Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

Arsenic metabolism in cyanobacteria

Shin-ichi Miyashita A D , Chisato Murota B , Keisuke Kondo B , Shoko Fujiwara B D and Mikio Tsuzuki B C
+ Author Affiliations
- Author Affiliations

A Environmental Standards Group, Research Institute for Materials and Chemical Measurement, National Metrology Institute of Japan (NMIJ)/AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.

B School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan.

C JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.

D Corresponding authors. Emails: shinichi-miyashita@aist.go.jp; fujiwara@toyaku.ac.jp




Shin-ichi Miyashita is a researcher at the National Metrology Institute of Japan (NMIJ) in the National Institute of Advanced Industrial Science and Technology (AIST). He is an analytical chemist holding a Ph.D. in Life Sciences from the Tokyo University of Pharmacy and Life Sciences (TUPLS) in Tokyo, Japan. His current research focuses on the development of matrix certified reference materials for determination and speciation of elements in environmental and food matrices, and development of high-throughput technologies for single-cell elemental analysis using inductively coupled plasma spectrometries.



Chisato Murota received a Masters degree in Life Sciences from TUPLS in 2010 and has worked in the Japan Environmental Measurement and Chemical Analysis Association (JEMCA) since 2011. She has been enrolled in a doctoral course of the same university since 2014. She has studied the function and the gene expression of phosphate transporters of Chlamydomonas reinhardtii and cyanobacteria in phosphate and arsenate uptake.



Keisuke Kondo received a Masters degree in Life Sciences from TUPLS in 2012 and now works in a company for extracorporeal diagnostics medicines. In TUPLS, he studied the mechanisms of arsenic uptake and metabolism and the mitigation strategies in green algae and cyanobacteria.



Shoko Fujiwara is an Associate Professor in the School of Life Sciences of TUPLS. She is a plant physiologist and her research focuses on the carbon fixation of photosynthetic microorganisms (microalgae and cyanobacteria) and the effects of arsenic on their growth. She has been studying the arsenic resistance mechanisms of microorganisms for more than 10 years.



Mikio Tsuzuki is a Professor in the School of Life Sciences at TUPLS. His major interest is in algal and cyanobacterial physiology, focussing on photosynthetic carbon fixation. Arsenate tolerance observed in photosynthetic microorganisms is one of his subjects on environmental stresses in photosynthesis.

Environmental Chemistry 13(4) 577-589 https://doi.org/10.1071/EN15071
Submitted: 28 July 2014  Accepted: 4 September 2015   Published: 16 November 2015

Environmental context. Cyanobacteria are ecologically important, photosynthetic organisms that are widely distributed throughout the environment. They play a central role in arsenic transformations in terms of both mineralisation and formation of organoarsenic species as the primary producers in aquatic ecosystems. In this review, arsenic resistance, transport and biotransformation in cyanobacteria are reviewed and compared with those in other organisms.

Abstract. Arsenic is a toxic element that is widely distributed in the lithosphere, hydrosphere and biosphere. Some species of cyanobacteria can grow in high concentrations of arsenate (pentavalent inorganic arsenic compound) (100 mM) and in low-millimolar concentrations of arsenite (trivalent inorganic arsenic compound). Arsenate, which is a molecular analogue of phosphate, is taken up by cells through phosphate transporters, and inhibits oxidative phosphorylation and photophosphorylation. Arsenite, which enters the cell through a concentration gradient, shows higher toxicity than arsenate by binding to sulfhydryl groups and impairing the functions of many proteins. Detoxification mechanisms for arsenic in cyanobacterial cells include efflux of intracellular inorganic arsenic compounds, and biosynthesis of methylarsonic acid and dimethylarsinic acid through methylation of intracellular inorganic arsenic compounds. In some cyanobacteria, ars genes coding for an arsenate reductase (arsC), a membrane-bound protein involved in arsenic efflux (arsB) and an arsenite S-adenosylmethionine methyltransferase (arsM) have been found. Furthermore, cyanobacteria can produce more complex arsenic species such as arsenosugars. In this review, arsenic metabolism in cyanobacteria is reviewed, compared with that in other organisms. Knowledge gaps remain regarding both arsenic transport (e.g. uptake of methylated arsenicals and excretion of arsenate) and biotransformation (especially production of lipid-soluble arsenicals). Further studies in these areas are required, not only for a better understanding of the role of cyanobacteria in the circulation of arsenic in aquatic environments, but also for their application to arsenic bioremediation.


References

[1]  M. Leermakers, W. Baeyens, M. De Gieter, B. Smedts, C. Meert, H. C. De Bisschop, R. Morabito, Ph. Quevauviller, Toxic arsenic compounds in environmental samples: speciation and validation. TrAC – Trend. Anal. Chem. 2006, 25, 1.
| 1:CAS:528:DC%2BD28XlvFyn&md5=f30cd6ee46b006fa2f00f582328f0571CAS |

[2]  K. A. Francesconi, J. S. Edmonds, Arsenic and marine organisms. Adv. Inorg. Chem. 1997, 44, 147.
| 1:CAS:528:DyaK2sXhsVajtbs%3D&md5=3c19cc149dd77659449965ff11f0b38cCAS |

[3]  S. McSheehy, P. Pohl, R. Łobiński, J. Szpunar, Investigation of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS). Analyst (Lond.) 2001, 126, 1055.
Investigation of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVyhsbo%3D&md5=db24284a4305279676b921dfcc803802CAS |

[4]  M. Azizur Rahman, H. Hasegawa, R. P. Lim, Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 2012, 116, 118.
Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVansrs%3D&md5=4e5f4c7fc22069df067c0710fbf803eeCAS |

[5]  X. X. Yin, J. Chen, J. Qin, G. X. Sun, B. P. Rosen, Y. G. Zhu, Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 2011, 156, 1631.
Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWksbY%3D&md5=10eeee15cfa1575560f2bec85eb82446CAS | 21562336PubMed |

[6]  X. X. Yin, L. H. Wang, R. Bai, H. Huang, G. X. Sun, Accumulation and transformation of arsenic in the blue-green alga Synechocystis sp. PCC6803. Water Air Soil Pollut. 2011, 223, 1183.
Accumulation and transformation of arsenic in the blue-green alga Synechocystis sp. PCC6803.Crossref | GoogleScholarGoogle Scholar |

[8]  T. R. Kulp, S. E. Hoeft, M. Asao, M. T. Madigan, J. T. Hollibaugh, J. C. Fisher, J. F. Stolz, C. W. Culbertson, L. G. Miller, R. S. Oremland, Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 2008, 321, 967.
Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslWrurY%3D&md5=ce4a73971557b9c54eae41ca6c2ea701CAS | 18703741PubMed |

[9]  J. Yen, C. Rensing, B. P. Rosen, Y. G. Zhu, Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 2012, 17, 1.

