A critical review of nanohybrids: synthesis, applications and environmental implications
Nirupam Aich A , Jaime Plazas-Tuttle A , Jamie R. Lead B and Navid B. Saleh A CA Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX 78712, USA.
B Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
C Corresponding author. Email: navid.saleh@utexas.edu
Nirupam Aich is a Ph.D. student at the Department of Civil, Architectural and Environmental Engineering in the University of Texas at Austin. Prior to joining UT in 2014, he completed his M.Sc. in Environmental Engineering from University of South Carolina, Columbia, SC and B.Sc. in Chemical Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. His research interests include systematic evaluation of environmental implications of nanohybrid materials and application of nanomaterials for environmental remediation and sustainable infrastructure. |
Jaime Plazas-Tuttle is a Ph.D. student at the Department of Civil, Architectural and Environmental Engineering in the University of Texas at Austin. He earned his M.Sc. in Environmental Engineering from the University of Illinois at Urbana-Champaign in 2012, and a M.Sc. in Desert Studies, in Water Resources and Management, from Ben Gurion University of the Negev, Sde Boker, Israel in 2004. His B.Sc. degree is in Civil Engineering, earned at Pontificia Universidad Javeriana, Bogotá, Colombia in 2000. He was the recipient of a Fulbright Scholarship in 2009. His research interests focus on the development and application of nanomaterials in drinking water treatment. |
Professor Jamie Lead is an endowed Professor and Director of the SmartState Center for Environmental Nanoscience and Risk in the Department of Environmental Health Sciences, University of South Carolina, USA, and an adjunct Professor and co-Director of the Facility for Environmental Nanoscience Analysis and Characterisation, in the School of Geography, Earth and Environmental Sciences, University of Birmingham, UK. His research aims at (i) understanding nanoscale phenomena in the environment including natural nanomaterials, manufactured nanomaterials and their interactions and impacts on pollutant behaviour and (ii) the development of manufactured nanomaterials for environmentally beneficial processes such as remediation of organic contaminants. |
Navid Saleh is an Assistant Professor of Civil, Architectural and Environmental Engineering at the University of Texas at Austin. He holds a Ph.D. in Civil and Environmental Engineering from Carnegie Mellon University and has been trained as a postdoctoral scholar at the Department of Chemical Engineering, Yale University. His research focuses on the fundamental understanding of nanomaterial fate, transport and transformation and on physicochemical characterisation of nanomaterials to provide mechanistic insights on nanotoxicity. Use of nanomaterials for water treatment and environmental remediation has also been a focus of his research. |
Environmental Chemistry 11(6) 609-623 https://doi.org/10.1071/EN14127
Submitted: 6 July 2014 Accepted: 22 August 2014 Published: 16 December 2014
Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND
Environmental context. Recent developments in nanotechnology have focussed towards innovation and usage of multifunctional and superior hybrid nanomaterials. Possible exposure of these novel nanohybrids can lead to unpredicted environmental fate, transport, transformation and toxicity scenarios. Environmentally relevant emerging properties and potential environmental implications of these newer materials need to be systematically studied to prevent harmful effects towards the aquatic environment and ecology.
Abstract. Nanomaterial synthesis and modification for applications have progressed to a great extent in the last decades. Manipulation of the physicochemical properties of a material at the nanoscale has been extensively performed to produce materials for novel applications. Controlling the size, shape, surface functionality, etc. has been key to successful implementation of nanomaterials in multidimensional usage for electronics, optics, biomedicine, drug delivery and green fuel technology. Recently, a focus has been on the conjugation of two or more nanomaterials to achieve increased multifunctionality as well as creating opportunities for next generation materials with enhanced performance. With incremental production and potential usage of such nanohybrids come the concerns about their ecological and environmental effects, which will be dictated by their not-yet-understood physicochemical properties. While environmental implication studies concerning the single materials are yet to give an integrated mechanistic understanding and predictability of their environmental fate and transport, the importance of studying the novel nanohybrids with their multi-dimensional and complex behaviour in environmental and biological exposure systems are immense. This article critically reviews the literature of nanohybrids and identifies potential environmental uncertainties of these emerging ‘horizon materials’.
