Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Comparative characterisation of two fulvic acids from East Lake and Liangzi Lake in central China

Jun Wang A , Huijie Li A , Yong Chen A C , Yuan Fang A , Zongping Wang A , Tao Tao A and Yuegang Zuo B
+ Author Affiliations
- Author Affiliations

A School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

B Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA.

C Corresponding author. Email: ychen@hust.edu.cn

Environmental Chemistry 12(2) 189-197 https://doi.org/10.1071/EN14135
Submitted: 19 July 2014  Accepted: 15 October 2014   Published: 17 February 2015

Environmental context. Fulvic acids account for a large proportion of dissolved organic matter in aquatic environments and affect the transportation and bioavailability of organic and inorganic pollutants. The structural and spectroscopic characteristics of fulvic acids mainly depend on the sources, seasons and anthropogenic activity. We present an advanced approach using fluorescence spectroscopy as a rapid and cost-effective method to investigate the composition, properties and origins of fulvic acids.

Abstract. Fulvic acids (FAs) isolated seasonally from the sediments of East Lake and Liangzi Lake in central China were comparatively investigated. The structural features of the FAs were characterised using chemical and spectroscopic methods, including elemental analysis, UV-Vis spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and three-dimensional excitation emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The O/C, (O + N)/C and C/N ratios of FA extracted from Liangzi Lake (FAL) were higher than those of FA extracted from East Lake (FAE), indicating higher oxygen-containing functionality and polarity and less nutrient in FAL compared with FAE. The two FAs had similar UV-Vis spectra with different absorbance intensities. The FT-IR spectra showed that the two FAs had similar functional groups. The total fluorescence intensity and aromaticity of samples from Liangzi Lake were higher than those of East Lake except for those taken in the summer. The two FAs were largely terrestrially derived organic materials. Five fluorescent components, including four humic-like and two fulvic-like components, were identified by PARAFAC modelling of the EEM spectral data. The fluorescence was dominated by two components. The findings suggest that EEM fluorescence spectroscopy together with PARAFAC is a rapid and cost-effective method for understanding the characteristics and origins of FAs in natural water systems.

Additional keywords: characteristics, EEM, parallel factor analysis.


References

[1]  M. H. B. Hayes, R. S. Swift, Genesis, isolation, composition and structures of soil humic substances, in Soil Colloids and Their Associations in Aggregates (Ed. M. F. De Boodt) 1990, pp. 245–305 (Plenum Press: New York).

[2]  F. J. Stevenson (Ed.), Extraction, fractionation, and general chemical composition of soil organic matter, in Humus Chemistry. Genesis, Composition, Reactions 1982, pp. 26–54 (Wiley: New York).

[3]  S. Li, W. L. Sun, A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and Fe(III). J. Hazard. Mater. 2011, 197, 70.
A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and Fe(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqsb7F&md5=a7786459533484b218baea4cd38cce3eCAS | 22001572PubMed |

[4]  A. Ledin, S. Karlsson, B. Allard, Effects of pH, ionic strength and a fulvic acid on size distribution and surface charge of colloidal quartz and hematite. Appl. Geochem. 1993, 8, 409.
Effects of pH, ionic strength and a fulvic acid on size distribution and surface charge of colloidal quartz and hematite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvFKjtbg%3D&md5=ee77ab5e1ecc45b88b0dfde505aede74CAS |

[5]  R. M. Sterritt, J. N. Lester, Comparison of methods for the determination of conditional stability constants of heavy metal–fulvic acid complexes. Water Res. 1984, 18, 1149.
Comparison of methods for the determination of conditional stability constants of heavy metal–fulvic acid complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltlKksr4%3D&md5=065b7fa3e42083557be63e7e0f7e2373CAS |

[6]  R. A. Bulman, F. Szabó, R. F. Clayton, C. R. Clayton, Investigations of the uptake of transuranic radionuclides by humic and fulvic acids chemically immobilized on silica gel and their competitive release by complexing agents. Waste Manag. 1998, 17, 191.
Investigations of the uptake of transuranic radionuclides by humic and fulvic acids chemically immobilized on silica gel and their competitive release by complexing agents.Crossref | GoogleScholarGoogle Scholar |