[10]  T. Kaise, Y. Oya-Ohta, T. Ochi, T. Okubo, K. Hanaoka, K. J. Irgolic, T. Sakurai, C. Matsubara, Toxicological study of organic arsenic compound in marine algae using mammalian cell culture technique. Shokuhin Eiseigaku Zasshi 1996, 37, 135.
Toxicological study of organic arsenic compound in marine algae using mammalian cell culture technique.Crossref | GoogleScholarGoogle Scholar |

[11]  H. F. Terwelle, E. C. Slater, Uncoupling of respiratory-chain phosphorylation by arsenate. Biochem. Biophys. Acta–Bioenergetics 1967, 143, 1.
| 1:CAS:528:DyaF2sXksVSisL0%3D&md5=1227bde9f4865886aee266dc2e6e19feCAS |

[12]  R. K. Crane, F. Lipmann, The effect of arsenate on aerobic phosphorylation. J. Biol. Chem. 1953, 201, 235.
| 1:CAS:528:DyaG3sXkvVagtQ%3D%3D&md5=3406fc90d01f8587b584c76b78040de8CAS | 13044791PubMed |

[13]  T. Horio, J. Yamashita, Site of photosynthetic electron-transport systems coupling phosphorylation with chromatophores from Rhodospirillum rubrum. Biochem. Biophys. Acta 1964, 88, 237.
| 1:CAS:528:DyaF2cXkvVGgsL4%3D&md5=23e4a1059f080a77ede2af7bdfd6c846CAS | 14249833PubMed |

[14]  T. Horio, K. Nishikawa, M. Katsumata, J. Yamashita, Possible partial reactions of the photophosphorylation process in chromatophores from Rhodospirillum rubrum. Biochem. Biophys. Acta–Biophysics including Photosynthesis 1965, 94, 371.
| 1:CAS:528:DyaF2MXosVeitw%3D%3D&md5=6d8205d407ea051b3cf77b89ce3d6724CAS |

[15]  M. Avron, A. T. Jagendorf, Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts. J. Biol. Chem. 1959, 234, 967.
| 1:CAS:528:DyaG1MXnvVChtQ%3D%3D&md5=0c4478a319518a516d7e64852933ed76CAS | 13654301PubMed |

[16]  B. R. Selman, S. Selman-Reimer, The steady state kinetics of photophosphorylation. J. Biol. Chem. 1961, 256, 1722.

[17]  S. Van Herreweghe, R. Swennena, C. Vandecasteeleb, V. Cappuyns, Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ. Pollut. 2003, 122, 323.
Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVOktA%3D%3D&md5=54e144063a79e8d064048a56235fac08CAS | 12547522PubMed |

[18]  X. C. Le, M. Ma, Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection. J. Chromatogr. A 1997, 764, 55.
Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGqsLg%3D&md5=6343dcaa24d3e719d2ad70f5d2f4d2d2CAS |

[19]  W. R. Cullen, The toxicity of trimethylarsine: an urban myth. J. Environ. Monit. 2005, 7, 11.
The toxicity of trimethylarsine: an urban myth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSnt77I&md5=1efd81b089dee1b4165e953de4dfb8f8CAS | 15693178PubMed |

[20]  P. Andrewes, D. M. Demarini, K. Funasaka, K. Wallace, V. W. M. Lai, H. Sun, W. R. Cullen, K. T. Kitchin, Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar. Environ. Sci. Technol. 2004, 38, 4140.
Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2itLw%3D&md5=a6b5d0a3ea08891d4d8f3ae066dcc78bCAS | 15352453PubMed |

[21]  M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289.
Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Wjtb8%3D&md5=e27d5620e9ae2eca6e73dc62b88427daCAS | 11005674PubMed |

[22]  J. R. Shaw, S. P. Glaholt, N. S. Greenberg, R. Sierra-Alvarez, C. L. Folt, Acute toxicity of arsenic to Daphnia pulex: influence of organic functional groups and oxidation state. Environ. Toxicol. Chem. 2007, 26, 1532.
Acute toxicity of arsenic to Daphnia pulex: influence of organic functional groups and oxidation state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Crtbo%3D&md5=33ee9c693696af7ebc07ac3f3d6926c1CAS | 17665696PubMed |

[23]  Z. Gong, X. Lu, W. R. Cullen, X. C. Le, Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid. J. Anal. At. Spectrom. 2001, 16, 1409.
Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFKitbs%3D&md5=f776e087b6e2c21ba7526cea982c246eCAS |

[24]  S. Miyashita, S. Fujiwara, M. Tsuzuki, T. Kaise, Cyanobacteria produce arsenosugars. Environ. Chem. 2012, 9, 474.
Cyanobacteria produce arsenosugars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtrrF&md5=8d4838f9170bb3695af1b3da67d0c9deCAS |

[25]  T. Thiel, Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J. Bacteriol. 1988, 170, 1143.
| 1:CAS:528:DyaL1cXhs1Cmsbo%3D&md5=8e15d137bfb72f431b8fccd4ae1236e4CAS | 3125150PubMed |

[26]  S. Miyashita, S. Fujiwara, M. Tsuzuki, T. Kaise, Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 2011, 75, 522.
Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2lsL8%3D&md5=a5ab9d6374f395f452ae278fbebb8b3eCAS | 21389618PubMed |

[27]  W. Goessler, J. Lintschinger, J. Szakova, P. Mader, J. Kopecky, J. Doucha, Chlorella sp. and arsenic compounds: an attempt to prepare an algal reference material for arsenic compounds. Appl. Organomet. Chem. 1997, 11, 57.
Chlorella sp. and arsenic compounds: an attempt to prepare an algal reference material for arsenic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1aitLo%3D&md5=208b16c16b8a903a5f84a85e5a4b365fCAS |

[28]  G. Lunde, The synthesis of fat and water soluble arseno organic compounds in marine and limnetic algae. Acta Chem. Scand. 1973, 27, 1586.
The synthesis of fat and water soluble arseno organic compounds in marine and limnetic algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltlCitbY%3D&md5=3ec8059e711cef719b8620c5b3c58f23CAS | 4206263PubMed |

[29]  L. A. Murray, A. Raab, I. L. Marr, J. Feldmann, Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl. Organomet. Chem. 2003, 17, 669.
Biotransformation of arsenate to arsenosugars by Chlorella vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFOrtL4%3D&md5=6a98d2ee6dbe65f80c056d9705de860bCAS |

[30]  Y. Yamaoka, O. Takimura, H. Fuse, K. Kamimura, Effects of arsenic on the organic component of the alga Dunaliella salina. Appl. Organomet. Chem. 1992, 6, 357.
Effects of arsenic on the organic component of the alga Dunaliella salina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVOrur0%3D&md5=08e0131f08679dafc8f4c46e663d6177CAS |

[31]  W. R. Cullen, L. G. Harrison, H. Li, G. Hewitt, Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus. Appl. Organomet. Chem. 1994, 8, 313.
Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslCru7Y%3D&md5=f4162435ea222175ae95bdb9a79f0c91CAS |

