Dialkylsulfate formation in sulfuric acid-seeded secondary organic aerosol produced using an outdoor chamber under natural sunlight
Jiaying Li A , Myoseon Jang A B and Ross L. Beardsley AA Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611, USA.
B Corresponding author. Email: mjang@ufl.edu
Environmental Chemistry 13(4) 590-601 https://doi.org/10.1071/EN15129
Submitted: 1 April 2015 Accepted: 7 September 2015 Published: 16 November 2015
Environmental context. Laboratory and field studies have both provided evidence for organosulfate formation by esterification of H2SO4 with organic compounds in aerosols. Using an outdoor chamber, the production of dialkylsufate was measured for organic aerosols produced by photooxidation of various hydrocarbons in the presence of H2SO4 aerosol and NOx. The formation of organosulfates influences the decrease of both aerosol acidity and aerosol hygroscopicity.
Abstract. Secondary organic aerosols (SOA) were produced by the photooxidation of the volatile organic hydrocarbons (VOCs) isoprene, α-pinene and toluene, in the presence of excess amounts of sulfuric acid seed aerosol with varying NOx concentrations using a large, outdoor smog chamber. Aerosol acidity ([H+], μmol m–3) was measured using colorimetry integrated with a reflectance UV-visible spectrometer (C-RUV). The C-RUV technique measures aerosol acidity changes through the neutralisation of sulfuric acid with ammonia and the formation of dialkylsulfate, a diester of sulfuric acid. The concentration (μmol m–3) of dialkylsulfate in aerosol was estimated using the difference in [H+] obtained from C-RUV and particle-into-liquid-sampler ion chromatography (PILS-IC). The yield of dialkylsulfate (YdiOS) was defined as the dialkylsulfate concentration normalised by the concentrations of both the ammonium-free sulfate ([SO42–]free = [SO42–] – 0.5 [NH4+]) and organic carbon. The highest YdiOS appeared in isoprene SOA and the lowest YdiOS in α-pinene SOA. Under our experimental conditions, more than 50 % of the total sulfates in sulfuric acid-seeded isoprene SOA were dialkylsulfates. For all SOA, higher YdiOS was observed under higher NOx conditions (VOC (ppb C)/NO (ppb) < 15). Among the major functional groups (–COOH, –CO–H, –CHO and –ONO2) predicted to be present using a simple absorptive partitioning model of organic products in the multiphase system (gas, organic aerosol and inorganic aerosol), the concentrations of –CO–H, –CHO and –ONO2 groups were found to be correlated with YdiOS. In particular, a strong correlation was observed between YdiOS and the concentration of alcohol functional groups.
References
[1] M. Jang, N. M. Czoschke, S. Lee, R. M. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814.| Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSntLk%3D&md5=eb0ada83e72e5e029bbd28a4d0043761CAS | 12399587PubMed |
[2] M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols. Science 2004, 303, 1659.
| Identification of polymers as major components of atmospheric organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFCnsbc%3D&md5=1ed8b330c2b4b5eea792da063f199ee2CAS | 15016998PubMed |
[3] N. M. Czoschke, M. Jang, R. M. Kamens, Effect of acidic seed on biogenic secondary organic aerosol growth. Atmos. Environ. 2003, 37, 4287.
| Effect of acidic seed on biogenic secondary organic aerosol growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Smsr8%3D&md5=619973277bba1b5ef2c11cfdccc93bfaCAS |
[4] J. D. Surratt, M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney, J. H. Seinfeld, Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol. 2007, 41, 5363.
| Effect of acidity on secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFeisrc%3D&md5=ace33254fddb74139b3146ae6b17efe4CAS | 17822103PubMed |
[5] G. Cao, M. Jang, An SOA model for toluene oxidation in the presence of inorganic aerosols. Environ. Sci. Technol. 2010, 44, 727.
| An SOA model for toluene oxidation in the presence of inorganic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOisrzJ&md5=eff06984c9447da0b946d4dd8f597741CAS | 20017537PubMed |
[6] E. C. Minerath, M. T. Casale, M. J. Elrod, Kinetics feasibility study of alcohol sulfate esterification reactions in tropospheric aerosols. Environ. Sci. Technol. 2008, 42, 4410.