[7]  Y. Chen, Z. P. Wang, H. J. Li, T. Tao, Y. G. Zuo, Photodegradation of selected β-blockers in aqueous fulvic acid solutions: kinetics, mechanism, and product analysis. Water Res. 2012, 46, 2965.
Photodegradation of selected β-blockers in aqueous fulvic acid solutions: kinetics, mechanism, and product analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Knsrc%3D&md5=99c2dca3b8a1a2b343e9a179ec999476CAS | 22494494PubMed |

[8]  T. Terajima, M. Moriizumi, Temporal and spatial changes in dissolved organic carbon concentration and fluorescence intensity of fulvic acid-like materials in mountainous headwater catchments. J. Hydrol. 2013, 479, 1.
Temporal and spatial changes in dissolved organic carbon concentration and fluorescence intensity of fulvic acid-like materials in mountainous headwater catchments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVymuw%3D%3D&md5=8f91d519a499921243417704946c1cdbCAS |

[9]  Y. L. Zhang, M. A. van Dijk, M. J. Liu, G. W. Zhu, B. Q. Qin, The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Res. 2009, 43, 4685.
The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CgurbF&md5=8cc89e76b4314bfdd0f74676ddb20cd3CAS |

[10]  X. Yao, Y. Z. Zhang, G. Zhu, B. Qiu, L. Feng, L. Cai, G. Gao, Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 2011, 82, 145.
Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGkur7K&md5=642be5dc2be7566de31dacfc8c53beebCAS | 21071060PubMed |

[11]  W. G. Mendoza, R. G. Zika, On the temporal variation of DOM fluorescence on the south-west Florida continental shelf. Prog. Oceanogr. 2014, 120, 189.
On the temporal variation of DOM fluorescence on the south-west Florida continental shelf.Crossref | GoogleScholarGoogle Scholar |

[12]  C. A. Stedmon, S. Markager, R. Bro, Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239.
Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFamurc%3D&md5=2133b767f017d1d7a8287468845efd32CAS |

[13]  C. A. Stedmon, R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. 2008, 6, 572.
Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWqsL%2FL&md5=6629aee2c8be47163c9a1413c1366821CAS |

[14]  D. N. Kothawala, C. A. Stedmon, R. A. Muller, G. A. Weyhenmeyer, S. J. Kohler, L. J. Tranvik, Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. Glob. Change Biol. 2014, 20, 1101.
Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey.Crossref | GoogleScholarGoogle Scholar |

[15]  Q. Y. Sun, C. Wang, P. F. Wang, J. Hou, Y. H. Ao, Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary. Environ. Sci. Pollut. Res. 2014, 21, 3460.
Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivF2ju74%3D&md5=9b0deb8a07125354f183670374226589CAS |

[16]  B. Q. Zhu, S. A. Pennell, D. K. Ryan, Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two-site fluorescence quenching model. Microchem. J. 2014, 115, 51.
Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two-site fluorescence quenching model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslagtrs%3D&md5=fd0db42fb3f5c69b2eb79d55ba5d6cb1CAS |

[17]  Z. Y. Tao, J. Zhang, J. J. Zhai, Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 1999, 395, 199.
Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksleju7o%3D&md5=264aa47d6641e37803d61820f928d972CAS |

[18]  J. Dai, W. Ran, B. Xing, M. Gu, L. Wang, Characterization of fulvic acid fractions obtained by sequential extractions with pH buffers, water, and ethanol from paddy soil. Geoderma 2006, 135, 284.
Characterization of fulvic acid fractions obtained by sequential extractions with pH buffers, water, and ethanol from paddy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVykt7vM&md5=6dfd1405cdaecece6200390d44e3a6e6CAS |

[19]  J. M. Li, J. G. Wu, Compositional and structural difference of fulvic acid from black soil applied with different organic materials: assessment after three years. J. Integr. Agric. 2013, 12, 1865.
Compositional and structural difference of fulvic acid from black soil applied with different organic materials: assessment after three years.Crossref | GoogleScholarGoogle Scholar |

[20]  M. C. He, Y. H. Shi, C. Y. Lin, Characterization of humic acids extracted from the sediments of the various rivers and lakes in China. J. Environ. Sci. 2008, 20, 1294.
Characterization of humic acids extracted from the sediments of the various rivers and lakes in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFehtrY%3D&md5=c5386ec106689a02a6e30d3f7f3c1263CAS |