[32]  S. Maeda, K. Kumeda, M. Maeda, S. Higashi, T. Takeshita, Bioaccumulation of arsenic by freshwater algae (Nostoc sp.) and the application to the removal of inorganic arsenic from an aqueous phase. Appl. Organomet. Chem. 1987, 1, 363.
Bioaccumulation of arsenic by freshwater algae (Nostoc sp.) and the application to the removal of inorganic arsenic from an aqueous phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1Gqtw%3D%3D&md5=9f0a2843bb26446efc1f02970bb15d84CAS |

[33]  S. Maeda, K. Mawatari, A. Ohki, K. Naka, Arsenic metabolism in a freshwater food chain: blue-green alga (Nostoc sp.) → shrimp (Neocaridina denticulata) → carp (Cyprinus carpio). Appl. Organomet. Chem. 1993, 7, 467.
Arsenic metabolism in a freshwater food chain: blue-green alga (Nostoc sp.) → shrimp (Neocaridina denticulata) → carp (Cyprinus carpio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXht12qsbw%3D&md5=90add154e17984fbfc6951cac8506516CAS |

[34]  S. Maeda, S. Fujita, A. Ohki, I. Yoshifuku, S. Higashi, T. Takeshita, Arsenic accumulation by arsenic-tolerant freshwater blue-green alga (Phormidium sp.). Appl. Organomet. Chem. 1988, 2, 353.
Arsenic accumulation by arsenic-tolerant freshwater blue-green alga (Phormidium sp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlCn&md5=64cebc0926dadcf4e8c24bb8e888cf38CAS |

[35]  K. Knauer, H. Hemond, Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta). J. Phycol. 2000, 36, 506.
Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslarsLs%3D&md5=f8207e2d5958b26e1e0f30f56c35d8c0CAS |

[36]  S. Maeda, S. Nakashima, T. Takeshita, S. Higashi, Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment. Sep. Sci. Technol. 1985, 20, 153.
Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFKmsrw%3D&md5=4fd00bf0ae9429dc5d3219ab3888dcb4CAS |

[37]  Y. Yamaoka, O. Takimura, Marine algae resistant to inorganic arsenic. Agric. Biol. Chem. 1986, 50, 185.
Marine algae resistant to inorganic arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVeruro%3D&md5=c1b80b166c5211268546058db4662962CAS |

[38]  Y. Yamaoka, O. Takimura, H. Fuse, Environmental factors relating to arsenic accumulation by Dunaliella sp. Appl. Organomet. Chem. 1988, 2, 359.
Environmental factors relating to arsenic accumulation by Dunaliella sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlCm&md5=5fab52b8fb8e310e7a96a22f36b5fc8aCAS |

[39]  I. Kobayashi, S. Fujiwara, H. Saegusa, M. Inouye, H. Matsumoto, M. Tsuzuki, Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii. Mar. Biotechnol. (NY) 2006, 8, 94.
Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFCktbs%3D&md5=47c0a9c58874c3669930a48598afde7eCAS | 16249965PubMed |

[40]  A. R. Marin, S. R. Pezeshki, P. H. Masschelen, H. S. Choi, Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J. Plant Nutr. 1993, 16, 865.
Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslWks7w%3D&md5=f076118ecdc03e28e6c079d6930647e8CAS |

[41]  L. López-Maury, F. J. Florencio, J. C. Reyes, Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 2003, 185, 5363.
Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803.Crossref | GoogleScholarGoogle Scholar | 12949088PubMed |

[42]  J. F. Stolz, P. Basu, R. S. Oremland, Microbial arsenic metabolism: new twists on an old poison. Microbe 2010, 5, 53.

[43]  Y. Gong, H. N. Chou, C. D. Tu, X. Liu, J. T. Liu, L. R. Song, Effects of arsenate on the growth and microcystin production of Microcystis aeruginosa isolated from Taiwan as influenced by extracellular phosphate. J. Appl. Phycol. 2009, 21, 225.
Effects of arsenate on the growth and microcystin production of Microcystis aeruginosa isolated from Taiwan as influenced by extracellular phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVOhsLo%3D&md5=8c34e069bfdab0aa0f4b814893c3e210CAS |

[44]  Y. Gong, L. R. Song, X. Q. Wu, B. D. Xiao, T. Fang, J. T. Liu, Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes. Environ. Toxicol. 2009, 24, 87.
Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWmtrg%3D&md5=53430364b2e754445830aa2171a7e729CAS | 18442067PubMed |

[45]  M. J. Huertas, L. López-Maury, J. Giner-Lamia, A. M. Sánchez-Riego, F. J. Florencio, Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 2014, 4, 865.
Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFSit7w%3D&md5=434c5d853a3466e00e8965e630d20067CAS | 25501581PubMed |

[46]  S. Silver, K. Budd, K. M. Leahy, W. V. Shaw, D. Hammond, R. P. Novick, G. R. Willsky, M. H. Malamy, H. Rosenberg, Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 1981, 146, 983.
| 1:CAS:528:DyaL3MXktlyqt7c%3D&md5=552fcff475a4840c10b3e2dea15d5951CAS | 7016838PubMed |

[47]  M. Shariatpanahi, A. C. Anderson, A. A. Abdelghani, Uptake and distribution of sodium arsenate by bacterial cells. Trace Subst. Environ. Health 1982, 16, 170.
| 1:CAS:528:DyaL3sXltlGju7g%3D&md5=37720f978031251b46d5c4b408e67a50CAS |

[48]  W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713.
Arsenic speciation in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVaitbg%3D&md5=bd2feb00951215fcf8892f3d5064f063CAS |

[49]  B. C. McBride, R. S. Wolfe, Biosynthesis of dimethylarsine by methanobacterium. Biochemistry-US 1971, 10, 4312.
Biosynthesis of dimethylarsine by methanobacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtFyrsA%3D%3D&md5=3c22e0e3b2e975d55a0e98cd11d2d891CAS |

[50]  W. R. Cullen, B. C. McBride, A. W. Pickett, The transformation of arsenicals by Candida humicola. Can. J. Microbiol. 1979, 25, 1201.
The transformation of arsenicals by Candida humicola.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsFCjsb8%3D&md5=157a062dc9f037eb1a7ffd7f98c170b0CAS | 534956PubMed |

[51]  W. R. Cullen, B. C. McBride, M. Reimer, Induction of the aerobic methylation of arsenic by Candida humicola. Bull. Environ. Contam. Toxicol. 1979, 21, 157.
Induction of the aerobic methylation of arsenic by Candida humicola.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtlemtbw%3D&md5=97c895a34740473a8f722f52178e0c21CAS | 444693PubMed |

[52]  R. Wysocki, P. Bobrowicz, S. Ulaszewski, The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J. Biol. Chem. 1997, 272, 30061.
The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslGht7c%3D&md5=a6950fade527f78f3e4e71be7bd17c0fCAS | 9374482PubMed |

