Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Evaluation of diverse approaches for estimating sea-surface DMS concentration and air–sea exchange at global scale

Jan-Erik Tesdal A , James R. Christian B C D , Adam H. Monahan A and Knut von Salzen C
+ Author Affiliations
- Author Affiliations

A School of Earth and Ocean Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.

B Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, BC, V8L 4B2, Canada.

C Canadian Centre for Climate Modelling and Analysis, Environment Canada, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.

D Corresponding author. Email: jim.christian@ec.gc.ca

Environmental Chemistry 13(2) 390-412 https://doi.org/10.1071/EN14255
Submitted: 5 December 2014  Accepted: 2 June 2015   Published: 13 October 2015

Environmental context. As climate models increasingly include detailed, process-based models of aerosol formation, they need to represent dimethylsulfide emissions from the ocean. Options for this include data-based climatologies and empirical or process-based models; there are diverse examples of each in the literature. This paper presents the first global-scale comparison of all available approaches and evaluation of their skill relative to observations and their possible roles in future climate models.

Abstract. Ocean emission and subsequent oxidation of dimethylsulfide (DMS) provides a source of sulfate in the atmosphere, potentially affecting the amount of solar radiation reaching the Earth’s surface through both direct and indirect radiative effects of sulfate aerosols. DMS concentration in the ocean is quite variable with season and location, which in turn leads to high spatial and temporal variability of ocean DMS emissions. This study tested currently available climatologies and empirical and prognostic models of DMS concentration in the surface ocean against each other and against observations. This analysis mainly reveals the limitations of estimating DMS with an empirical model based on variables such as chlorophyll and mixed-layer depth. The various empirical models show very different spatial patterns, and none correlate strongly with observations. There is considerable uncertainty in the spatial and temporal distribution of DMS concentration and flux, and in the global total DMS flux. Global total air–sea flux depends primarily on global mean surface ocean DMS concentration, and the spatial distribution of DMS concentration and the magnitude of the gas exchange coefficient are of secondary importance. Global total flux estimates range from 9 to 34 Tg S year–1, with a best estimate of 18–24 Tg. Both empirical and prognostic models generally underestimate the total compared with the best available data-based estimates.


References

[1]  M. O. Andreae, H. Raemdonck, Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 1983, 221, 744.
Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltFSgsLw%3D&md5=5720902e4d957d92dc6fdfa7f890654cCAS | 17829533PubMed |

[2]  T. Bates, B. Lamb, A. Guenther, J. Dignon, R. Stoiber, Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem. 1992, 14, 315.
Sulfur emissions to the atmosphere from natural sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFalu78%3D&md5=e78bc2456d6d10c150c515242e621324CAS |

[3]  M. O. Andreae, P. Crutzen, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 1997, 276, 1052.
Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt12ls7g%3D&md5=1a1463ae123bda06bd30873261344a24CAS |

[4]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=24299dba1956a59c2726d9e91321070cCAS |

[5]  J. E. Lovelock, R. J. Maggs, R. A. Rasmussen, Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 1972, 237, 452.
Atmospheric dimethyl sulphide and the natural sulphur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXisVOmug%3D%3D&md5=7be8d27e928b381ba820a3fe19947455CAS |

[6]  G. Shaw, Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 1983, 5, 297.
Bio-controlled thermostasis involving the sulfur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVemsA%3D%3D&md5=afb1a909d161d1b453ca5fa6fd9f0438CAS |

[7]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=c9a82baa2292d53380b59fe3e33c367cCAS | 22129724PubMed |

[8]  M. T. Woodhouse, K. S. Carslaw, G. W. Mann, S. M. Vallina, M. Vogt, P. R. Halloran, O. Boucher, Low sensitivity of cloud condensation nuclei to changes in the sea–air flux of dimethylsulphide. Atmos. Chem. Phys. 2010, 10, 7545.
Low sensitivity of cloud condensation nuclei to changes in the sea–air flux of dimethylsulphide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWls7vM&md5=7b62e33daa012cde393fb915521edf07CAS |

[9]  M. T. Woodhouse, G. W. Mann, K. S. Carslaw, O. Boucher, Sensitivity of cloud condensation nuclei to regional changes in dimethylsulphide emissions. Atmos. Chem. Phys. 2013, 13, 2723.
Sensitivity of cloud condensation nuclei to regional changes in dimethylsulphide emissions.Crossref | GoogleScholarGoogle Scholar |