| Kinetics feasibility study of alcohol sulfate esterification reactions in tropospheric aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOju7Y%3D&md5=6f602f03a253df6ba20916ad052589e4CAS | 18605563PubMed |
[7] N. C. Eddingsaas, C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, P. O. Wennberg, α-Pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments. Atmos. Chem. Phys. 2012, 12, 7413.
| α-Pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsleru7fF&md5=cdb88fb2ddbd34f03eeccafd727240f8CAS |
[8] H. Zhang, D. R. Worton, M. Lewandowski, J. Ortega, C. L. Rubitschun, J.-H. Park, K. Kristensen, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, M. Jaoui, J. H. Offenberg, T. E. Kleindienst, J. Gilman, W. C. Kuster, J. de Gouw, C. Park, G. W. Schade, A. A. Frossard, L. Russell, L. Kaser, W. Jud, A. Hansel, L. Cappellin, T. Karl, M. Glasius, A. Guenther, A. H. Goldstein, J. H. Seinfeld, A. Gold, R. M. Kamens, J. D. Surratt, Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere. Environ. Sci. Technol. 2012, 46, 9437.
| Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhs7nM&md5=c56e6155525650faa5ae52be00a3d4a5CAS | 22849588PubMed |
[9] J. Liggio, S.-M. Li, R. McLaren, Heterogeneous reactions of glyoxal on particulate matter: identification of acetals and sulfate esters. Environ. Sci. Technol. 2005, 39, 1532.
| Heterogeneous reactions of glyoxal on particulate matter: identification of acetals and sulfate esters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVSgsA%3D%3D&md5=bee83809b7b66399b218e4a27bc9b647CAS | 15819206PubMed |
[10] Y. Iinuma, O. Boege, A. Kahnt, H. Herrmann, Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. Phys. Chem. Chem. Phys. 2009, 11, 7985.
| Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrsL%2FO&md5=d4646bd8bca915b1d9f2f9dfc010c2b0CAS | 19727505PubMed |
[11] V. Lal, A. F. Khalizov, Y. Lin, M. D. Galvan, B. T. Connell, R. Zhang, Heterogeneous reactions of epoxides in acidic media. J. Phys. Chem. A 2012, 116, 6078.
| Heterogeneous reactions of epoxides in acidic media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSku78%3D&md5=fac9adec327bb894a35e1d28b5a24db4CAS | 22309032PubMed |
[12] J. D. Surratt, A. W. H. Chan, N. C. Eddingsaas, M. Chan, C. L. Loza, A. J. Kwan, et al. Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640.
| Reactive intermediates revealed in secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsL0%3D&md5=6ad0cda2e25f9d6472253b39009f158bCAS | 20080572PubMed |
[13] M. M. Galloway, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, F. N. Keutsch, Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 2009, 9, 3331.
| Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1amsb4%3D&md5=78c41ae491be60d3ec262332cb7bbedbCAS |
[14] B. Nozière, S. Ekström, T. Alsberg, S. Holmström, Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 2010, 37, L05806.
| Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |
[15] J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
| Evidence for organosulfates in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=7f982cee0787edd69cd78a8fab595badCAS | 17310716PubMed |
[16] L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. Su, K. A. Prather, Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 1: single-particle atmospheric observations in Atlanta. Environ. Sci. Technol. 2011, 45, 5105.
| Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 1: single-particle atmospheric observations in Atlanta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlCrsLo%3D&md5=7f2a9b15bd5ba76c7c427148681d6a69CAS | 21604734PubMed |
[17] Y. Gómez-González, J. D. Surratt, F. Cuyckens, R. Szmigielski, R. Vermeylen, M. Jaoui, M. Lewandowski, J. H. Offenberg, T. E. Kleindienst, E. O. Edney, F. Blockhuys, C. Van Alsenoy, W. Maenhaut, M. Claeys, Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–) electrospray ionization mass spectrometry. J. Mass Spectrom. 2008, 43, 371.
| Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–) electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 17968849PubMed |
[18] Y. Iinuma, C. Mueller, T. Berndt, O. Boege, M. Claeys, H. Herrmann, Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 6678.
| Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVCntLo%3D&md5=333db94b78682e242a1f53f6afb73d81CAS | 17969680PubMed |
[19] K. Kristensen, M. Glasius, Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in north-west Europe during spring. Atmos. Environ. 2011, 45, 4546.
| Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in north-west Europe during spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1ahsbc%3D&md5=fe0781976f35b5b8a485a29a1d521b73CAS |
[20] E. A. Stone, L. Yang, L. E. Yu, M. Rupakheti, Characterization of organosulfates in atmospheric aerosols at four Asian locations. Atmos. Environ. 2012, 47, 323.
| Characterization of organosulfates in atmospheric aerosols at four Asian locations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KrtbrL&md5=191d5a400f4b5acfb08d0dad9c1f35d3CAS |
[21] Y. Ma, X. Xu, W. Song, F. Geng, L. Wang, Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China. Atmos. Environ. 2014, 85, 152.
| Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOiu74%3D&md5=2fdcce71864bde0a232daf9ba837383aCAS |
[22] K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high-resolution electrospray ionization FT-ICR mass spectrometry. Atmos. Chem. Phys. 2009, 9, 2533.
| Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high-resolution electrospray ionization FT-ICR mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtbc%3D&md5=de8256448a1cba715241c89310f59f5cCAS |
[23] K. M. Shakya, R. E. Peltier, Non-sulfate sulfur in fine aerosols across the United States: insight for organosulfate prevalence. Atmos. Environ. 2015, 100, 159.
| Non-sulfate sulfur in fine aerosols across the United States: insight for organosulfate prevalence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGhsbzI&md5=b82ba3281588e368db6d0809b6cf85e0CAS |
[24] R. E. Kirk, D. F. Othmer, J. I. Kroschwitz, M. Howe-Grant, Encyclopedia of Chemical Technology 1991 (Wiley: New York).
[25] D. K. Farmer, A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, R. J. Ziemann, J. L. Jimenez, Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2010, 107, 6670.
| Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsbs%3D&md5=89e8202bdf8e77bb1d5497358a1c05aaCAS | 20194777PubMed |
[26] J. F. King, Chapter 6: Acidity in Sulphonic Acids, Esters and their Derivatives (Ed. Z. R. Saul Patai) 2006, pp. 249–259 (Wiley: Chichester, UK).
[27] M. Jang, G. Cao, J. Paul, Colorimetric particle acidity analysis of secondary organic aerosol coating on submicron acidic aerosols. Aerosol Sci. Technol. 2008, 42, 409.
| Colorimetric particle acidity analysis of secondary organic aerosol coating on submicron acidic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFChurw%3D&md5=e50aec8d163219c85b32880f04aaa202CAS |
[28] J. Li, M. Jang, Aerosol acidity measurement using colorimetry coupled with a reflectance UV-visible spectrometer. Aerosol Sci. Technol. 2012, 46, 833.
| Aerosol acidity measurement using colorimetry coupled with a reflectance UV-visible spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlWisrw%3D&md5=cadc93c88187cf62b513aad0201736c7CAS |
[29] D. A. Orsini, Y. Ma, A. Sullivan, B. Sierau, K. Baumann, R. J. Weber, Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water-soluble aerosol composition. Atmos. Environ. 2003, 37, 1243.
| Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water-soluble aerosol composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslGqtr4%3D&md5=2812c7a34be57e23cfbb578211946731CAS |
[30] R. J. Weber, D. Orsini, Y. Daun, Y. N. Lee, P. J. Klotz, F. Brechtel, A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Sci. Technol. 2001, 35, 718.
| A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVyqtLc%3D&md5=3b8224c27eceb3adf655a51905ab6c32CAS |
[31] Y. Im, M. Jang, R. Beardsley, Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions. Atmos. Chem. Phys. 2014, 13, 5843.
| Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions.Crossref | GoogleScholarGoogle Scholar |
[32] M. Jang, R. M. Kamens, Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ. Sci. Technol. 2001, 35, 4758.
| Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFOnsLk%3D&md5=91ad137ea19f2369c5a5bf4c38f653a1CAS | 11775150PubMed |
[33] J. Jang, M. Jang, W. Mui, A. D. Carrie, V. H. Michael, H. John, Formation of active chlorine oxidants in saline Oxone aerosol. Aerosol Sci. Technol. 2010, 44, 1018.
| Formation of active chlorine oxidants in saline Oxone aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKht77N&md5=c9edf43d7b5405e03534f1b3631eb058CAS |
[34] A. K. Bertram, S. T. Martin, S. J. Hanna, M. L. Smith, A. Bodsworth, Q. Chen, M. Kuwata, A. Liu, Y. You, S. R. Zorn, Predicting the relative humidities of liquid–liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos. Chem. Phys. 2011, 11, 10 995.
