Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effects of light and phosphorus on summer DMS dynamics in subtropical waters using a global ocean biogeochemical model

Italo Masotti A B E , Sauveur Belviso A , Laurent Bopp A , Alessandro Tagliabue C and Eva Bucciarelli D
+ Author Affiliations
- Author Affiliations

A Laboratoire des Sciences du Climat et de l’Environnement, CEA/Saclay, UMR 8212, l’Orme des Merisiers, Bâtiment 712, F-91191 Gif sur Yvette, France.

B Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Casilla 5080, Reñaca, Viña del Mar, Chile.

C School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK

D Université de Brest, CNRS, IRD, UMR 6539, LEMAR, IUEM, F-29280 Plouzané, France.

E Corresponding author. Email: italo.masotti@uv.cl

Environmental Chemistry 13(2) 379-389 https://doi.org/10.1071/EN14265
Submitted: 12 December 2014  Accepted: 20 May 2015   Published: 17 September 2015

Environmental context. Models are needed to predict the importance of the changes in marine emissions of dimethylsulfide (DMS) in response to ocean warming, increased stratification and acidification, and to evaluate the potential effects on the Earth’s climate. We use complementary simulations to further our understanding of the marine cycle of DMS in subtropical waters, and show that a lack of phosphorus may exert a more important control on surface DMS concentrations than an excess of light.

Abstract. The occurrence of a summer DMS paradox in the vast subtropical gyres is a strong matter of debate because approaches using discrete measurements, climatological data and model simulations yielded contradictory results. The major conclusion of the first appraisal of prognostic ocean DMS models was that such models need to give more weight to the direct effect of environmental forcings (e.g. irradiance) on DMS dynamics to decouple them from ecological processes. Here, the relative role of light and phosphorus on summer DMS dynamics in subtropical waters is assessed using the ocean general circulation and biogeochemistry model NEMO-PISCES in which macronutrient concentrations were restored to monthly climatological data values to improve the representation of phosphate concentrations. Results show that the vertical and temporal decoupling between chlorophyll and DMS concentrations observed in the Sargasso Sea during the summer months is captured by the model. Additional sensitivity tests show that the simulated control of phosphorus on surface DMS concentrations in the Sargasso Sea is much more important than that of light. By extending the analysis to the whole North Atlantic Ocean, we show that the longitudinal distribution of DMS during summer is asymmetrical and that a correlation between the solar radiation dose and DMS concentrations only occurs in the Sargasso Sea. The lack of a widespread summer DMS paradox in our model simulation as well as in the comparison of discrete and climatological data could be due to the limited occurrence of phosphorus limitation in the global ocean.

Additional keywords: global modelling, Sargasso Sea, solar radiation dose.


References

[1]  K. D. Six, S. Kloster, T. Stephen, D. Archer, K. Zhang, E. Maier-Reimer, Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nat. Clim. Chang. 2013, 3, 975.
Global warming amplified by reduced sulphur fluxes as a result of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVShsbfP&md5=630dc4be2d0d869e5866ae4a80f3a11dCAS |

[2]  Y. Le Clainche, A. Vézina, M. Levasseur, R. A. Cropp, J. R. Gunson, S. M. Vallina, M. Vogt, C. Lancelot, J. I. Allen, S. D. Archer, L. Bopp, C. Deal, S. Elliott, M. Jin, G. Malin, V. Schoemann, R. Simó, K. D. Six, J. Stefels, A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Global Biogeochem. Cycles 2010, 24, GB3021.
A first appraisal of prognostic ocean DMS models and prospects for their use in climate models.Crossref | GoogleScholarGoogle Scholar |

[3]  J. W. H. Dacey, F. A. Howse, A. F. Michaels, S. G. Wakeham, Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep-Sea Res. 1998, 45, 2085.
Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFyjtg%3D%3D&md5=2b6f731fece8163c3026294a4fe21309CAS |

