Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Reversible exchange of stable nitroxyl radicals on nanosilver particles

Mark A. Chappell A B , Lesley F. Miller A and Cynthia L. Price A
+ Author Affiliations
- Author Affiliations

A Environmental Laboratory, US Army Engineer Research & Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.

B Corresponding author. Email: mark.a.chappell@usace.army.mil

Environmental Chemistry 12(2) 198-203 https://doi.org/10.1071/EN14093
Submitted: 1 May 2014  Accepted: 16 September 2014   Published: 18 March 2015

Environmental context. Nanometre-sized silver particles promote unique chemical reactions on their surface. This work examines the ability of silver nanoparticles to collect and store unpaired electrons, called radicals, on their surface. This capability by silver nanoparticles could potentially serve to drive degradation reactions in the environment.

Abstract. Radicals drive important chemical reactions in the environment. These unpaired electron species can be generated by energetic inputs, such as electromagnetic radiation, or from ultrasonication processes, whereby oxygen radicals are generated in aqueous solution through a cavitation mechanism. Previous evidence has demonstrated the potential for radicals to be stored on the surface of metallic gold nanoparticles, thus suggesting a potential transference of radical species from the nanoparticle surface for catalytic reactions, particularly during preparations of nanoparticle suspensions through ultrasonication. This work investigates the potential for the nanosilver (nAg) particles to similarly scavenge radicals from solution. nAg suspensions were reacted with 0.3-mM solutions containing the stable nitroxy radicals 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) and 4-amino-2,2,6,6-tetramethylpiperidino-1-oxyl (TEMPAMINE) analysed by quantitative electron spin resonance (ESR) spectroscopy. In ambient air, the addition of a nAg suspension to the 0.3-mM solutions reduced the integrated ESR intensity of the stable radicals by 50–93 % depending on radical species and nAg concentration, which we attributed to the sorption of the radicals onto the nAg surface. In separate experiments, the ESR intensities were further decreased under an Ar atmosphere, suggesting potential competition from ambient OH to the sorption of the stable radicals. To verify this, we observed substantial increases in the integrated ESR intensity when the systems previously equilibrated under Ar atmosphere were exposed to ambient air. These results demonstrated that nAg scavenged the stable radicals from solution and were exchangeable from the metallic conduction band with OH. Our work represents the first evidence for this mechanism to be demonstrated for nAg.

Additional keywords: electron spin resonance, stable radicals, ultrasonication.


References

[1]  C. Gannon, C. Patra, R. Bhattacharya, P. Mukherjee, S. Curley, Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnology 2008, 6, 2.
Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells.Crossref | GoogleScholarGoogle Scholar | 18234109PubMed |

[2]  Z. Zhang, A. Berg, H. Levanson, R. W. Fessenden, D. Meisel, On the interactions of free radicals with gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 7959.
On the interactions of free radicals with gold nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlGqs74%3D&md5=79a03f033d9332aca0f070a84c77f02bCAS | 12823017PubMed |

[3]  K. S. Suslick, Y. Didenko, M. M. Fang, T. Hyeon, K. J. Kolbeck, W. B. McNamara, M.M. Mdleleni, M. Wong, Acoustic cavitation and its chemical consequences. Philos. Trans. R. Soc. Lond. A 1999, 357, 335.
Acoustic cavitation and its chemical consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFaitL4%3D&md5=b2ef12a154726db4417b6f2c5343572fCAS |

[4]  E. J. Hart, A. Henglein, Sonochemistry of aqueous solutions: H2-O2 combustion in cavitation bubbles. J. Phys. Chem. 1987, 91, 3654.
Sonochemistry of aqueous solutions: H2-O2 combustion in cavitation bubbles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktFentrs%3D&md5=2556a9ca910c9ffaf17dc4bf43b7b901CAS |

[5]  Y. Liu, L. Gao, S. Zheng, Y. Wang, J. Sun, H. Kajiura, Y. Li, K. Noda, Debundling of single-walled carbon nanotubes by using natural polyelectrolytes. Nanotechnology 2007, 18, 365702.
Debundling of single-walled carbon nanotubes by using natural polyelectrolytes.Crossref | GoogleScholarGoogle Scholar |

[6]  S. J. Doktycz, K. S. Suslick, Interparticle collisions driven by ultrasound. Science 1990, 247, 1067.
Interparticle collisions driven by ultrasound.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitVGjt7k%3D&md5=ec90524c29ee521a22b33dd0a8ef439dCAS | 2309118PubMed |