[10]  B. Stevens, G. Feingold, Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607.
Untangling aerosol effects on clouds and precipitation in a buffered system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Sqtr3I&md5=e43d0da45eda77c973e1c2adb3397076CAS | 19794487PubMed |

[11]  L. Bopp, O. Aumont, S. Belviso, P. Monfray, Potential impact of climate change on marine dimethylsulfide emissions. Tellus B Chem. Phys. Meterol. 2003, 55, 11.
Potential impact of climate change on marine dimethylsulfide emissions.Crossref | GoogleScholarGoogle Scholar |

[12]  S. M. Vallina, R. Simó, Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 2007, 315, 506.
Strong relationship between DMS and the solar radiation dose over the global surface ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFCisg%3D%3D&md5=89cd9bc46fb8728247c131f4a427b8cdCAS | 17255509PubMed |

[13]  A. J. Gabric, R. Simó, R. A. Cropp, A. C. Hirst, J. Dachs, Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Global Biogeochem. Cycles 2004, 18,

[14]  A. Gabric, B. Qu, P. Matrai, A. Hirst, The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B Chem. Phys. Meterol. 2005, 57, 391.
The simulated response of dimethylsulfide production in the Arctic Ocean to global warming.Crossref | GoogleScholarGoogle Scholar |

[15]  P. Cameron-Smith, S. Elliott, M. Maltrud, D. Erickson, O. Wingenter, Changes in dimethyl sulfide oceanic distribution due to climate change. Geophys. Res. Lett. 2011, 38,
Changes in dimethyl sulfide oceanic distribution due to climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFShtb3M&md5=b0f5bc957d49ef00aa8a258a38488159CAS |

[16]  S. Kloster, K. D. Six, J. Feichter, E. Maier-Reimer, E. Roeckner, P. Wetzel, P. Stier, M. Esch, Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. J. Geophys. Res. Biogeosci. 2007, 112,
Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOlt7fM&md5=3844bd66e1bfa631f70065a0c376c290CAS |

[17]  K. D. Six, S. Kloster, T. Ilyina, S. D. Archer, K. Zhang, E. Maier-Reimer, Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nat. Clim. Chang. 2013, 3, 975.
Global warming amplified by reduced sulphur fluxes as a result of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVShsbfP&md5=630dc4be2d0d869e5866ae4a80f3a11dCAS |

[18]  J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245.
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7s%3D&md5=e41afa264a0a44bd66f7dcc3f8a02455CAS |

[19]  A. J. Kettle, M. O. Andreae, D. Amouroux, T. Andreae, T. Bates, H. Berresheim, H. Bingemer, R. Boniforti, M. A. J. Curran, G. R. DiTullio, G. Helas, G. B. Jones, M. D. Keller, R. P. Kiene, C. Leck, M. Levasseur, G. Malin, M. Maspero, P. Matrai, A. R. McTaggart, N. Mihapoulos, B. C. Nguyen, A. Novo, J. P. Putaud, S. Rapsomanikis, G. Roberts, G. Schebeske, S. Sharma, R. Simó, R. Staubes, S. Turner, G. Uher, A global database of sea-surface dimethylsulfide (DMS) measurements and a procedure to predict sea-surface DMS as a function of latitude, longitude and month. Global Biogeochem. Cycles 1999, 13,
A global database of sea-surface dimethylsulfide (DMS) measurements and a procedure to predict sea-surface DMS as a function of latitude, longitude and month.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOrurw%3D&md5=3e01efeae39142a226504b21f3453f02CAS |

[20]  P. R. Halloran, T. G. Bell, I. J. Totterdell, Can we trust empirical marine DMS parameterisations within projections of future climate? Biogeosciences 2010, 7, 1645.
Can we trust empirical marine DMS parameterisations within projections of future climate?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2rtLvF&md5=5c233e208983ff45f06723792a79584bCAS |

[21]  E. C. Asher, A. Merzouk, P. D. Tortell, Fine-scale spatial and temporal variability of surface water dimethylsulfide (DMS) concentrations and sea–air fluxes in the NE subarctic Pacific. Mar. Chem. 2011, 126, 63.
Fine-scale spatial and temporal variability of surface water dimethylsulfide (DMS) concentrations and sea–air fluxes in the NE subarctic Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsb7F&md5=bf6aad804b8e52ae62edb52ab4f33e8fCAS |