[4]  S. Belviso, I. Masotti, A. Tagliabue, L. Bopp, P. Brockmann, C. Fichot, G. Caniaux, L. Prieur, J. Ras, J. Uitz, H. Loisel, D. Desailly, S. Alvain, N. Kasamatsu, M. Fukuchi, DMS dynamics in the most oligotrophic subtropical zones of the global ocean. Biogeochemistry 2012, 110,
DMS dynamics in the most oligotrophic subtropical zones of the global ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjtL7N&md5=f3f4ca95e46c23bb8cf9c9c5cb529389CAS |

[5]  R. Simó, C. Pedrós-Alió, Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 1999, 402, 396.
Role of vertical mixing in controlling the oceanic production of dimethyl sulphide.Crossref | GoogleScholarGoogle Scholar |

[6]  S. D. Archer, S. A. Kimmance, J. A. Stephens, F. E. Hopkins, R. G. Bellerby, K. G. Schulz, J. Piontek, A. Engel, Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences 2013, 10, 1893.
Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlCmtb4%3D&md5=5fb42e54ed4a844e08cfef86023a8e11CAS |

[7]  F. E. Hopkins, P. D. Nightingale, P. S. Liss, Effect of ocean acidification on the marine source of atmospherically active trace gases, in Ocean Acidification (Eds J.-P. Gattuso and L. Hansson) 2011, pp. 210–229, (Oxford University Press: Oxford, UK).

[8]  L. Polimene, S. D. Archer, M. Butenschön, J. I. Allen, A mechanistic explanation for the Sargasso Sea DMS ‘summer paradox’. Biogeochemistry 2012, 110, 243.
A mechanistic explanation for the Sargasso Sea DMS ‘summer paradox’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7bJ&md5=26bb3e0b43de174eeac4ebba2dfab78eCAS |

[9]  O. Aumont, L. Bopp, Globalizing results from ocean in situ fertilization experiments. Global Biogeochem. Cycles 2006, 20, GB2017.
Globalizing results from ocean in situ fertilization experiments.Crossref | GoogleScholarGoogle Scholar |

[10]  G. Madec, P. Delecluse, M. Imbard, C. Levy, OPA8.1 Ocean General Circulation Model Reference Manual. Notes du pôle de modélisation de l’IPSL, report number 11 1998 (Institut Pierre-Simon Laplace (IPSL): Paris, France).

[11]  L. Bopp, O. Aumont, S. Belviso, S. Blain, Modeling the effect of iron fertilization on dimethylsulfide emissions in the Southern Ocean. Deep-Sea Res. II 2008, 35, 901.

[12]  R. P. Kiene, L. J. Linn, J. A. Bruton, New and important roles for DMSP in marine microbial communities. J. Sea Res. 2000, 43, 209.
New and important roles for DMSP in marine microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=789cb96d8406d5bbead908e442a540f1CAS |

[13]  O. Aumont, L. Bopp, M. Schulz, What does temporal variability in aeolian dust deposition contribute to sea-surface iron and chlorophyll distributions? Geophys. Res. Lett. 2008, 35, L07607.
What does temporal variability in aeolian dust deposition contribute to sea-surface iron and chlorophyll distributions?Crossref | GoogleScholarGoogle Scholar |

[14]  H. E. Garcia, R. A. Locarnini, T. P. Boyer, J. I. Antonov, O. K. Baranova, M. M. Zweng, D. R. Johnson, World Ocean Atlas (2009). NOAA Atlas NESDIS 71 (Ed. S. Levitus) 2010 (US Government Printing Office: Washington, DC, USA).

[15]  A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25, GB1004.
An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar |

[16]  A. Morel, H. Claustre, B. Gentili, The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 2010, 7, 3139.
The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance.Crossref | GoogleScholarGoogle Scholar |

[17]  M. Galí, V. Saló, R. Almeda, A. Calbet, R. Simó, Stimulation of gross dimethylsulfide (DMS) production by solar radiation. Geophys. Res. Lett. 2011, 38, L15612.
Stimulation of gross dimethylsulfide (DMS) production by solar radiation.Crossref | GoogleScholarGoogle Scholar |

