation: new pathways for N2O4 isomerization and NO2 dimerization in the presence of water. J. Phys. Chem. A 2011, 115, 6357.
New insights in the atmospheric HONO formation: new pathways for N2O4 isomerization and NO2 dimerization in the presence of water.Crossref | GoogleScholarGoogle Scholar | 21585211PubMed |

[66]  M. E. Varner, B. J. Finlayson-Pitts, R. B. Gerber, Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 molecular dynamics study. Phys. Chem. Chem. Phys. 2014, 16, 4483.
Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 molecular dynamics study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWqtr4%3D&md5=8e602f2a2777944e830e9fcbf9306cf5CAS | 24473238PubMed |

[67]  J. Liu, S. Fang, W. Liu, M. Wang, F. Tao, J. Liu, Mechanism of the gaseous hydrolysis reaction of SO2: effects of NH3 versus H2O. J. Phys. Chem. A 2015, 119, 102.
Mechanism of the gaseous hydrolysis reaction of SO2: effects of NH3 versus H2O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFeitb3N&md5=1ebbc2d95b62d6266121ecec611383e5CAS | 25495573PubMed |

[68]  S. Bourahla, A. Ali Benamara, S. Kouadri Moustefai, Infrared spectra of inorganic aerosols: ab initio study of (NH4)2SO4, NH4NO3, and NaNO3. Can. J. Phys. 2014, 92, 216.
Infrared spectra of inorganic aerosols: ab initio study of (NH4)2SO4, NH4NO3, and NaNO3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGmsb%2FJ&md5=ae43af50648c14fc3550561698dc078fCAS |

[69]  C. S. Choi, J. E. Mapes, E. Prince, The structure of ammonium nitrate(IV). Acta Crystallogr. 1972, 28, 1357.
The structure of ammonium nitrate(IV).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhsF2mu78%3D&md5=300d544a1fb6bd545717c0b29f1dfcbbCAS |

[70]  L. W. Gong, R. Lewicki, R. J. Griffin, F. K. Tittel, C. R. Lonsdale, R. G. Stevens, J. R. Pierce, Q. G. J. Malloy, S. A. Travis, L. M. Bobmanuel, B. L. Lefer, J. H. Flynn, Role of atmospheric ammonia in particulate matter formation in Houston during summertime. Atmos. Environ. 2013, 77, 893.
Role of atmospheric ammonia in particulate matter formation in Houston during summertime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1alsLjL&md5=49e21bd6f59281b2ff5bc28d7e3b0a7dCAS |

[71]  T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580.
Multiwfn: a multifunctional wavefunction analyzer.Crossref | GoogleScholarGoogle Scholar | 22162017PubMed |

[72]  W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33.
VMD: visual molecular dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis12nsrg%3D&md5=9474391758900edeac0225e6c29d5abbCAS | 8744570PubMed |