[22]  P. D. Tortell, Small-scale heterogeneity of dissolved gas concentrations in marine continental shelf waters. Geochem. Geophys. Geosyst. 2005, 6,
Small-scale heterogeneity of dissolved gas concentrations in marine continental shelf waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSrtLbM&md5=270904322f1ec0c8ac9a30ad2b6a40c2CAS |

[23]  P. Tortell, C. Guéguen, M. Long, C. Payne, P. Lee, G. DiTullio, Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 241.
Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1eisLg%3D&md5=76e2372df24da7a60570bafff7180d72CAS |

[24]  A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25,
An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1OisL8%3D&md5=83d866b686a4538dbb4d52efd40ea39fCAS |

[25]  T. Anderson, S. Spall, A. Yool, P. Cipollini, P. Challenor, M. Fasham, Global fields of sea-surface dimethylsulfide predicted from chlorophyll, nutrients and light. J. Mar. Syst. 2001, 30, 1.
Global fields of sea-surface dimethylsulfide predicted from chlorophyll, nutrients and light.Crossref | GoogleScholarGoogle Scholar |

[26]  R. Simó, J. Dachs, Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochem. Cycles 2002, 16,
Global ocean emission of dimethylsulfide predicted from biogeophysical data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot12nt74%3D&md5=e2c98db6bb0256a522f0cee511f5f23bCAS |

[27]  Y. Le Clainche, A. Vézina, M. Levasseur, R. A. Cropp, J. R. Gunson, S. M. Vallina, M. Vogt, C. Lancelot, J. I. Allen, S. D. Archer, L. Bopp, C. Deal, S. Elliott, M. Jin, G. Malin, V. Schoemann, R. Simó, K. D. Six, J. Stefels, A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Global Biogeochem. Cycles 2010, 24,
A first appraisal of prognostic ocean DMS models and prospects for their use in climate models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGqurvL&md5=e183436d811302ef79cefd954d5dc56aCAS |

[28]  S. Belviso, L. Bopp, C. Moulin, J. Orr, T. Anderson, O. Aumont, S. Chu, S. Elliott, M. Maltrud, R. Simó, Comparison of global climatological maps of sea surface dimethylsulfide. Global Biogeochem. Cycles 2004, 18,
Comparison of global climatological maps of sea surface dimethylsulfide.Crossref | GoogleScholarGoogle Scholar |

[29]  O. Aumont, S. Belviso, P. Monfray, Dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) sea-surface distributions simulated from a global three-dimensional ocean carbon cycle model. J. Geophys. Res. Oceans 2002, 107,
Dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) sea-surface distributions simulated from a global three-dimensional ocean carbon cycle model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVOru7o%3D&md5=b0aa3c896a71ab7a135536e8beb57057CAS |

[30]  S. P. Chu, S. Elliott, M. E. Maltrud, Global eddy-permitting simulations of surface ocean nitrogen, iron, sulfur cycling. Chemosphere 2003, 50, 223.
Global eddy-permitting simulations of surface ocean nitrogen, iron, sulfur cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCiu7k%3D&md5=c9e17478a9d31e59e0c2fef687d1527eCAS |

[31]  S. Belviso, C. Moulin, L. Bopp, J. Stefels, Assessment of a global climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS imagery (1998–2001). Can. J. Fish. Aquat. Sci. 2004, 61, 804.
Assessment of a global climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS imagery (1998–2001).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Sjs7g%3D&md5=23bcaf635587534e53adf3fe21994e15CAS |

[32]  A. J. Kettle, M. O. Andreae, Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. Atmos. 2000, 105,
Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFGit7c%3D&md5=f9eb766ebcf418a31aafcb35e629ea5cCAS |

[33]  T. G. Bell, G. Malin, C. M. McKee, P. S. Liss, A comparison of dimethylsulphide (DMS) data from the Atlantic Meridional Transect (AMT) programme with proposed algorithms for global surface DMS concentrations. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1720.
A comparison of dimethylsulphide (DMS) data from the Atlantic Meridional Transect (AMT) programme with proposed algorithms for global surface DMS concentrations.Crossref | GoogleScholarGoogle Scholar |

[34]  K. Aranami, S. Tsunogai, Seasonal and regional comparison of oceanic and atmospheric dimethylsulfide in the northern North Pacific: dilution effects on its concentration during winter. J. Geophys. Res. Atmos. 2004, 109,
Seasonal and regional comparison of oceanic and atmospheric dimethylsulfide in the northern North Pacific: dilution effects on its concentration during winter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVGisL4%3D&md5=0845a7052030096db1be929f3fb267fbCAS |