[53]  Y. Shibata, M. Sekiguchi, A. Otsuki, M. Morita, Arsenic compounds in zoo- and phyto-plankton of marine origin. Appl. Organomet. Chem. 1996, 10, 713.
Arsenic compounds in zoo- and phyto-plankton of marine origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFynu7k%3D&md5=29d138563af105e7e1c831b7101b2016CAS |

[54]  J. S. Edmonds, Y. Shibata, K. A. Francesconi, R. J. Rippingale, M. Morita, Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl. Organomet. Chem. 1997, 11, 281.
Arsenic transformations in short marine food chains studied by HPLC-ICP MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12qsr8%3D&md5=e5a2e5124d8eefa4106484471cd194acCAS |

[55]  S. Foster, D. Thomson, W. Maher, Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar. Chem. 2008, 108, 172.
Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVyrtQ%3D%3D&md5=336a5860645e704a0942df74fc9c7c95CAS |

[56]  E. Duncan, S. Foster, W. Maher, Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta. Bot. Mar. 2010, 53, 377.
Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKis7bI&md5=87d8b73f6c96620d3a188b6d948997e1CAS |

[57]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Mar. Chem. 2013, 157, 78.
The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWksbzI&md5=c8fd668b8762bf50ab9605db9885905bCAS |

[58]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana. Environ. Chem. 2013, 10, 91.
Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVCkt7Y%3D&md5=50e3dbb65be2b7b4ffe76df50b233eb9CAS |

[59]  E. G. Duncan, W. A. Maher, S. D. Foster, K. M. Mikac, F. Krikowa, The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta. J. Appl. Phycol. 2014, 26, 2129.
The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVentL%2FF&md5=8f2281c64b0fbe9f3290ae2d3044a814CAS |

[60]  R. L. Bennett, M. H. Malamy, Arsenate resistant mutants of Escherichia coli and phosphate transport. Biochem. Biophys. Res. Commun. 1970, 40, 496.
Arsenate resistant mutants of Escherichia coli and phosphate transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvVCru7Y%3D&md5=85571aaa496ae0c7f35b2a336bc8f9b8CAS | 4919964PubMed |

[61]  G. R. Willsky, R. L. Bennett, M. H. Malamy, Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J. Bacteriol. 1973, 113, 529.
| 1:CAS:528:DyaE3sXhtVyjurY%3D&md5=32911e7d155d44a8e9922d7c9e368860CAS | 4570598PubMed |

[62]  G. R. Willsky, M. H. Malamy, Effect of arsenate on inorganic phosphate transport in Escherichia coli. J. Bacteriol. 1980, 144, 366.
| 1:CAS:528:DyaL3cXmtlWlsLY%3D&md5=18b0b1c4a5711c20e4df89b93200300cCAS | 6998959PubMed |

[63]  F. M. Harold, J. R. Baarda, Interaction of arsenate with phosphate-transport systems in wild-type and mutant Streptococcus faecalis. J. Bacteriol. 1966, 91, 2257.
| 1:CAS:528:DyaF28XktFChs7k%3D&md5=43e8574d1894abaa83b761d55e3f3f6bCAS | 4957614PubMed |

[64]  F. M. Harold, E. Spitz, Accumulation of arsenate, phosphate, and aspartate by Streptococcus faecalis. J. Bacteriol. 1975, 122, 266.
| 1:CAS:528:DyaE2MXhs1OgsLk%3D&md5=bb872f3895f9701106b429546f8b544bCAS |

[65]  K. Budd, S. R. Craig, Resistance to arsenate toxicity in the blue-green alga Synechococcus leopoliensis. Can. J. Bot. 1981, 59, 1518.
Resistance to arsenate toxicity in the blue-green alga Synechococcus leopoliensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlsVCqt78%3D&md5=7cdcbfa4d55cf535deecf3a1b14ea535CAS |

[66]  A. Rothstein, Interactions of arsenate with phosphate-transporting system of yeast. J. Gen. Physiol. 1963, 46, 1075.
Interactions of arsenate with phosphate-transporting system of yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktlOhurg%3D&md5=547ce29992c64cc0579702f0a7f40f89CAS | 13975391PubMed |

[67]  C. Jung, A. Rothstein, Arsenate uptake and release in relation to the inhibition of transport and glycolysis in yeast. Biochem. Pharmacol. 1965, 14, 1093.
Arsenate uptake and release in relation to the inhibition of transport and glycolysis in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXksVSrurc%3D&md5=6f445a303fb41e54b6da082062617388CAS | 5854739PubMed |

[68]  M. Bun-ya, K. Shikata, S. Nakade, C. Yompakdee, S. Harashima, Y. Oshima, Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 1996, 29, 344.
| 1:CAS:528:DyaK28XitlCntro%3D&md5=a45c01af8374d90c5caf6b0b044a5899CAS | 8598055PubMed |

[69]  M. W. Shen, D. Shah, W. Chen, N. Da Silva, Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol. Prog. 2012, 28, 654.
Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVOmt7Y%3D&md5=9730192dea902766e18d4c0c0f018898CAS | 22628173PubMed |

[70]  I. Kobayashi, S. Fujiwara, K. Shimogawara, T. Kaise, H. Usuda, M. Tsuzuki, Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas. Plant Cell Physiol. 2003, 44, 597.
Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFSjsLs%3D&md5=713138c13ab56fa62d4f97f19f4ba8e8CAS | 12826625PubMed |

[71]  C. J. Asher, P. F. Reay, Arsenic uptake by barley seedlings. Aust. J. Plant Physiol. 1979, 6, 459.
Arsenic uptake by barley seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvVyktQ%3D%3D&md5=90e403032b7b419143a43191c0a7a853CAS |

[72]  C. I. Ullrich-Eberius, A. Sanz, A. J. Novacky, Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J. Exp. Bot. 1989, 40, 119.
Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitV2gu70%3D&md5=cf86610651aed3f1d04558dc98b5d242CAS |

[73]  A. A. Meharg, M. R. Macnair, An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol. 1990, 116, 29.
An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnvVOhsA%3D%3D&md5=003d2028dc54df6b87114ee2f6ad6a10CAS |

[74]  A. A. Meharg, M. R. Macnair, Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 1992, 43, 519.
Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFSis7Y%3D&md5=710d2dc32f628787b54b9ec54538e002CAS |

[75]  A. A. Meharg, J. Bailey, K. Breadmore, M. R. Macnair, Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant Soil 1994, 160, 11.
Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFCnt7w%3D&md5=d6304caa9077d481d7069aac473c5713CAS |

[76]  H. Shin, H. S. Shin, G. R. Dewbre, M. J. Harrison, Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 2004, 39, 629.
Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslOms78%3D&md5=d99c86e35c0db5a3985f76de0eaa947aCAS | 15272879PubMed |