[7]  Z.-Y. Yang, Y.-F. Li, Z. Zhou, Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering. Front. Phys. China 2009, 4, 378.
Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering.Crossref | GoogleScholarGoogle Scholar |

[8]  P. Ionita, F. Spafiu, C. Ghica, Dual behavior of gold nanoparticles, as generator and scavengers for free radicals. J. Mater. Sci. 2008, 43, 6571.
Dual behavior of gold nanoparticles, as generator and scavengers for free radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Wrs7vE&md5=1843033978fc58a2b5d009f8559b2220CAS |

[9]  O. Choi, Z. Hu, Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42, 4583.
Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOjsLk%3D&md5=cc6ed00b84d371b716c83889e936c7a0CAS | 18605590PubMed |

[10]  A. J. Kennedy, M. S. Hull, A. J. Bednar, J. D. Goss, J. C. Gunter, J. L. Bouldin, P. J. Vikesland, J. A. Steevens, Fractionating nanosilver: importance for determining toxicity of aquatic test organisms. Environ. Sci. Technol. 2010, 44, 9571.
Fractionating nanosilver: importance for determining toxicity of aquatic test organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqsL7E&md5=0f1dab4c097ab61fd9c78a4fd25ebf16CAS | 21082828PubMed |

[11]  E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.. Environ. Sci. Technol. 2008, 42, 8959.
Toxicity of silver nanoparticles to Chlamydomonas reinhardtii..Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOqt7nO&md5=755432a47d7e3de51aa8c899bb99feb3CAS | 19192825PubMed |

[12]  A. J. Kennedy, M. A. Chappell, A. J. Bednar, A. Ryan, J. G. Laird, J. S. Stanley, J. A. Steevens, Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ. Sci. Technol. 2012, 46, 10772.
Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12ru7jF&md5=8fbea69f9105d853cb53af8370969dcaCAS | 22950762PubMed |

[13]  R. Roy, M. R. Hoover, A. S. Bhalla, T. Slawecki, S. Dey, W. Cao, J. Li, S. Bhaskar, Ultradilute Ag-aquasols with extraordinary bactericidal properties: role of the system Ag-O-H2O. Mater. Res. Innov. 2007, 11, 3.
Ultradilute Ag-aquasols with extraordinary bactericidal properties: role of the system Ag-O-H2O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslOhs70%3D&md5=987b7b9ebfe6ed5a75db42b7e86c7d44CAS |

[14]  C. Carlson, S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, J. J. Schlager, Unique cellular interaction of silver nanoparticles: ize-dependent generation of reactive oxygen species. J. Phys. Chem. B 2008, 112, 13608.
Unique cellular interaction of silver nanoparticles: ize-dependent generation of reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2gs7jP&md5=bcd2cd5e1b3e65fc4d7cf73cdeb6a3e9CAS | 18831567PubMed |

[15]  G. R. Eaton, S. S. Eaton, D. P. Barr, R. T. Weber, Quantitiative EPR 2010 (SpringerWien: New York).

[16]  F. Gerson, W. Huber, Electron Spin Resonance Spectroscopy of Organic Radicals 2003 (Wiley-VCH: Weinheim).

[17]  R. G. Prinn, J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O'Doherty, R. H. J. Wang, L. Porter, B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 2001, 292, 1882.
Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVaqs7k%3D&md5=dc04cf10f33d7778e2b5797fede54199CAS | 11337586PubMed |

[18]  M. Krol, J. Lelieveld, Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? J. Geophys. Res., D, Atmospheres 2003, 108, 4125.
Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)?Crossref | GoogleScholarGoogle Scholar |

[19]  P. Quay, S. King, D. White, M. Brockington, B. Plotkin, R. Gammon, S. Gerst, J. Stutsman, Atmospheric 14CO: a tracer of OH concentration and mixing rates. J. Geophys. Res., D, Atmospheres 2000, 105, 15147.
Atmospheric 14CO: a tracer of OH concentration and mixing rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFKqtbs%3D&md5=cb5782421fefbc2e139eea59ea06fa40CAS |

[20]  G. Harada, H. Sakurai, M. M. Matsushita, A. Izuoka, T. Sugawara, Preparation and characterization of gold nano-particles chemisorbed by π-radical thiols. Chem. Lett. 2002, 31, 1030.
Preparation and characterization of gold nano-particles chemisorbed by π-radical thiols.Crossref | GoogleScholarGoogle Scholar |