[35]  A. J. Hind, C. D. Rauschenberg, J. E. Johnson, M. Yang, P. A. Matrai, The use of algorithms to predict surface seawater dimethylsulphide concentrations in the SE Pacific, a region of steep gradients in primary productivity, biomass and mixed layer depth. Biogeosciences 2011, 8, 1.
The use of algorithms to predict surface seawater dimethylsulphide concentrations in the SE Pacific, a region of steep gradients in primary productivity, biomass and mixed layer depth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslOjtbk%3D&md5=265f3dd6c300c6bed66033945e3b45e5CAS |

[36]  S. Belviso, G. Caniaux, A new assessment in North Atlantic waters of the relationship between DMS concentration and the upper mixed layer solar radiation dose. Global Biogeochem. Cycles 2009, 23,
A new assessment in North Atlantic waters of the relationship between DMS concentration and the upper mixed layer solar radiation dose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgsb7O&md5=8d3f63887d3473b7729e178b348687b5CAS |

[37]  G. J. Derevianko, C. Deutsch, A. Hall, On the relationship between ocean DMS and solar radiation. Geophys. Res. Lett. 2009, 36,
On the relationship between ocean DMS and solar radiation.Crossref | GoogleScholarGoogle Scholar |

[38]  C. J. Miles, T. G. Bell, T. M. Lenton, Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data. Biogeosciences 2009, 6, 1927.
Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWltr3M&md5=254f50e995e1a25501d4383acd0cd5bfCAS |

[39]  K. E. Taylor, R. J. Stouffer, G. A. Meehl, An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485.
An overview of CMIP5 and the experiment design.Crossref | GoogleScholarGoogle Scholar |

[40]  R. H. Moss, J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, R. J. Stouffer, A. M. Thomson, J. P. Weyant, T. J. Wilbanks, The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747.
The next generation of scenarios for climate change research and assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVKqs7w%3D&md5=729c67e57f0940277aa62dfe1fff4e62CAS | 20148028PubMed |

[41]  M. Vogt, S. M. Vallina, E. T. Buitenhuis, L. Bopp, C. Le Quéré, Simulating dimethylsulphide seasonality with the dynamic green ocean model PlankTOM5. J. Geophys. Res. Oceans 2010, 115,
Simulating dimethylsulphide seasonality with the dynamic green ocean model PlankTOM5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2nsLfJ&md5=80c0bb72ba55c6325981bc89799c6a6fCAS |

[42]  S. Elliott, Dependence of DMS global sea–air flux distribution on transfer velocity and concentration field type. J. Geophys. Res. Biogeosci. 2009, 114,
Dependence of DMS global sea–air flux distribution on transfer velocity and concentration field type.Crossref | GoogleScholarGoogle Scholar |

[43]  H. E. Garcia, R. A. Locarnini, T. P. Boyer, J. I. Antonov, M. M. Zweng, O. K. Baranova, D. R. Johnson, World Ocean Atlas 2009, Volume 4: Nutrients (Phosphate, Nitrate, Silicate), NOAA Atlas NESDIS 71 (Ed. S. Levitus) 2010 (US Government Printing Office: Washington, DC).

[44]  J.-E. Tesdal, The spatial and temporal distribution of oceanic dimethylsulfide and its effects on atmospheric composition and aerosol forcing 2014, M.Sc. thesis, University of Victoria, Victoria, BC, Canada.

[45]  S. Levitus, Climatological Atlas of the World Ocean, NOAA Professional Paper 13 1982 (US Government Printing Office: Rockville, MD, USA). Available at https://www.nodc.noaa.gov/OC5/indpub.html [verified 1 August 2015].

[46]  C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, D. Iudicone, Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans 2004, 109,
Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology.Crossref | GoogleScholarGoogle Scholar |

[47]  J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, D. R. Johnson, World Ocean Atlas 2009, Volume 2: Salinity, NOAA Atlas NESDIS 69 (Ed. S. Levitus) 2010 (US Government Printing Office: Washington, DC).

[48]  R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, D. R. Johnson, World Ocean Atlas 2009, Volume 1: Temperature, NOAA Atlas NESDIS 68 (Ed. S. Levitus) 2010 (US Government Printing Office: Washington, DC).