References
[1] S. M. Paek, J. M. Oh, J. H. Choy, A lattice-engineering route to heterostructured functional nanohybrids. Chem. Asian J. 2011, 6, 324.| A lattice-engineering route to heterostructured functional nanohybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWnug%3D%3D&md5=a2fb8a0ab35778ece4f62fbb86b919b5CAS | 21254409PubMed |
[2] U. Banin, Y. Ben-Shahar, K. Vinokurov, Hybrid semiconductor–metal nanoparticles: from architecture to function. Chem. Mater. 2014, 26, 97.
| Hybrid semiconductor–metal nanoparticles: from architecture to function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlKktb%2FL&md5=fb8f20cffeb4c2b5431c3a0a8292f3abCAS |
[3] L. H. Liu, R. Metivier, S. F. Wang, H. Wang, Advanced nanohybrid materials: surface modification and applications. J. Nanomater. 2012, 2012, 1.
| Advanced nanohybrid materials: surface modification and applications.Crossref | GoogleScholarGoogle Scholar |
[4] N. Saleh, A. R. M. N. Afrooz, J. H. Bisesi, N. Aich, J. Plazas-Tuttle, T. Sabo-Attwood, Emergent properties and toxicological considerations for nanohybrid materials in aquatic systems. Nanomaterials 2014, 4, 372.
| Emergent properties and toxicological considerations for nanohybrid materials in aquatic systems.Crossref | GoogleScholarGoogle Scholar |
[5] M. Schumacher, M. Ruppel, J. Kohlbrecher, M. Burkhardt, F. Plamper, M. Drechsler, A. H. E. Muller, Smart organic-inorganic nanohybrid stars based on star-shaped poly(acrylic acid) and functional silsesquioxane nanoparticles. Polymer 2009, 50, 1908.
| Smart organic-inorganic nanohybrid stars based on star-shaped poly(acrylic acid) and functional silsesquioxane nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2itrw%3D&md5=af574c353082fde9a75a1e0cdc0d98b6CAS |
[6] N. Nakashima, Y. Tanaka, Y. Tomonari, H. Murakami, H. Kataura, T. Sakaue, K. Yoshikawa, Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water. J. Phys. Chem. B 2005, 109, 13076.
| Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlGgurY%3D&md5=f92ab19d822667861495af036c2fce58CAS | 16852626PubMed |
[7] E. V. Shevchenko, M. I. Bodnarchuk, M. V. Kovalenko, D. V. Talapin, R. K. Smith, S. Aloni, W. Heiss, A. P. Alivisatos, Gold/iron oxide core/hollow-shell nanoparticles. Adv. Mater. 2008, 20, 4323.
| Gold/iron oxide core/hollow-shell nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOhu7rL&md5=19b1733b68eacde01bde19acaad54949CAS | 1:CAS:528:DC%2BD1cXhsVOhu7rL&md5=19b1733b68eacde01bde19acaad54949CAS |
[8] Z. Fan, M. Shelton, A. K. Singh, D. Senapati, S. A. Khan, P. C. Ray, Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano 2012, 6, 1065.
| Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oht7c%3D&md5=e4e2dec9bc1b3eda5a6dea7d4196fc90CAS | 1:CAS:528:DC%2BC38Xht1Oht7c%3D&md5=e4e2dec9bc1b3eda5a6dea7d4196fc90CAS | 22276857PubMed |
[9] E. Pál, V. Hornok, D. Sebők, A. Majzik, I. Dékány, Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method. Colloids Surf. B Biointerfaces 2010, 79, 276.
| Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method.Crossref | GoogleScholarGoogle Scholar | 20451360PubMed |
[10] X. J. Zhao, Z. B. Mai, X. H. Kang, Z. Dai, X. Y. Zou, Clay–chitosan–gold nanoparticle nanohybrid: preparation and application for assembly and direct electrochemistry of myoglobin. Electrochim. Acta 2008, 53, 4732.
| Clay–chitosan–gold nanoparticle nanohybrid: preparation and application for assembly and direct electrochemistry of myoglobin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvFOiurs%3D&md5=719df00c9ee249cb96791457022eda9dCAS | 1:CAS:528:DC%2BD1cXjvFOiurs%3D&md5=719df00c9ee249cb96791457022eda9dCAS |
[11] X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, Z. Liu, A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199.
| A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjslKmurk%3D&md5=58250b1d66518e3918dc2fbe23428bc4CAS | 1:CAS:528:DC%2BC38XjslKmurk%3D&md5=58250b1d66518e3918dc2fbe23428bc4CAS |
[12] D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, W. K. Choi, Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465.
| Emissive ZnO-graphene quantum dots for white-light-emitting diodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFKns7Y%3D&md5=4901315e52c0c98f02a3c4f81906d714CAS | 1:CAS:528:DC%2BC38XnsFKns7Y%3D&md5=4901315e52c0c98f02a3c4f81906d714CAS | 22635098PubMed |
[13] Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen, A Graphene hybrid materia covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275.