[18]  J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245.
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7s%3D&md5=e41afa264a0a44bd66f7dcc3f8a02455CAS |

[19]  L. J. Carpenter, S. D. Archer, R. Beale, Ocean–atmosphere trace gas exchange. Chem. Soc. Rev. 2012, 41, 6473.
Ocean–atmosphere trace gas exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaktr%2FP&md5=d6bdf6cad362e19ac2ef53e843d35b91CAS | 22821066PubMed |

[20]  M. D. Keller, R. P. Kiene, P. A. Matrai, W. K. Bellows, Production of glycine betaine and dimethylsulphoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar. Biol. 1999, 135, 249.
Production of glycine betaine and dimethylsulphoniopropionate in marine phytoplankton. II. N-limited chemostat cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCit7k%3D&md5=f959569382c6d84c65355e6e3cbececaCAS |

[21]  W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=1bcaa8d9ca44d13d4f343901c31cbed2CAS | 12124622PubMed |

[22]  E. Bucciarelli, W. Sunda, Influence of CO2, nitrate, phosphate, and silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the coastal diatom Thalassiosira pseudonana. Limnol. Oceanogr. 2003, 48, 2256.
Influence of CO2, nitrate, phosphate, and silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the coastal diatom Thalassiosira pseudonana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFagtr0%3D&md5=a2adc2f5bb143c27df00a2a098c86314CAS |

[23]  E. Bucciarelli, C. Ridame, W. G. Sunda, C. Dimier-Hugueney, M. Cheize, S. Belviso, Increased intracellular concentration of DMSP and DMSO in iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum. Limnol. Oceanogr. 2013, 58, 1667.
Increased intracellular concentration of DMSP and DMSO in iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CmsLbP&md5=4df967e8e380c2c89368b6cd4020f193CAS |

[24]  S. D. Archer, M. Ragni, R. Webster, R. L. Airs, R. J. Geider, Dimethyl sulfoniopropionate and dimethyl sulfide production in response to photoinhibition in Emiliania huxleyi. Limnol. Oceanogr. 2010, 55, 1579.
Dimethyl sulfoniopropionate and dimethyl sulfide production in response to photoinhibition in Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOmurnM&md5=772bab583686d2445af4854b37d80dbcCAS |

[25]  M. Vila‐Costa, R. Simó, H. Harada, J. M. Gasol, D. Slezak, R. P. Kiene, Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 2006, 314, 652.
Dimethylsulfoniopropionate uptake by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 17068265PubMed |

[26]  W. G. Sunda, R. Hardison, R. P. Kiene, E. Bucciarelli, H. Harada, The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications. Aquat. Sci. 2007, 69, 341.
The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrjO&md5=d2959add7b4e22c3c32d5e5e8ff463deCAS |

[27]  S. D. Archer, D. G. Cummings, C. A. Llewellyn, J. R. Fishwick, Phytoplankton taxa, irradiance and nutrient availability determine the seasonal cycle of DMSP in temperate shelf seas. Mar. Ecol. Prog. Ser. 2009, 394, 111.
Phytoplankton taxa, irradiance and nutrient availability determine the seasonal cycle of DMSP in temperate shelf seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOltg%3D%3D&md5=c59302d4f709d4427989cab8dd555a3bCAS |

[28]  D. A. Toole, S. A. Siegel, Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop. Geophys. Res. Lett. 2004, 31, L09308.
Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop.Crossref | GoogleScholarGoogle Scholar |

[29]  S. M. Vallina, R. Simó, Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 2007, 315, 506.
Strong relationship between DMS and the solar radiation dose over the global surface ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFCisg%3D%3D&md5=89cd9bc46fb8728247c131f4a427b8cdCAS | 17255509PubMed |

[30]  S. Belviso, G. Caniaux, A new assessment in North Atlantic waters of the relationship between DMS concentration and the upper mixed layer solar radiation dose. Global Biogeochem. Cycles 2009, 23, GB1014.
A new assessment in North Atlantic waters of the relationship between DMS concentration and the upper mixed layer solar radiation dose.Crossref | GoogleScholarGoogle Scholar |