[21]  J. Liu, J. Wang, Y. H. Chen, H. Lippold, J. Lippmann-Pipke, Comparative characterization of two natural humic acids in the Pearl River Basin, China, and their environmental implications. J. Environ. Sci. 2010, 22, 1695.
Comparative characterization of two natural humic acids in the Pearl River Basin, China, and their environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyjsLzI&md5=70880e54ca9e1e027c8f138bf96862d3CAS |

[22]  Y. T. Chen, J. P. Zhao, L. Q. Yin, J. S. Chen, D. X. Yuan, Quantification, morphology and source of humic acid, kerogen and black carbon in offshore marine sediments from Xiamen Gulf, China. J. Environ. Sci. (China) 2013, 25, 287.
Quantification, morphology and source of humic acid, kerogen and black carbon in offshore marine sediments from Xiamen Gulf, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVCgtrc%3D&md5=fbf0c483bb1503dbdf04bbfd6e0f7696CAS |

[23]  R. D. Nimmagadda, C. McRae, Characterisation of the backbone structures of several fulvic acids using a novel selective chemical reduction method. Org. Geochem. 2007, 38, 1061.
Characterisation of the backbone structures of several fulvic acids using a novel selective chemical reduction method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVSksbY%3D&md5=119474ff850da190dd40944c098b7edbCAS |

[24]  E. M. Thurman, Aquatic humic substances, in Organic Geochemistry of Natural Waters (Eds C. J. M. Kramer and J. C. Duinker) 1985, pp. 273–362 (Martinus Nijhoff/Dr W. Junk: Dordrecht).

[25]  X. N. Feng, Y. Chen, Y. Fang, X. Y. Wang, Z. P. Wang, T. Tao, Y. G. Zuo, Photodegradation of parabens by Fe(III)-citrate complexes at circumneutral pH: matrix effect and reaction mechanism. Sci. Total Environ. 2014, 472, 130.
Photodegradation of parabens by Fe(III)-citrate complexes at circumneutral pH: matrix effect and reaction mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Khs70%3D&md5=1b0ec59ea91a67f5e94896475f72a74dCAS |

[26]  M. Giovanela, E. Parlanti, E. J. Soriano-Sierra, M. S. Soldi, M. M. D. Sierra, Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochem. J. 2004, 38, 255.
Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFCnsb4%3D&md5=27c0e047a911987131fe3de11c261472CAS |

[27]  K. Tsuda, H. Mori, D. Asakawa, Y. Yanagi, H. Kodama, S. Nagao, K. Yonebayashi, N. Fujitake, Characterization and grouping of aquatic fulvic acids isolated from clear-water rivers and lakes in Japan. Water Res. 2010, 44, 3837.
Characterization and grouping of aquatic fulvic acids isolated from clear-water rivers and lakes in Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslamsLc%3D&md5=c5296d321f01af03dd8986cba1d52023CAS | 20569962PubMed |

[28]  A. Piccolo, P. Zaaccheo, P. G. Genevini, Chemical characterization of humic substances extracted from organic waste-amended soils. Bioresour. Technol. 1992, 40, 275.
Chemical characterization of humic substances extracted from organic waste-amended soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFemsb0%3D&md5=0c5bebaa4b7a88217c1bbbe3ca6e7872CAS |

[29]  C. Steelink, Implications of elemental characteristics of humic substances, in Humic Substances in Soil, Sediment, and Water (Eds G. R. Aiken, D. M. McKnight, R. L. Wershaw and P. MacCarthy) 1985, pp. 457–476 (Wiley: New York).

[30]  P. A. Meyers, R. Ishiwatari, Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867.
Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXosFynsQ%3D%3D&md5=9c33cbe584cc3802547ba9e886658368CAS |

[31]  B. Plechanov, J. D. Dyrssen, Aquatic and Terrestrial Humic Materials (Ed. R. F. Christman) 1980, pp. 387–405 (Ann Arbor Science: Ann Arbor. MI).

[32]  R. S. Summers, P. K. Cornel, P. V. Roberts, Molecular size distribution and spectroscopic characterization of humic substances. Sci. Total Environ. 1987, 62, 27.
Molecular size distribution and spectroscopic characterization of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhs1ahu7g%3D&md5=bec73f4bfeb350df7b112098db11f004CAS |

[33]  J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, K. Mopper, Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955.
Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter.Crossref | GoogleScholarGoogle Scholar |

[34]  F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, 2nd edn 1994 (Wiley: New York).