[77]  Z. Wu, H. Ren, S. P. McGrath, P. Wu, F. J. Zhao, Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 2011, 157, 498.
Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sit73E&md5=d16f3731c96275bd1cb3f7152359d176CAS | 21715673PubMed |

[78]  E. Remy, T. R. Cabrito, R. A. Batista, M. C. Teixeira, I. Sá-Correia, P. Duque, The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol. 2012, 195, 356.
The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFSnurc%3D&md5=7d1db94a6d2598e711abec25e44ce82fCAS | 22578268PubMed |

[79]  H. Rosenberg, R. G. Gerdes, K. Chegwidden, Two systems for the uptake of phosphate in Escherichia coli. J. Bacteriol. 1977, 131, 505.
| 1:CAS:528:DyaE2sXltFCgt7o%3D&md5=f8e3cf1e0646d465cddaca526974b700CAS | 328484PubMed |

[80]  F. D. Pitt, S. Mazard, L. Humphreys, D. J. Scanlan, Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium. J. Bacteriol. 2010, 192, 3512.
Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslSmurg%3D&md5=cdeb4c2f0ef34cad12da1911cef2775bCAS | 20435726PubMed |

[81]  M. Á. Muñoz-Martín, P. Mateo, F. Leganés, F. Fernández-Piñas, Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120. Anal. Bioanal. Chem. 2011, 400, 3573.
Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120.Crossref | GoogleScholarGoogle Scholar | 21533636PubMed |

[82]  M. Elias, A. Wellner, K. Goldin-Azulay, E. Chbriere, J. A. Vorholt, T. J. Erb, D. S. Tawfic, The molecular basis of phosphate discrimination in arsenate-rich environment. Nature 2012, 491, 134.
The molecular basis of phosphate discrimination in arsenate-rich environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGjsb7J&md5=b6413b8027a98c8c0fa4e3e25f32e60cCAS | 23034649PubMed |

[83]  N. X. Wang, Y. Li, X. H. Deng, A. J. Miao, R. Ji, L. Y. Yang, Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res. 2013, 47, 2497.
Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFentL8%3D&md5=2b380e0e790b639fa7470ddb178babe9CAS | 23497978PubMed |

[84]  Z. Wang, Z. Luo, C. Yan, F. Che, Y. Yan, Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes. J. Hazard. Mater. 2014, 276, 393.
Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOitLbN&md5=6cf226e8ede0e688bb4f50720df53cfeCAS | 24922097PubMed |

[85]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
Arsenic round the world: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVGnsbg%3D&md5=cf87d63d1a62f760c9c057b76330b41fCAS | 18968746PubMed |

[86]  Ministry of the Environment Government of Japan, Environmental Quality Standards for Water. Available at http://www.env.go.jp/en/water/wq/wp.pdf [Verified 6 July 2015].

[87]  P. Vaithiyanathan, C. J. Richardson, Nutrient profiles in the everglades: examination along the eutrophication gradient. Sci. Total Environ. 1997, 205, 81.
Nutrient profiles in the everglades: examination along the eutrophication gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1yjsLc%3D&md5=edcc33c6c7906141b3a2ab54444fa92cCAS | 9352671PubMed |

[88]  D. G. Kinniburgh, P. L. Smedley (Eds), Arsenic Contamination of Ground Water in Bangladesh. BGS Technical Report WC/00/19, Vol. 2: Final Report 2011 (British Geological Survey: Keyworth, UK). Available at http://www.bgs.ac.uk/downloads/start.cfm?id=2223 [Verified 6 July 2015].

[89]  A. Jain, R. H. Loeppert, Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J. Environ. Qual. 2011, 29, 1422.
Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite.Crossref | GoogleScholarGoogle Scholar |

[90]  L. S. King, D. Kozono, P. Agre, From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 2004, 5, 687.
From structure to disease: the evolving tale of aquaporin biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCms7Y%3D&md5=d7186c9f933ffc36e31d43c8419e5274CAS | 15340377PubMed |

[91]  Z. Liu, J. Shen, J. M. Carbrey, R. Mukhopadhyay, P. Agre, B. P. Rosen, Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. USA 2002, 99, 6053.
Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWgu7g%3D&md5=88f23fcc61419085e550203deb4faf49CAS | 11972053PubMed |

[92]  B. P. Rosen, Biochemistry of arsenic detoxification. FEBS Lett. 2002, 529, 86.
Biochemistry of arsenic detoxification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1KksbY%3D&md5=6f35e6f3122034b013fbe3ed7f1fb113CAS | 12354618PubMed |

[93]  R. Wysocki, C. C. Chéry, D. Wawrzycka, M. Van Hulle, R. Cornelis, J. M. Thevelein, M. J. Tamás, The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 2001, 40, 1391.
The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Gnsrw%3D&md5=ba11d184dba61308a3a506c0803dee0dCAS | 11442837PubMed |

[94]  E. Maciaszczyk-Dziubinska, I. Migdal, M. Migocka, T. Bocer, R. Wysocki, The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett. 2010, 584, 726.
The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1yhtrs%3D&md5=2f33c73b457d3a5e8222cf7656b753c2CAS | 20026328PubMed |

[95]  Z. Liu, E. Boles, B. P. Rosen, Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 17312.
Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1GnsL4%3D&md5=bba3d274581eee7a17fd32290434c0cdCAS | 14966117PubMed |

[96]  F. J. Zhao, S. P. McGrath, A. A. Meharg, Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61, 535.
Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsb0%3D&md5=735411842756ac91198272169ab66af6CAS | 20192735PubMed |

[97]  R. Y. Li, Y. Ago, W. J. Liu, N. Mitani, J. Feldmann, S. P. McGrath, J. F. Ma, F. J. Zhao, The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 2009, 150, 2071.
The rice aquaporin Lsi1 mediates uptake of methylated arsenic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWntrzK&md5=67b70fadc09d913f6b65c0ad3371b7c0CAS | 19542298PubMed |

[98]  J. F. Ma, N. Yamaji, N. Mitani, X. Y. Xu, Y. H. Su, S. P. McGrath, F. J. Zhao, Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931.
Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFGisbc%3D&md5=9ac94fdb01ecf55380832ada5342f4f7CAS | 18626020PubMed |

[99]  M. J. Abedin, J. Feldmann, A. A. Meharg, Uptake kinetics of arsenic species in rice plants. Plant Physiol. 2002, 128, 1120.
Uptake kinetics of arsenic species in rice plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Gqtb8%3D&md5=7bbda6568eae6b1bc2f5597cf207b1f6CAS | 11891266PubMed |

[100]  A. C. Schmidt, J. Mattusch, W. Reisser, R. Wennrich, Uptake and accumulation behaviour of angiosperms irrigated with solutions of different arsenic species. Chemosphere 2004, 56, 305.
Uptake and accumulation behaviour of angiosperms irrigated with solutions of different arsenic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVagu74%3D&md5=7de935bb756da224f305bfcb9cc95816CAS | 15172603PubMed |