[31]  G. J. Derevianko, C. Deutsch, A. Hall, On the relationship between ocean DMS and solar radiation. Geophys. Res. Lett. 2009, 36, L17606.
On the relationship between ocean DMS and solar radiation.Crossref | GoogleScholarGoogle Scholar |

[32]  D. A. Toole, D. A. Siegel, S. C. Doney, A light‐driven one‐dimensional dimethylsulfide biogeochemical cycling model for the Sargasso Sea. J. Geophys. Res. 2008, 113, G02009.
A light‐driven one‐dimensional dimethylsulfide biogeochemical cycling model for the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar |

[33]  C. M. Moore, M. M. Mills, K. R. Arrigo, I. Berman-Frank, L. Bopp, P. W. Boyd, E. D. Galbraith, R. J. Geider, C. Guieu, S. L. Jaccard, T. D. Jickells, J. La Roche, T. M. Lenton, N. M. Mahowald, E. Marañón, I. Marinov, J. K. Moore, T. Nakatsuka, A. Oschlies, M. A. Saito, T. F. Thingstad, A. Tsuda, O. Ulloa, Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 2013, 6,
Processes and patterns of oceanic nutrient limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFOkur4%3D&md5=572eaec5702bd39ee7321e0c5735c7e5CAS |

[34]  M. Vila-Costa, R. Poretsky, S. Sun, J. Rinta-Kanto, R. P. Kiene, M. A. Moran, Microbial controls on DMSP degradation and DMS formation in the Sargasso Sea. Biogeochemistry 2014, 120, 295.
Microbial controls on DMSP degradation and DMS formation in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVCrt7w%3D&md5=c06c5016ec78fe5de34cd9368bdb6ab8CAS |

[35]  A. F. Vézina, Ecosystem modelling of the cycling of marine dimethylsulfide: a review of current approaches and of the potential for extrapolation to global scales. Can. J. Fish. Aquat. Sci. 2004, 61, 845.
Ecosystem modelling of the cycling of marine dimethylsulfide: a review of current approaches and of the potential for extrapolation to global scales.Crossref | GoogleScholarGoogle Scholar |

[36]  M. Vogt, S. M. Vallina, E. T. Buitenhuis, L. Bopp, C. Le Quéré, Simulating dimethylsulphide seasonality with the Dynamic Green Ocean Model PlankTOM5. J. Geophys. Res. 2010, 115, C06021.
Simulating dimethylsulphide seasonality with the Dynamic Green Ocean Model PlankTOM5.Crossref | GoogleScholarGoogle Scholar |

[37]  S. D. Archer, G. C. Smith, P. D. Nightingale, C. E. Widdicombe, G. A. Tarran, A. P. Rees, P. H. Burkill, Dynamics of particulate dimethylsulphoniopropionate during a Lagrangian experiment in the northern North Sea. Deep-Sea Res. II 2002, 49, 2979.
| 1:CAS:528:DC%2BD38XktlKntLo%3D&md5=2394582ffd0b86430d0b55ca6e251112CAS |

[38]  D. J. Kieber, J. F. Jiao, R. P. Kiene, T. S. Bates, Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the Equatorial Pacific Ocean. J. Geophys. Res. 1996, 101, 3715.
Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the Equatorial Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Kmsb4%3D&md5=d43eed37f39a248f3f3d5e48bad0be7eCAS |

[39]  S. D. Archer, F. J. Gilbert, J. I. Allen, J. Blackford, P. D. Nightingale, Modelling of the seasonal patterns of dimethylsulphide production and fate during 1989 at a site in the North Sea. Can. J. Fish. Aquat. Sci. 2004, 61, 765.
Modelling of the seasonal patterns of dimethylsulphide production and fate during 1989 at a site in the North Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Sjs7o%3D&md5=a17f92e6a79547062bf72794862e7350CAS |

[40]  A. Morel, B. Gentili, A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens. Environ. 2009, 113, 998.
A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data.Crossref | GoogleScholarGoogle Scholar |