[49]  N. G. Loeb, B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, T. Wong, Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 2009, 22, 748.
Toward optimal closure of the Earth’s top-of-atmosphere radiation budget.Crossref | GoogleScholarGoogle Scholar |

[50]  S. Kato, N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, R. A. Weller, Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 2013, 26, 2719.
Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances.Crossref | GoogleScholarGoogle Scholar |

[51]  J. K. B. Bishop, W. B. Rossow, E. G. Dutton, Surface solar irradiance from the International Satellite Cloud Climatology Project 1983–1991. J. Geophys. Res-Atmos. 1997, 102, 6883.
Surface solar irradiance from the International Satellite Cloud Climatology Project 1983–1991.Crossref | GoogleScholarGoogle Scholar |

[52]  T. D. Brock, Calculating solar radiation for ecological studies. Ecol. Modell. 1981, 14, 1.
Calculating solar radiation for ecological studies.Crossref | GoogleScholarGoogle Scholar |

[53]  J. Lee-Taylor, S. Madronich, C. Fischer, B. Mayer, A climatology of UV radiation, 1979–2000, 65°S–65°N, in UV Radiation in Global Climate Change: Measurements, Modeling and Effects on Ecosystems (Eds W. Gao, J. R. Slusser, D. L. Schmoldt) 2010, pp. 1–20 (Springer: Berlin).

[54]  D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Ka˚llberg, M. Ko¨hler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J. J. Morcrette, B. K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J. N. Thépaut, F. Vitart, The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553.
The ERA-Interim reanalysis: configuration and performance of the data assimilation system.Crossref | GoogleScholarGoogle Scholar |

[55]  P. Liss, P. Slater, Flux of gases across air–sea interface. Nature 1974, 247, 181.
Flux of gases across air–sea interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXktVGgtrw%3D&md5=0137c3dc115c94ecc0a3b9f201178985CAS |

[56]  P. E. Land, J. D. Shutler, T. G. Bell, M. Yang, Exploiting satellite earth observation to quantify current global oceanic DMS flux and its future climate sensitivity. J. Geophys. Res. Oceans 2014, 119,
Exploiting satellite earth observation to quantify current global oceanic DMS flux and its future climate sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVClsb%2FP&md5=48e10fb4dbb59e22b42d76b44326f6b6CAS |

[57]  P. S. Liss, L. Merlivat, Air–sea gas exchange rates: introduction and synthesis, in The Role of Air–Sea Exchange in Geochemical Cycling (Ed. P. Buat-Ménard) 1986, NATO ASI Series, Vol. 185, pp. 113–127 (Reidel: Dordrecht, Netherlands).

[58]  W. R. McGillis, J. W. H. Dacey, N. M. Frew, E. Bock, R. K. Nelson, Water–air flux of dimethylsulfide. J. Geophys. Res. Oceans 2000, 105,
Water–air flux of dimethylsulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlCnu7g%3D&md5=aece96280075961afc47b2790adea8b8CAS |

[59]  J. Kondo, Air–sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorol. 1975, 9, 91.
Air–sea bulk transfer coefficients in diabatic conditions.Crossref | GoogleScholarGoogle Scholar |

[60]  J. W. H. Dacey, S. G. Wakeham, B. L. Howes, Henry’s law constants for dimethylsulfide in freshwater and seawater. Geophys. Res. Lett. 1984, 11,
Henry’s law constants for dimethylsulfide in freshwater and seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmslSjuw%3D%3D&md5=569ae983823025c5a62852af33ed2cfeCAS |

[61]  R. Wanninkhof, Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Oceans 1992, 97,
Relationship between wind speed and gas exchange over the ocean.Crossref | GoogleScholarGoogle Scholar |

[62]  P. D. Nightingale, G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, R. C. Upstill-Goddard, In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles 2000, 14,
In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGms7s%3D&md5=81d3e7a87ce3c30ba225fe587591eb6cCAS |

[63]  O. Boucher, C. Moulin, S. Belviso, O. Aumont, L. Bopp, E. Cosme, R. von Kuhlmann, M. G. Lawrence, M. Pham, M. S. Reddy, J. Sciare, C. Venkataraman, DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation. Atmos. Chem. Phys. 2003, 3, 49.
DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Snsb0%3D&md5=ccb53824336209f86f14c8c456e7f14dCAS |