[101]  A. Raab, P. N. Williams, A. Meharg, J. Feldmann, Uptake and translocation of inorganic and methylated arsenic species by plants. Environ. Chem. 2007, 4, 197.
Uptake and translocation of inorganic and methylated arsenic species by plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFaltro%3D&md5=617689a0b38d153bcd62e2a09a0fd1dcCAS |

[102]  Z. Wang, Z. Luo, C. Yan, Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ. Sci. Pollut. Res. Int. 2013, 20, 7286.
Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSmsb%2FI&md5=a16b481937a27564f00ee3b09dac7ce2CAS | 23636594PubMed |

[103]  F. J. Zhao, J. F. Ma, A. A. Meharg, S. P. McGrath, Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777.
Arsenic uptake and metabolism in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFGitbw%3D&md5=06de79891e1774aa02abe36158b94694CAS | 19207683PubMed |

[104]  W. Ali, S. V. Isayenkov, F. J. Zhao, F. J. M. Maathuis, Arsenite transport in plants. Cell. Mol. Life Sci. 2009, 66, 2329.
Arsenite transport in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot12lsbY%3D&md5=14e26418f205ab46f92cf5d3a28933a1CAS | 19350206PubMed |

[105]  X. Wang, L. Q. Ma, B. Rathinasabapathi, Y. Cai, Y. G. Liu, G. M. Zeng, Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata. Environ. Sci. Technol. 2011, 45, 9719.
Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOjsbjN&md5=7021b13ded820631159a22fabf42ec03CAS | 22029254PubMed |

[106]  R. Mukhopadhyay, B. P. Rosen, L. T. Phung, S. Silver, Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 2002, 26, 311.
Microbial arsenic: from geocycles to genes and enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVamsrg%3D&md5=9d08bc845f6807ed74cbf3f303265de7CAS | 12165430PubMed |

[107]  A. Raab, J. Feldmann, Microbial transformation of metals and metalloids. Sci. Prog. 2003, 86, 179.
Microbial transformation of metals and metalloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslamtro%3D&md5=304358b549a67819cc5616acee6a2bc6CAS | 15079996PubMed |

[108]  J. Messens, S. Silver, Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol. 2006, 362, 1.
Arsenate reduction: thiol cascade chemistry with convergent evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVSrtL8%3D&md5=221db00f9ef46e36066af8c7c7937cc5CAS | 16905151PubMed |

[109]  S. Silver, Bacterial resistances to toxic metal ions–a review. Gene 1996, 179, 9.
Bacterial resistances to toxic metal ions–a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1WisLw%3D&md5=5cee4514e4d1c2c9386bd794032a8f50CAS | 8991852PubMed |

[110]  S. Silver, L. T. Phung, Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 1996, 50, 753.
Bacterial heavy metal resistance: new surprises.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFGht78%3D&md5=e887d24422803c617cbf936263e373dbCAS | 8905098PubMed |

[111]  R. Mukhopadhyay, B. P. Rosen, Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol. Lett. 1998, 168, 127.
Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVyhurk%3D&md5=08ad5d91e2b1469ce897300bdb626aacCAS | 9812373PubMed |

[112]  P. Bobrowicz, R. Wysocki, G. Owsianik, A. Goffeau, S. Ulaszewski, Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 1997, 13, 819.
Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslSnt7o%3D&md5=87778849fd423729147e5bd71111e303CAS | 9234670PubMed |

[113]  M. Ghosh, J. Shen, B. P. Rosen, Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1999, 96, 5001.
Pathways of As(III) detoxification in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVKmsbY%3D&md5=d0998b706da68cf18bf58202d9b33ad5CAS | 10220408PubMed |

[114]  S. Pandey, R. Rai, L. C. Rai, Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J. Proteomics 2012, 75, 921.
Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OmtrvI&md5=db6b1fde4d9f04223927721e2528bcc2CAS | 22057044PubMed |

[115]  J. Shi, A. Vlamis-Gardikas, F. Aslund, A. Holmgren, B. P. Rosen, Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J. Biol. Chem. 1999, 274, 36 039.
Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFGg&md5=83eb1554ef2db3b127997a08f198afecCAS |

[116]  L. López-Maury, A. M. Sánchez-Riego, J. C. Reyes, F. J. Florencio, The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC 6803. J. Bacteriol. 2009, 191, 3534.
The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC 6803.Crossref | GoogleScholarGoogle Scholar | 19304854PubMed |

[117]  R. Li, J. D. Haile, P. J. Kennelly, An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. J. Bacteriol. 2003, 185, 6780.
An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1ynurc%3D&md5=7692305e7c690b625d2461e5a9cd4077CAS | 14617642PubMed |

[118]  J. P. Quinn, G. McMullan, Carbon-arsenic bond cleavage by a novel environmental bacterial isolate, strain ASV2. Microbiology 1995, 141, 721.
Carbon-arsenic bond cleavage by a novel environmental bacterial isolate, strain ASV2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVeis7Y%3D&md5=0c324f4ed5ce31bf714d482671613d3bCAS | 7711909PubMed |

[119]  B. Zhang, L. Wang, Y. Xu, X. Yin, Study on absorption and transformation of arsenic in blue alga (Synechocystis sp. PCC6803). Asian J. Ecotoxicol. 2011, 6, 629.
| 1:CAS:528:DC%2BC38XosVKku7g%3D&md5=0b04f17cea3b65304f3ea16141363f49CAS |

[120]  S. Zhang, C. Rensing, Y. G. Zhu, Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments. Environ. Sci. Technol. 2014, 48, 994.
Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKqt7nI&md5=48a6cc37c05c5f68e42b8b1d6f16f178CAS | 24359134PubMed |

[121]  J. Qin, C. R. Lehr, C. Yuan, X. C. Le, T. R. McDermott, B. P. Rosen, Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc. Natl. Acad. Sci. USA 2009, 106, 5213.
Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVert7Y%3D&md5=65f485b3f3e4be9f06bc7a059da15030CAS | 19276121PubMed |

[122]  M. M. Bahar, M. Megharaj, R. Naidu, Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene. J. Hazard. Mater. 2013, 262, 997.
Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ehsw%3D%3D&md5=98460bea49038afbd5215616dfc6a38bCAS | 23290483PubMed |

[123]  J. M. Wood, F. S. Kennedy, C. G. Rosen, Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 1968, 220, 173.
Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhtV2r&md5=75d960af5589f2a495fc661bed617ccfCAS | 5693442PubMed |

[124]  M. O. Andreae, D. Klumpp, Biosynthesis and release of organoarsenic compounds by marine algae. Environ. Sci. Technol. 1979, 13, 738.
Biosynthesis and release of organoarsenic compounds by marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFans7Y%3D&md5=684af07f9829c354ffa1d2ff2a5b3eddCAS |