| Predicting the relative humidities of liquid–liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOis7g%3D&md5=1430151b447693cd1978c1256353bddcCAS |
[35] S. L. Clegg, P. Brimblecombe, A. S. Wexler, Thermodynamic model of the system H+–NH4+–SO42–NO3––H2O at tropospheric temperatures. J. Phys. Chem. A 1998, 102, 2137.
| Thermodynamic model of the system H+–NH4+–SO42–NO3––H2O at tropospheric temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlekt7Y%3D&md5=a2284b8ced63ca82efd0d0272c608f39CAS |
[36] M. Shiraiwa, M. Ammann, T. Koop, U. Poschl, Gas uptake and chemical aging of semisolid organic aerosol particles. P. Natl Acad. Sci. USA 2011, 108, 11 003.
| Gas uptake and chemical aging of semisolid organic aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptV2ht7o%3D&md5=8fe1927366a6d54264178a38c3536baaCAS |
[37] P. H. McMurry, D. Grosjean, Gas and aerosol wall losses in Teflon film smog chambers. Environ. Sci. Technol. 1985, 19, 1176.
| Gas and aerosol wall losses in Teflon film smog chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVSiur8%3D&md5=9c44f229f6c3c1a1c1dc9744384699a7CAS | 22280133PubMed |
[38] N. P. Levitt, J. Zhao, R. Zhang, Heterogeneous chemistry of butanol and decanol with sulfuric acid: implications for secondary organic aerosol formation. J. Phys. Chem. A 2006, 110, 13 215.
| Heterogeneous chemistry of butanol and decanol with sulfuric acid: implications for secondary organic aerosol formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2gt7nO&md5=13fc8f32b76c596038ed2c385230d058CAS |
[39] S. L. Clegg, J. H. Seinfeld, P. Brimblecombe, Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. J. Aerosol Sci. 2001, 32, 713.
| Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFehtLg%3D&md5=9d56daa2cf8bcf830ec70314dc73bb06CAS |
[40] E. I. Chang, J. F. Pankow, Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water – Part 2: consideration of phase separation effects by an X-UNIFAC model. Atmos. Environ. 2006, 40, 6422.
| Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water – Part 2: consideration of phase separation effects by an X-UNIFAC model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1ynsb4%3D&md5=98fe2055d8720e790176b1e8174566d7CAS |
[41] V. G. Ciobanu, C. Marcolli, U. K. Krieger, U. Weers, T. Peter, Liquid–liquid phase separation in mixed organic/inorganic aerosol particles. J. Phys. Chem. A 2009, 113, 10966.
| Liquid–liquid phase separation in mixed organic/inorganic aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKktLfL&md5=e1cc631f3356b4565a88c80cf10a1f80CAS | 19775109PubMed |
[42] M. Song, C. Marcolli, U. K. Krieger, A. Zuend, T. Peter, Liquid–liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles. Atmos. Chem. Phys. 2012, 12, 2691.
| Liquid–liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12hsL8%3D&md5=32d513c7bd15b7693e9493d9d2e03dcdCAS |
[43] A. Zuend, J. H. Seinfeld, Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid–liquid phase separation. Atmos. Chem. Phys. 2012, 12, 3857.
| Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid–liquid phase separation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOns73P&md5=50605e5e088054d39059af89d2b1dcd1CAS |
[44] M. E. Jenkin, S. M. Saunders, V. Wagner, M. J. Pilling, Protocol for the development of the master chemical mechanism, MCM v3 (part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181.
| Protocol for the development of the master chemical mechanism, MCM v3 (part B): tropospheric degradation of aromatic volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Sntrw%3D&md5=99f88404c902140a2808dbc653e85b49CAS |
[45] J. F. Pankow, An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 1994, 28, 189.
| An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFajs7w%3D&md5=2ff34c500e56575c22295f1267051390CAS |
[46] A. F. M. Barton, Handbook of Solubility Parameters and Other Cohesion Parameters 1991 (CRC Press: Boston, MA).