[64]  C. A. Marandino, W. J. De Bruyn, S. D. Miller, E. S. Saltzman, Open-ocean DMS air/sea fluxes over the eastern South Pacific Ocean. Atmos. Chem. Phys. 2009, 9, 345.
Open-ocean DMS air/sea fluxes over the eastern South Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisleisrY%3D&md5=0988b882cec759544be691e7a5845590CAS |

[65]  B. J. Huebert, B. W. Blomquist, M. X. Yang, S. D. Archer, P. D. Nightingale, M. J. Yelland, J. Stephens, R. W. Pascal, B. I. Moat, Linearity of DMS transfer coefficient with both friction velocity and wind speed in the moderate wind-speed range. Geophys. Res. Lett. 2010, 37,
Linearity of DMS transfer coefficient with both friction velocity and wind speed in the moderate wind-speed range.Crossref | GoogleScholarGoogle Scholar |

[66]  L. Goddijn-Murphy, D. K. Woolf, C. Marandino, Space-based retrievals of air–sea gas transfer velocities using altimeters: calibration for dimethyl sulfide. J. Geophys. Res. Oceans 2012, 117,
Space-based retrievals of air–sea gas transfer velocities using altimeters: calibration for dimethyl sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOisrnJ&md5=02e64d4990e8e5f2cbeedfdd15768992CAS |

[67]  T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, E. S. Saltzman, Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. 2013, 13, 11 073.
Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlKksQ%3D%3D&md5=565552308122b9d708a3b95b1a018417CAS |

[68]  N. S. Steiner, W. G. Lee, J. R. Christian, Enhanced gas fluxes in small sea ice leads and cracks: effects on CO2 exchange and ocean acidification. J. Geophys. Res. Oceans 2013, 118,
Enhanced gas fluxes in small sea ice leads and cracks: effects on CO2 exchange and ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKrsrjL&md5=22dc34267e6e43633337fd878c1b7e20CAS |

[69]  K. E. Taylor, Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106,
Summarizing multiple aspects of model performance in a single diagram.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFQ%3D&md5=db33895d8249cc12308cad9680588ff3CAS |

[70]  C. R. McClain, S. R. Signorini, J. R. Christian, Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 281.
Subtropical gyre variability observed by ocean-color satellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKjurg%3D&md5=0e2d2dc7d599bd4d957fb82d044b3500CAS |

[71]  R. A. Cropp, J. Norbury, A. J. Gabric, R. D. Braddock, Modeling dimethylsulphide production in the upper ocean. Global Biogeochem. Cycles 2004, 18,
Modeling dimethylsulphide production in the upper ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVCmu7s%3D&md5=a539df6361dd53717a566d5704464c5bCAS |

[72]  M. A. M. Friedrichs, J. A. Dusenberry, L. A. Anderson, R. A. Armstrong, F. Chai, J. R. Christian, S. C. Doney, J. Dunne, M. Fujii, R. Hood, D. J. McGillicuddy, J. K. Moore, M. Schartau, Y. H. Spitz, J. D. Wiggert, Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J. Geophys. Res. Oceans 2007, 112,
Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Srt7fM&md5=e9be9c306b7eda7dc0e1b86ea6cc05ddCAS |

[73]  C. W. Fairall, J. E. Hare, J. B. Edson, W. R. McGillis, Parameterization and micrometeorological measurement of air–sea gas transfer. Boundary-Layer Meteorol. 2000, 96, 63.
Parameterization and micrometeorological measurement of air–sea gas transfer.Crossref | GoogleScholarGoogle Scholar |

[74]  C. W. Fairall, M. Yang, L. Bariteau, J. B. Edson, D. Helmig, W. McGillis, S. Pezoa, J. E. Hare, B. Huebert, B. Blomquist, Implementation of the Coupled Ocean–Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J. Geophys. Res. Oceans 2011, 116,
Implementation of the Coupled Ocean–Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslCnt7g%3D&md5=4d4a4ee35145d015d86623e014a5292eCAS |

[75]  J. E. Hare, C. W. Fairall, W. R. McGillis, J. B. Edson, B. Ward, R. Wanninkhof, Evaluation of the National Oceanic and Atmospheric Administration/Coupled Ocean–Atmospheric Response Experiment (NOAA/COARE) air–sea gas transfer parameterization using GasEx data. J. Geophys. Res. Oceans 2004, 109,
Evaluation of the National Oceanic and Atmospheric Administration/Coupled Ocean–Atmospheric Response Experiment (NOAA/COARE) air–sea gas transfer parameterization using GasEx data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFahsr0%3D&md5=f26d9b62f3e91abd8974d234d86afacbCAS |