[125]  I. B. Karadjova, V. I. Slaveykovaa, D. L. Tsalev, The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat. Toxicol. 2008, 87, 264.
The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslWqs7Y%3D&md5=e28d6800392c0967400bc7db1e241098CAS | 18378014PubMed |

[126]  S. Maeda, A. Ohki, T. Tokuda, M. Ohmine, Transformation of arsenic compounds in a freshwater food chain. Appl. Organomet. Chem. 1990, 4, 251.
Transformation of arsenic compounds in a freshwater food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVKgsg%3D%3D&md5=660dbbd89349e5db32183d53bcc5fee7CAS |

[127]  T. Kuroiwa, A. Ohki, K. Naka, S. Maeda, Biomethylation and biotransformation of arsenic in a freshwater food chain: green alga (Chlorella vulgaris) → shrimp (Neocaridina denticulata) → killifish (Oryzias iatipes). Appl. Organomet. Chem. 1994, 8, 325.
Biomethylation and biotransformation of arsenic in a freshwater food chain: green alga (Chlorella vulgaris) → shrimp (Neocaridina denticulata) → killifish (Oryzias iatipes).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslamsbg%3D&md5=47837546ca8387458ef2e855a293617dCAS |

[128]  S. Fujiwara, I. Kobayashi, S. Hoshino, T. Kaise, K. Shimogawara, H. Usuda, M. Tsuzuki, Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii. Plant Cell Physiol. 2000, 41, 77.
Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1Cjuw%3D%3D&md5=1a646da1df80f69cd5cdb33f4ae5b34bCAS | 10750711PubMed |

[129]  T. Kaise, M. Ogura, T. Nozaki, K. Saitoh, T. Sakurai, C. Matsubara, C. Watanabe, K. Hanaoka, Biomethylation of arsenic in an arsenic-rich freshwater environment. Appl. Organomet. Chem. 1997, 11, 297.
Biomethylation of arsenic in an arsenic-rich freshwater environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12qsr0%3D&md5=667de5a114f1df384a9bb82b06086126CAS |

[130]  S. B. Waters, V. Devesa, L. M. Del Razo, M. Styblo, D. J. Thomas, Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase. Chem. Res. Toxicol. 2004, 17, 404.
Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1aiu70%3D&md5=2ea79c6138954fa1422f2da2bc4b04cfCAS | 15025511PubMed |

[131]  J. S. Edmonds, K. A. Francesconi, Transformations of arsenic in the marine environment. Experientia 1987, 43, 553.
Transformations of arsenic in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltFaqtrc%3D&md5=f06dda7dfc9b15c098fc88132cfd1215CAS | 3556209PubMed |

[132]  J. S. Edmonds, K. A. Francesconi, R. V. Stick, Arsenic compounds from marine organisms. Nat. Prod. Rep. 1993, 10, 421.
Arsenic compounds from marine organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslWmsr0%3D&md5=835fba6617baf7ccfb0c2acf77d520beCAS |

[133]  K. A. Francesconi, J. S. Edmonds, Biotransformation of arsenic in the marine environment, in Arsenic in the Environment. Part 1: Cycling and Characterization (Ed. J. O. Nriagu) 1994, Vol. 26, pp. 221–262 (Wiley: New York).

[134]  S. Matsuto, H. Kasuga, H. Okumoto, A. Takahashi, Accumulation of arsenic in blue-green alga, Phormidium sp. Comp. Biochem. Phys. C 1984, 78C, 377.
| 1:CAS:528:DyaL2cXls1KrtLk%3D&md5=cbe53a2e9538628f47ddaae8cfbca2caCAS |

[135]  V. Nischwitz, S. A. Pergantis, Identification of the novel thio-arsenosugars DMThioAsSugarCarboxyl, DMThioAsSugarCarbamate and DMThioAsSugarAdenine in extracts of giant clam tissues by high-performance liquid chromatography online with electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3579.
Identification of the novel thio-arsenosugars DMThioAsSugarCarboxyl, DMThioAsSugarCarbamate and DMThioAsSugarAdenine in extracts of giant clam tissues by high-performance liquid chromatography online with electrospray tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWqs7nO&md5=68963fef55ac5e16c614c8434908117eCAS | 17083132PubMed |

[136]  I. Koch, J. Feldmann, L. Wang, P. Andrewes, K. J. Reimer, W. R. Cullen, Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci. Total Environ. 1999, 236, 101.
Arsenic in the Meager Creek hot springs environment, British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Wrurg%3D&md5=999acb9b0d9c2c2aa4cf47fb600a9093CAS | 10535147PubMed |

[137]  Y. Yamaoka, M. L. Carmona, J. M. Oclarit, K. Jin, Y. Shibata, Arsenic compounds in marine sponge (Haliclona permolis, Halichondria japonica, Halichondria okadai and Haliclona sp. white) from Seto Inland Sea, Japan. Appl. Organomet. Chem. 2001, 15, 261.
Arsenic compounds in marine sponge (Haliclona permolis, Halichondria japonica, Halichondria okadai and Haliclona sp. white) from Seto Inland Sea, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFOku70%3D&md5=5ee95c789ed9be2de2bf682e7bd73c1bCAS |

[138]  J. S. Edmonds, K. A. Francesconi, J. A. Hansen, Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna. Experientia 1982, 38, 643.
Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks12js7s%3D&md5=09b49fd62d71d8d2d64a87490de732d6CAS |

[139]  V. W. M. Lai, W. R. Cullen, C. F. Harrington, K. J. Reimer, The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin. Appl. Organomet. Chem. 1997, 11, 797.
The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFaqsrw%3D&md5=198e982ec0831afe1d25cf27c7afdf3eCAS |

[140]  A. Geiszinger, W. Goessler, S. N. Pedersen, K. A. Francesconi, Arsenic biotransformation by the brown macroalga Fucus serratus. Environ. Toxicol. Chem. 2001, 20, 2255.
Arsenic biotransformation by the brown macroalga Fucus serratus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWitQ%3D%3D&md5=665238a59260d3dd9150ff1384df391bCAS | 11596758PubMed |

[141]  S. Khokiattiwong, W. Goessler, S. N. Pedersen, C. Raymond, K. A. Francesconi, Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater. Appl. Organomet. Chem. 2001, 15, 481.
Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOqs7g%3D&md5=e280fd11b1ce46d6ddf431e3d652a43dCAS |

[142]  S. C. R. Granchinho, C. M. Franz, E. Polishchuk, W. R. Cullen, K. J. Reimer, Transformation of arsenicV by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri. Appl. Organomet. Chem. 2002, 16, 721.
Transformation of arsenicV by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslWmtrk%3D&md5=2f7b2b01d1061b4fafd49ada37dfc54bCAS |

[143]  D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007, 21, 396.
Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1yit7s%3D&md5=1f6501a501723e7d26f7a08a14882e1bCAS |