[47] A. Zuend, C. Marcolli, A. M. Booth, D. M. Lienhard, V. Soonsin, U. K. Krieger, D. O. Topping, G. McFiggans, T. Peter, J. H. Seinfeld, New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic–inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 2011, 11, 9155.
| New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic–inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyju7fK&md5=c7bf6cdf64e7bc0846ba49d5d3b308c6CAS |
[48] N. C. Deno, M. S. Newman, Mechanism of sulfation of alcohols. J. Am. Chem. Soc. 1950, 72, 3852.
| Mechanism of sulfation of alcohols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2mtLrN&md5=a1f0407e002730d5b764530aee534e0dCAS |
[49] J. F. Hamilton, M. R. Alfarra, N. Robinson, M. W. Ward, A. C. Lewis, G. B. McFiggans, H. Coe, J. D. Allan, Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest. Atmos. Chem. Phys. 2013, 13, 11 295.
| Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFaksb8%3D&md5=3d7751bab3e16d6a752bdaad2038d07dCAS |
[50] K. S. Hu, A. I. Darer, M. J. Elrod, Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates. Atmos. Chem. Phys. 2011, 11, 8307.
| Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyju7rJ&md5=b625b8893b0eb7df9406d78d73916feaCAS |
[51] A. I. Darer, N. C. Cole-Filipiak, A. E. O’Connor, M. J. Elrod, Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ. Sci. Technol. 2011, 45, 1895.
| Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGnsL4%3D&md5=566c5aff7bbf962b2743513790f3de6cCAS | 21291229PubMed |
[52] K. W. Loeffler, C. A. Koehler, N. M. Paul, D. O. De Haan, Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions. Environ. Sci. Technol. 2006, 40, 6318.
| Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xptlelu7k%3D&md5=a5016ab07cefd48ae7d875279d4b144dCAS | 17120559PubMed |
[53] A. Virtanen, J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirilae, J. Leskinen, J. M. Maekelae, J. K. Holopainen, U. Poeschl, M. Kulmala, D. R. Worsnop, A. Laaksonen, An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467, 824.
| An amorphous solid state of biogenic secondary organic aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yhsLnN&md5=8661fc66c8d699ea074a2f1c94f2e98bCAS | 20944744PubMed |
[54] T. P. Riedel, Y.-H. Lin, S. H. Budisulistiorini, C. J. Gaston, J. A. Thornton, Z. Zhang, W. Vizuete, A. Gold, J. D. Surratt, Heterogeneous reactions of isoprene-derived epoxides: reaction probabilities and molar secondary organic aerosol yield estimates. Environ. Sci. Technol. Lett. 2015, 2, 38.
| Heterogeneous reactions of isoprene-derived epoxides: reaction probabilities and molar secondary organic aerosol yield estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslCmsg%3D%3D&md5=8dc0169692be452c4cad4e7693c85ddfCAS |
[55] T. B. Nguyen, M. M. Coggon, K. H. Bates, X. Zhang, R. H. Schwantes, K. A. Schilling, C. L. Loza, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmos. Chem. Phys. 2014, 14, 3497.
| Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds.Crossref | GoogleScholarGoogle Scholar |
[56] I. R. Piletic, E. O. Edney, L. J. Bartolotti, A computational study of acid-catalyzed aerosol reactions of atmospherically relevant epoxides. Phys. Chem. Chem. Phys. 2013, 15, 18 065.
| A computational study of acid-catalyzed aerosol reactions of atmospherically relevant epoxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCrtLvE&md5=351cc4532b228e15dbec59e88ad9b64cCAS |
[57] J. Rice, W. Moore, R. Mcallister, E. Bowlex, 1989 National Urban Air Toxics Monitoring Program, in Proceedings 83rd A&WMA Annual Meeting, 24–29 June 1990, Pittsburgh, PA, USA 1990 (Air & Waste Management Association: Pittsburgh, PA).
[58] M. Dougherty, D. Shelow, 2012 National Monitoring Programs annual report (UATMP, NATTS, CSATAM). EPA-454/R-14-006a; EPA-454/R-14-006b 2014 (US Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division: Research Triangle Park, NC).
[59] J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525.
| Evolution of organic aerosols in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFensbjE&md5=c3636aee5b12ef35018bea4b1df7232dCAS | 20007897PubMed |
[60] R. K. Pathak, W. S. Wu, T. Wang, Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711.
| Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFKgsrk%3D&md5=80ee831f68cd4a7cf071e599e6b9fcb0CAS |
[61] H. Le Chatelier, O. Oudouard, Limits of flammability of gaseous mixtures. Bull. Soc. Chim. Fr. 1898, 19, 483.