| A Graphene hybrid materia covalently functionalized with porphyrin: synthesis and optical limiting property.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlamtr4%3D&md5=fd07a6892c76b85e97e968a505e460c4CAS | 1:CAS:528:DC%2BD1MXktlamtr4%3D&md5=fd07a6892c76b85e97e968a505e460c4CAS |
[14] J. Pfannes, One-pot fabrication of crumpled graphene-based nanohybrids for supercapacitors. Reference OTT ID#1330 2013 (UWM Research Foundation: Milwaukee, WI, USA). Available at http://uwmresearchfoundation.org/getdoc/2a8d0d49-6f4b-4b28-8c48-bddf8434078a/Tech-Summary---Graphene-Based-Nanohybrids-for-Supe.aspx [Verified 30 November 2014].
[15] S. Q. Chen, P. Chen, Y. Wang, Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li–ion batteries. Nanoscale 2011, 3, 4323.
| Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li–ion batteries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWitrvM&md5=ccd1aa2fe91b1066d1ee88a9a93f1da3CAS | 1:CAS:528:DC%2BC3MXhtlWitrvM&md5=ccd1aa2fe91b1066d1ee88a9a93f1da3CAS |
[16] D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay, J. Liu, Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li–ion insertion. ACS Nano 2009, 3, 907.
| Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li–ion insertion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVegu7Y%3D&md5=31e49df246eeaf33b64a2b69f50ea3f1CAS | 1:CAS:528:DC%2BD1MXjvVegu7Y%3D&md5=31e49df246eeaf33b64a2b69f50ea3f1CAS |
[17] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, R. S. Ruoff, Graphene–silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888.
| Graphene–silica composite thin films as transparent conductors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVGmtLk%3D&md5=6f00460b8b4a9502c7bca76836ed26daCAS | 1:CAS:528:DC%2BD2sXmvVGmtLk%3D&md5=6f00460b8b4a9502c7bca76836ed26daCAS | 17592880PubMed |
[18] W. A. Rigdon, J. J. Sightler, D. Larrabee, E. McPherson, X. Huang, Titania and carbon nanotube composite catalyst supports for durable electrocatalyst performance. ECS Trans. 2013, 50, 1681.
| Titania and carbon nanotube composite catalyst supports for durable electrocatalyst performance.Crossref | GoogleScholarGoogle Scholar |
[19] T. Usui, World budget of platinum 2010 (Department of Physics, Stanford University: Stanford, CA, USA). Available at http://large.stanford.edu/courses/2010/ph240/usui1/ [Verified 30 November 2014].
[20] S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
| Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=66bb5f70ddef5f791cd00b10e5afac24CAS | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=66bb5f70ddef5f791cd00b10e5afac24CAS | 19086204PubMed |
[21] M. R. Wiesner, J.-Y. Bottero, Environmental Nanotechnology 2007 (McGraw-Hill: New York).
[22] V. L. Colvin, The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003, 21, 1166.
| The potential environmental impact of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Cltr8%3D&md5=b77d096ca9d486debdc34ba29539a021CAS | 1:CAS:528:DC%2BD3sXns1Cltr8%3D&md5=b77d096ca9d486debdc34ba29539a021CAS | 14520401PubMed |
[23] J. S. Tsuji, A. D. Maynard, P. C. Howard, J. T. James, C.-w. Lam, D. B. Warheit, A. B. Santamaria, Research strategies for safety evaluation of nanomaterials, Part IV. Risk assessment of nanoparticles. Toxicol. Sci. 2006, 89, 42.
| Research strategies for safety evaluation of nanomaterials, Part IV. Risk assessment of nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagtLjL&md5=69e5d1a5f5f608c792531e310becad38CAS | 1:CAS:528:DC%2BD2MXhtlagtLjL&md5=69e5d1a5f5f608c792531e310becad38CAS | 16177233PubMed |
[24] K. L. Chen, M. Elimelech, Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ. Sci. Technol. 2009, 43, 7270.
| Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFOltr0%3D&md5=b419125a37caf08d915a4ef2bca853f3CAS | 1:CAS:528:DC%2BD1MXltFOltr0%3D&md5=b419125a37caf08d915a4ef2bca853f3CAS | 19848133PubMed |
[25] N. B. Saleh, L. D. Pfefferle, M. Elimelech, Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ. Sci. Technol. 2008, 42, 7963.
| Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGktr%2FO&md5=139f9699f40482401eeacb87ceabfc0fCAS | 1:CAS:528:DC%2BD1cXhtFGktr%2FO&md5=139f9699f40482401eeacb87ceabfc0fCAS | 19031888PubMed |
[26] C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
| Environmental transformations of silver nanoparticles: impact on stability and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed |
[27] R. Ma, C. Levard, F. M. Michel, G. E. Brown, G. V. Lowry, Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ. Sci. Technol. 2013, 47, 2527.
| Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFaluro%3D&md5=a6561168a9d878dff40dc15ce258a2bfCAS | 1:CAS:528:DC%2BC3sXivFaluro%3D&md5=a6561168a9d878dff40dc15ce258a2bfCAS | 23425191PubMed |
[28] M. Nanko, Definition and categories of hybrid materials. Adv. Tech. Mat. Mat. Proc. J. 2009, 11, 1.
| 1:CAS:528:DC%2BD1MXnsFKqs7s%3D&md5=98e9d21742b34ac3e464e0c4bec7fe1bCAS |
| 1:CAS:528:DC%2BD1MXnsFKqs7s%3D&md5=98e9d21742b34ac3e464e0c4bec7fe1bCAS |
[29] G. Lövestam, H. Rauscher, G. Roebben, B. S. Klüttgen, N. Gibson, J.-P. Putaud, H. Stamm, Considerations on a definition of nanomaterial for regulatory purposes 2010 (Publications Office of the European Union, European Commission, Joint Research Centre: Luxembourg). Available at http://publications.jrc.ec.europa.eu/repository/handle/JRC58726 [Verified 30 November 2014].
[30] K. Leonard, M. Kawashima, H. Okamura, J. Kurawaki, One-pot sonochemical synthesis of dendron-stabilized gold nanoparticles as promising nano-hybrid with potential impact in biological application. Mater. Lett. 2010, 64, 2240.
| One-pot sonochemical synthesis of dendron-stabilized gold nanoparticles as promising nano-hybrid with potential impact in biological application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKisrfJ&md5=32c77a1bbbc2b403b54533ace4f8b2adCAS | 1:CAS:528:DC%2BC3cXhtVKisrfJ&md5=32c77a1bbbc2b403b54533ace4f8b2adCAS |
[31] H. I. Elim, B. Cai, Y. Kurata, O. Sugihara, T. Kaino, T. Adschiri, A. L. Chu, N. Kambe, Refractive index control and Rayleigh scattering properties of transparent TiO2 nanohybrid polymer. J. Phys. Chem. B 2009, 113, 10143.
| Refractive index control and Rayleigh scattering properties of transparent TiO2 nanohybrid polymer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotF2ktLc%3D&md5=c51574d9bb086cf14f71a3d994a8cbdeCAS | 1:CAS:528:DC%2BD1MXotF2ktLc%3D&md5=c51574d9bb086cf14f71a3d994a8cbdeCAS | 19580298PubMed |
[32] A. Arribas, M. D. Bermudez, W. Brostow, F. J. Carrion-Vilches, O. Olea-Mejia, Scratch resistance of a polycarbonate plus organoclay nanohybrid. eXPRESS Polym. Lett. 2009, 3, 621.
| Scratch resistance of a polycarbonate plus organoclay nanohybrid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1altLbE&md5=0dd99f1b080aea1ef3634596ef890a57CAS | 1:CAS:528:DC%2BD1MXht1altLbE&md5=0dd99f1b080aea1ef3634596ef890a57CAS |
[33] A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov, G. Lolli, D. E. Resasco, M. Choi, D. Tomanek, E. I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2007, 2, 156.
| A novel hybrid carbon material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFChur0%3D&md5=b090ba2b15b042b069ba6164bffd973aCAS | 1:CAS:528:DC%2BD2sXjsFChur0%3D&md5=b090ba2b15b042b069ba6164bffd973aCAS | 18654245PubMed |
[34] B. W. Smith, M. Monthioux, D. E. Luzzi, Encapsulated C60 in carbon nanotubes. Nature 1998, 396, 323.
| Encapsulated C60 in carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVamtrw%3D&md5=04ebf03d7d47b71bbeed1e90f79ebdd1CAS | 1:CAS:528:DyaK1cXnvVamtrw%3D&md5=04ebf03d7d47b71bbeed1e90f79ebdd1CAS |
[35] G. M. A. Rahman, D. M. Guldi, E. Zambon, L. Pasquato, N. Tagmatarchis, M. Prato, Dispersable carbon nanotube/gold nanohybrids: evidence for strong electronic interactions. Small 2005, 1, 527.