[76]  M. T. Johnson, A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci. 2010, 6, 913.
A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFeqs7w%3D&md5=30071010f36a75033533fc6f63b8a9b4CAS |

[77]  M. Yang, B. W. Blomquist, C. W. Fairall, S. D. Archer, B. J. Huebert, Air–sea exchange of dimethylsulfide in the Southern Ocean: measurements from SO GasEx compared to temperate and tropical regions. J. Geophys. Res. Oceans 2011, 116,

[78]  C. S. Garbe, A. Rutgersson, J. Boutin, G. de Leeuw, B. Delille, C. W. Fairall, N. Gruber, J. Hare, D. T. Ho, M. T. Johnson, P. D. Nightingale, H. Pettersson, J. Piskozub, E. Sahlée, W. Tsai, B. Ward, D. K. Woolf, C. J. Zappa, Transfer across the air–sea interface, in Ocean–Atmosphere Interactions of Gases and Particles (Eds P. S. Liss, M. T. Johnson) 2014, pp. 55–112 (Springer: Heidelberg).

[79]  B. J. Huebert, B. W. Blomquist, J. E. Hare, C. W. Fairall, J. E. Johnson, T. S. Bates, Measurement of the sea–air DMS flux and transfer velocity using eddy correlation. Geophys. Res. Lett. 2004, 31,
Measurement of the sea–air DMS flux and transfer velocity using eddy correlation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wmsbs%3D&md5=e12f9a4427b7e0d8f0617292c97a40f1CAS |

[80]  B. W. Blomquist, C. W. Fairall, B. J. Huebert, D. J. Kieber, G. R. Westby, DMS sea–air transfer velocity: direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model. Geophys. Res. Lett. 2006, 33,
DMS sea–air transfer velocity: direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFChsb4%3D&md5=3a28d9ebedef5ff68de33b387189c502CAS |

[81]  C. Miles, T. Bell, P. Suntharalingam, Investigating the inter-relationships between water attenuated irradiance, primary production and DMS(P). Biogeochemistry 2012, 110, 201.
Investigating the inter-relationships between water attenuated irradiance, primary production and DMS(P).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7nO&md5=2a4e1a7ef35564090d846535e498f21bCAS |

[82]  S. Kameyama, H. Tanimoto, S. Inomata, H. Yoshikawa-Inoue, U. Tsunogai, A. Tsuda, M. Uematsu, M. Ishii, D. Sasano, K. Suzuki, Y. Nosaka, Strong relationship between dimethyl sulfide and net community production in the western subarctic Pacific. Geophys. Res. Lett. 2013, 40,
Strong relationship between dimethyl sulfide and net community production in the western subarctic Pacific.Crossref | GoogleScholarGoogle Scholar |

[83]  M. Lizotte, M. Levasseur, S. Michaud, M. G. Scarratt, A. Merzouk, M. Gosselin, J. Pommier, R. B. Rivkin, R. P. Kiene, Macroscale patterns of the biological cycling of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) in the north-west Atlantic. Biogeochemistry 2012, 110, 183.
Macroscale patterns of the biological cycling of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) in the north-west Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7jF&md5=c381e7d6b7c085a0333ec91e2499c0b0CAS |

[84]  D. A. Toole, D. A. Siegel, Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop. Geophys. Res. Lett. 2004, 31,
Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop.Crossref | GoogleScholarGoogle Scholar |

[85]  S. M. Vallina, R. Simó, T. R. Anderson, A. Gabric, R. Cropp, J. M. Pacheco, A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer paradox. J. Geophys. Res. Biogeosci. 2008, 113,
A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer paradox.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1alur8%3D&md5=b3aeb4ba7f5cbba9603b655626bae9edCAS |

[86]  P. S. Liss, C. A. Marandino, E. E. Dahl, D. Helmig, E. J. Hintsa, C. Hughes, M. T. Johnson, R. M. Moore, J. M. C. Plane, B. Quack, H. B. Singh, J. Stefels, R. von Glasow, J. Williams, Short-lived trace gases in the surface ocean and the atmosphere, in Ocean–Atmosphere Interactions of Gases and Particles (Eds P. S. Liss, M. T. Johnson) 2014, Springer Earth System Sciences, pp. 1–54 (Springer: Heidelberg).