[35]  H. A. N. Abdulla, E. C. Minor, R. F. Dias, P. G. Hatcher, Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and 13C NMR. Geochim. Cosmochim. Acta 2010, 74, 3815.
Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and 13C NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGjsLs%3D&md5=216132914492947addf3910bb09373d7CAS |

[36]  X. J. Guo, X. S. He, H. Zhang, Y. Deng, L. Chen, J. Y. Jiang, Characterization of dissolved organic matter extracted from fermentation effluent of swine manure slurry using spectroscopic techniques and parallel factor analysis (PARAFAC). Microchem. J. 2012, 102, 115.
Characterization of dissolved organic matter extracted from fermentation effluent of swine manure slurry using spectroscopic techniques and parallel factor analysis (PARAFAC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitF2ru78%3D&md5=8c96779dd9730e1dc9eab072dfa21cf3CAS |

[37]  D. L. Paiva, G. M. Lampman, G. S. Kriz, Introduction to Spectroscopy: a Guide for Students of Organic Chemistry 1996 (Saunders College Publications: Orlando, FL).

[38]  A. Baker, Fluorescence properties of some farm wastes: implications for water quality monitoring. Water Res. 2002, 36, 189.
Fluorescence properties of some farm wastes: implications for water quality monitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KhurY%3D&md5=e9bc05815f82506cf9031063330e27f1CAS | 11766794PubMed |

[39]  F. S. Zhang, Y. X. Li, X. Xiong, M. Yang, W. Li, Effect of composting on dissolved organic matter in animal manure and its binding with Cu. Sci. World J. 2012, 2012, 1.

[40]  R. M. Cory, D. M. Mcknight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinines in dissolved organic matter. Environ. Sci. Technol. 2005, 39, 8142.
Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinines in dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrvO&md5=9001fdea2a5753a0b2492950f15e91c3CAS | 16294847PubMed |

[41]  B. E. W. McKnight, P. K. Westerhoff, P. T. Doran, D. T. Andersen, Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38.
Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFKjtrk%3D&md5=eded1d1729f9da8b5aa82313f1ea7c45CAS |

[42]  T. J. Battin, Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela. Org. Geochem. 1998, 28, 561.
Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlWqs7Y%3D&md5=54bf581e9e0efd75c01c185a259272cbCAS |

[43]  R. Jaffé, J. N. Boyer, X. Lu, N. Maie, C. Yang, N. M. Scully, S. Mock, Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar. Chem. 2004, 84, 195.
Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis.Crossref | GoogleScholarGoogle Scholar |

[44]  J. Wu, H. Zhang, Q. S. Yao, L. M. Shao, P. J. He, Toward understanding the role of individual fluorescent components in DOM–metal binding. J. Hazard. Mater. 2012, 215–216, 294.
Toward understanding the role of individual fluorescent components in DOM–metal binding.Crossref | GoogleScholarGoogle Scholar | 22429625PubMed |

[45]  S. K. L. Ishii, T. H. Boyer, Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems. Crit. Rev. Environ. Sci. Technol. 2012, 46, 2006.
Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sntro%3D&md5=16057267eebccafbd2bb99f05d330013CAS |

[46]  C. Xiaoli, L. Guixiang, Z. Xin, H. Yongxia, Z. Youcai, Fluorescence excitation–emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages. Waste Manag. 2012, 32, 438.
Fluorescence excitation–emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages.Crossref | GoogleScholarGoogle Scholar | 22104617PubMed |

[47]  R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, S. J. Khan, Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Res. 2009, 43, 863.
Fluorescence as a potential monitoring tool for recycled water systems: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVGjtLo%3D&md5=4d49a7cc9bd1bad2b94b27c6e5d9736aCAS | 19081598PubMed |

[48]  P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar. Chem. 1996, 51, 325.
Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnslWltg%3D%3D&md5=1e30a6259d65e1fc6be1ef70c61191ffCAS |

[49]  K. R. Murphy, A. Hambly, S. Singh, R. K. Henderson, A. Baker, R. Stuetz, S. J. Khan, Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environ. Sci. Technol. 2011, 45, 2909.
Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFersrg%3D&md5=372b5e8961e60b3109bab3c6c5470bf5CAS | 21361278PubMed |