| Dispersable carbon nanotube/gold nanohybrids: evidence for strong electronic interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlOlt78%3D&md5=1b468f01dceeb741116887500ee2307aCAS | 1:CAS:528:DC%2BD2MXjtlOlt78%3D&md5=1b468f01dceeb741116887500ee2307aCAS |
[36] D. Y. Fu, G. Y. Han, Y. Z. Chang, J. H. Dong, The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Mater. Chem. Phys. 2012, 132, 673.
| The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2jsbg%3D&md5=0c3437ec8b319335266e985726e72603CAS | 1:CAS:528:DC%2BC38XhsF2jsbg%3D&md5=0c3437ec8b319335266e985726e72603CAS |
[37] J.-J. Feng, U. Gernert, M. Sezer, U. Kuhlmann, D. H. Murgida, C. David, M. Richter, A. Knorr, P. Hildebrandt, I. M. Weidinger, Novel Au–Ag hybrid device for electrochemical SE(R)R spectroscopy in a wide potential and spectral range. Nano Lett. 2009, 9, 298.
| Novel Au–Ag hybrid device for electrochemical SE(R)R spectroscopy in a wide potential and spectral range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFalsL7O&md5=99ced554ccfad3cb1b39d11cca663374CAS | 19102702PubMed |
[38] I. Fratoddi, I. Venditti, C. Battocchio, G. Polzonetti, C. Cametti, M. V. Russo, Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization. Nanoscale Res. Lett. 2011, 6, 98.
| Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization.Crossref | GoogleScholarGoogle Scholar | 21711612PubMed |
[39] T. Ohno, S. Tagawa, H. Itoh, H. Suzuki, T. Matsuda, Size effect of TiO2–SiO2 nano-hybrid particle. Mater. Chem. Phys. 2009, 113, 119.
| Size effect of TiO2–SiO2 nano-hybrid particle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVers7nF&md5=ca2071144a30777e699b7758d1a4206bCAS |
[40] J. Tian, J. Jin, F. Zheng, H. Y. Zhao, Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae. Langmuir 2010, 26, 8762.
| Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Skug%3D%3D&md5=06471017b3ba77f7ec8e9df3c5f61dbdCAS | 20085341PubMed |
[41] W. Huang, H. Zhang, D. Pan, Study on the release behavior and mechanism by monitoring the morphology changes of the large-sized drug–LDH nanohybrids. AIChE J. 2011, 57, 1936.
| Study on the release behavior and mechanism by monitoring the morphology changes of the large-sized drug–LDH nanohybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlansb0%3D&md5=bf95f09a97b84e237a08c4d7ad054c07CAS |
[42] Y. Ma, Z. F. Dai, Y. G. Gao, Z. Cao, Z. B. Zha, X. L. Yue, J. I. Kikuchi, Liposomal architecture boosts biocompatibility of nanohybrid cerasomes. Nanotoxicology 2011, 5, 622.
| Liposomal architecture boosts biocompatibility of nanohybrid cerasomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ensrk%3D&md5=6964578d469a776a365701310344ed47CAS | 21261456PubMed | 21261456PubMed |
[43] Y. Wang, G. Ouyang, J. Zhang, Z. Wang, A DNA-templated catalyst: the preparation of metal–DNA nanohybrids and their application in organic reactions. Chem. Commun. 2010, 46, 7912.
| A DNA-templated catalyst: the preparation of metal–DNA nanohybrids and their application in organic reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlantrvN&md5=e805a1478d2ba949df248e239493583fCAS |
[44] M. H. Xue, Q. Xu, M. Zhou, J. J. Zhu, In situ immobilization of glucose oxidase in chitosan–gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection. Electrochem. Commun. 2006, 8, 1468.
| In situ immobilization of glucose oxidase in chitosan–gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSqsbk%3D&md5=7c5906bfa244a8e2a7389bb869437a9fCAS |
[45] M. Vizuete, M. Barrejon, M. J. Gomez-Escalonilla, F. Langa, Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes. Nanoscale 2012, 4, 4370.
| Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSqt7bI&md5=3407a5d913a0dae079113c3b84ff19a3CAS | 22706450PubMed | 22706450PubMed |
[46] R. Lv, T. Cui, M.-S. Jun, Q. Zhang, A. Cao, D. S. Su, Z. Zhang, S.-H. Yoon, J. Miyawaki, I. Mochida, F. Kang, Open-ended, n-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater. 2011, 21, 999.