[144]  Y. Shibata, M. Morita, A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii. Agric. Biol. Chem. 1988, 52, 1087.
A novel, trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksFWksLg%3D&md5=d9e83c76c9a51e8b61c1ef8e16a9a8d3CAS |

[145]  S. Miyashita, M. Shimoya, Y. Kamidate, T. Kuroiwa, O. Shikino, S. Fujiwara, K. A. Francesconi, T. Kaise, Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS. Chemosphere 2009, 75, 1065.
Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWltLk%3D&md5=d8b044bfea9244a168eee271911954f2CAS | 19203781PubMed |

[146]  V. Devesa, M. A. Suner, V. W. M. Lai, S. C. R. Granchinho, J. M. Martinez, D. Velez, W. R. Cullen, R. Montoro, Determination of arsenic species in a freshwater crustacean Procambarus clarkii. Appl. Organomet. Chem. 2002, 16, 123.
Determination of arsenic species in a freshwater crustacean Procambarus clarkii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFeqsLg%3D&md5=2f7d204550ff07df9161014d3335d5ceCAS |

[147]  C. Soeroes, W. Goessler, K. A. Francesconi, E. Schmeisser, R. Raml, N. Kienzl, M. Kahn, P. Fodor, D. Kuehnelt, Thio arsenosugars in freshwater mussels from the Danube in Hungary. J. Environ. Monit. 2005, 7, 688.
Thio arsenosugars in freshwater mussels from the Danube in Hungary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsF2htL0%3D&md5=62cbbb62e86a4e2794e77530447996aaCAS | 15986048PubMed |

[148]  S. C. R. Granchinho, E. Polishchuk, W. R. Cullen, K. J. Reimer, Biomethylation and bioaccumulation of arsenic(V) by marine alga Fucus gardneri. Appl. Organomet. Chem. 2001, 15, 553.
Biomethylation and bioaccumulation of arsenic(V) by marine alga Fucus gardneri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOqsLs%3D&md5=73aa7f56d4692c6f1004a52246d300efCAS |

[149]  Y. Shibata, M. Morita, Chemical forms of arsenic in the environment – with special emphasis in the marine environment. Biomed. Res. Trace Elements 2000, 11, 1.
| 1:CAS:528:DC%2BD3cXjsFGksLk%3D&md5=5743282abb2cbd15c58f186d1c329d09CAS |

[150]  S. Maeda, Biotransformation of arsenic in freshwater organisms, arsenic and old mustard: chemical problems in the destruction of old arsenical and ‘mustard’ munitions. NATO Advanced Science Institute Series, Sub-Series 1. Disarmament Technologies 1998, 19, 135.
| 1:CAS:528:DyaK1cXntVaru7c%3D&md5=6c3e6a66dcbeb8145483582f0349437cCAS |

[151]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Arsenic compounds from the kidney of the giant clam Tridacna maxima: isolation and identification of an arsenic-containing nucleoside. J. Chem. Soc. Perk. T. 1 1992, 11, 1349.
Arsenic compounds from the kidney of the giant clam Tridacna maxima: isolation and identification of an arsenic-containing nucleoside.Crossref | GoogleScholarGoogle Scholar |

[152]  R. Ritsema, L. Dukan, T. R. i. Navarro, E. Van Leeuwen, N. Oliveira, P. Wolfs, E. Lebret, Speciation of arsenic compounds in urine by LC–ICP MS. Appl. Organomet. Chem. 1998, 12, 591.
Speciation of arsenic compounds in urine by LC–ICP MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOnurk%3D&md5=41e5ae67d6f06f768cbb385a36294581CAS |

[153]  E. G. Duncan, W. A. Maher, S. D. Foster, Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. Environ. Sci. Technol. 2015, 49, 33.
Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSgsLfN&md5=970c1fdf3aa69038a74339ef6d2a4233CAS | 25443092PubMed |

[154]  M. Morita, Y. Shibata, Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame). Chemosphere 1988, 17, 1147.
Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVOlt78%3D&md5=80c1d36d94a060c4d6563890105630c8CAS |

[155]  S. García-Salgado, G. Raber, R. Raml, C. Magnes, K. A. Francesconi, Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 2012, 9, 63.
Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae.Crossref | GoogleScholarGoogle Scholar |

[156]  R. A. Glabonjat, G. Raber, K. B. Jensen, J. Ehgartner, K. A. Francesconi, Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization. Anal. Chem. 2014, 86, 10 282.
Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOrurnK&md5=01db9bc7664f42d167c5fa8ccf204bf8CAS |

[157]  X. Xue, G. Raber, S. Foster, S. Chen, K. A. Francesconi, Y. Zhu, Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environ. Chem. 2014, 11, 506.
Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Oit7fO&md5=c0d9b6bd1b6b27d66112bf3ab3287795CAS |

[158]  W. Goessler, M. Pavkov, Accurate quantification and transformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating. Analyst (Lond.) 2003, 128, 796.
Accurate quantification and transformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlOjt7s%3D&md5=b6bf85a736121289716db259b0a2d7f4CAS |

[159]  E. A. Woolson, Generation of alkylarsines from soil. Weed Sci. 1977, 25, 412.
| 1:CAS:528:DyaE2sXlvF2rurg%3D&md5=3ca07dedc2496695795931fd3a6a313bCAS |

[160]  J. G. Sanders, Microbial role in the demethylation and oxidation of methylated arsenicals in seawater. Chemosphere 1979, 8, 135.
Microbial role in the demethylation and oxidation of methylated arsenicals in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksVChtL8%3D&md5=506271ee2618ee28497b737afc0ef302CAS |

[161]  K. Hanaoka, S. Tagawa, T. Kaise, The fate of organoarsenic compounds in marine ecosystems. Appl. Organomet. Chem. 1992, 6, 139.
The fate of organoarsenic compounds in marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1ajurY%3D&md5=7f4c5c114983b4cdcb9ae45f66e9c0a7CAS |

[162]  G. Caumette, I. Koch, K. J. Reimer, Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit. 2012, 14, 2841.
Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOltLvF&md5=06484b9d64a22c4ea18f0bdd69921eadCAS | 23014956PubMed |

[163]  M. Valls, V. D. Lorenzo, Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 2002, 26, 327.
Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1ajt78%3D&md5=50b91e105adfab0c06bfc84990c3dd9aCAS | 12413663PubMed |

[164]  J. Akai, H. M. Anawar, Mineralogical approach in elucidation of contamination mechanism for toxic trace elements in the environment: special reference to arsenic contamination in groundwater. Phys. Chem. Earth 2013, 58–60, 2.
Mineralogical approach in elucidation of contamination mechanism for toxic trace elements in the environment: special reference to arsenic contamination in groundwater.Crossref | GoogleScholarGoogle Scholar |

[165]  S. Loewenberg, Scientists tackle water contamination in Bangladesh. Lancet 2007, 370, 471.
Scientists tackle water contamination in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 17695063PubMed |