[87]  G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhang, Anthropogenic and natural radiative forcing, in Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. Midgley) 2013, p. 123 (Cambridge University Press: Cambridge, UK and New York).

[88]  S. M. Vallina, R. Simó, M. Manizza, Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming. Proc. Natl. Acad. Sci. USA 2007, 104, 16 004.
Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2hu7jE&md5=020860665812085a85c5fa623f0d80d7CAS |

[89]  K. S. Carslaw, L. A. Lee, C. L. Reddington, K. J. Pringle, A. Rap, P. M. Forster, G. W. Mann, D. V. Spracklen, M. T. Woodhouse, L. A. Regayre, J. R. Pierce, Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 2013, 503, 67.
Large contribution of natural aerosols to uncertainty in indirect forcing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleltLrL&md5=3731bf8558ded4f0b3b642cf87a41854CAS | 24201280PubMed |

[90]  S. K. Esbensen, Y. Kushnir, The heat budget of the global ocean: an atlas based on estimates from surface marine observations, Issue 29 of Climatic Research Institute Report 1981 (Oregon State University: Corvallis, OR).

[91]  J. R. Palmer, I. J. Totterdell, Production and export in a global ocean ecosystem model. Deep Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 1169.
Production and export in a global ocean ecosystem model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVens7k%3D&md5=024f1ff45d97ca39e38b176dc10d54adCAS |

[92]  H. Claustre, The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures. Limnol. Oceanogr. 1994, 39, 1206.
The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVWjsLY%3D&md5=be0b2e728f87ed510e561f0151339244CAS |

[93]  S. Belviso, H. Claustre, J.-C. Marty, Evaluation of the utility of chemotaxonomic pigments as a surrogate for particulate DMSP. Limnol. Oceanogr. 2001, 46, 989.
Evaluation of the utility of chemotaxonomic pigments as a surrogate for particulate DMSP.Crossref | GoogleScholarGoogle Scholar |

[94]  G. Monterey, S. Levitus, Seasonal Variability of Mixed-Layer Depth for the World Ocean, NOAA NESDIS Atlas 14, 1997 (US Government Printing Office: Washington, DC). Available at https://www.nodc.noaa.gov/OC5/indpub.html [verified 1 August 2015].

[95]  W. J. Collins, N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton, J. Hughes, C. D. Jones, M. Joshi, S. Liddicoat, G. Martin, F. O’Connor, J. Rae, C. Senior, S. Sitch, I. Totterdell, A. Wiltshire, S. Woodward, Development and evaluation of an Earth-system model – HadGEM2. Geosci. Model Dev. 2011, 4, 1051.
Development and evaluation of an Earth-system model – HadGEM2.Crossref | GoogleScholarGoogle Scholar |

[96]  T. Ilyina, K. D. Six, J. Segschneider, E. Maier-Reimer, H. Li, I., Núñez-Riboni, Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst. 2013, 5, 287.
Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations.Crossref | GoogleScholarGoogle Scholar |

[97]  S. Kloster, J. Feichter, E. M. Reimer, K. D. Six, P. Stier, P. Wetzel, DMS cycle in the marine ocean–atmosphere system – a global model study. Biogeosciences 2006, 3, 29.
DMS cycle in the marine ocean–atmosphere system – a global model study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVOltr8%3D&md5=c797a8c1368e998a51690baa82f8aaa0CAS |

[98]  K. D. Six, E. Maier-Reimer, What controls the oceanic dimethylsulfide (DMS) cycle? A modeling approach. Global Biogeochem. Cycles 2006, 20,
What controls the oceanic dimethylsulfide (DMS) cycle? A modeling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFaktr4%3D&md5=afb89bd9a5055c604bb050b85d9253dbCAS |

[99]  S. Belviso, I. Masotti, A. Tagliabue, L. Bopp, P. Brockmann, C. Fichot, G. Caniaux, L. Prieur, J. Ras, J. Uitz, H. Loisel, D. Dessailly, S. Alvain, N. Kasamatsu, M. Fukuchi, DMS dynamics in the most oligotrophic subtropical zones of the global ocean. Biogeochemistry 2012, 110, 215.
DMS dynamics in the most oligotrophic subtropical zones of the global ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjtL7N&md5=f3f4ca95e46c23bb8cf9c9c5cb529389CAS |