| Open-ended, n-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWku70%3D&md5=c853e416649e5fef6a0dc479ea96d5a8CAS |
[47] F. Simon, H. Kuzmany, H. Rauf, T. Pichler, J. Bernardi, H. Peterlik, L. Korecz, F. Fülöp, A. Jánossy, Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem. Phys. Lett. 2004, 383, 362.
| Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvF2gtr0%3D&md5=806d8eb1d289a16e8865c759c2cbd639CAS |
[48] A. Palkar, F. Melin, C. M. Cardona, B. Elliott, A. K. Naskar, D. D. Edie, A. Kumbhar, L. Echegoyen, Reactivity differences between carbon nano onions (CNOs) prepared by different methods. Chem. Asian J. 2007, 2, 625.
| Reactivity differences between carbon nano onions (CNOs) prepared by different methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSlt7k%3D&md5=3a7e629ac62e7d354d442eb712ffca3eCAS | 17465408PubMed | 17465408PubMed |
[49] K. Imasaka, Y. Kanatake, Y. Ohshiro, J. Suehiro, M. Hara, Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water. Thin Solid Films 2006, 506–507, 250.
| Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water.Crossref | GoogleScholarGoogle Scholar |
[50] X. Liu, C. Wang, Y. Yang, X. Guo, H. Wen, B. Xu, Synthesis of nano onion-like fullerenes by using Fe/Al2O3 as catalyst by chemical vapor deposition. Chin. Sci. Bull. 2009, 54, 137.
| Synthesis of nano onion-like fullerenes by using Fe/Al2O3 as catalyst by chemical vapor deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVyruw%3D%3D&md5=e24c710a57885aaf00a74325e167902eCAS |
[51] S. Qu, M. Li, L. Xie, X. Huang, J. Yang, N. Wang, S. Yang, Noncovalent functionalization of graphene attaching 6,6-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. ACS Nano 2013, 7, 4070.
| Noncovalent functionalization of graphene attaching 6,6-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVymtLw%3D&md5=4d2b87042e2360c4d39aef41a6c5dc12CAS | 23586816PubMed | 23586816PubMed |
[52] Y. Zhu, L. Li, C. G. Zhang, G. Casillas, Z. Z. Sun, Z. Yan, G. D. Ruan, Z. W. Peng, A. R. O. Raji, C. Kittrell, R. H. Hauge, J. M. Tour, A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225.
| A seamless three-dimensional carbon nanotube graphene hybrid material.Crossref | GoogleScholarGoogle Scholar | 23187625PubMed | 23187625PubMed |
[53] S. Chen, W. Yeoh, Q. Liu, G. Wang, Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium–ion batteries. Carbon 2012, 50, 4557.
| Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium–ion batteries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslGqsLo%3D&md5=e05887d49a562c2c8575b478c62db8aaCAS |
[54] F. D’Souza, R. Chitta, A. S. D. Sandanayaka, N. K. Subbaiyan, L. D’Souza, Y. Araki, O. Ito, Supramolecular carbon nanotube-fullerene donor–acceptor hybrids for photoinduced electron transfer. J. Am. Chem. Soc. 2007, 129, 15865.
| Supramolecular carbon nanotube-fullerene donor–acceptor hybrids for photoinduced electron transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynu7rN&md5=b50fdf01884c0093ca7f98fedf59e2b9CAS | 18052162PubMed | 18052162PubMed |
[55] D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 2010, 1, 467.
| Self-assembled graphene/carbon nanotube hybrid films for supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2jsrjK&md5=eda9e83dc79ffeda285fa2dbd1c93266CAS |
[56] S. Giordani, J.-F. Colomer, F. Cattaruzza, J. Alfonsi, M. Meneghetti, M. Prato, D. Bonifazi, Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon 2009, 47, 578.
| Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSgurw%3D&md5=7a343cc6803654f3b11656e01644a6a2CAS |
[57] T.-K. Hong, D. W. Lee, H. J. Choi, H. S. Shin, B.-S. Kim, Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets. ACS Nano 2010, 4, 3861.
| Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyjsbk%3D&md5=fd4011a2fef6ad678728505e22209065CAS | 20604532PubMed | 20604532PubMed |
[58] J. G. Wang, Y. S. Wang, D. W. He, H. P. Wu, H. T. Wang, P. Zhou, M. Fu, Influence of polymer/fullerene–graphene structure on organic polymer solar devices. Integr. Ferroelectr. 2012, 137, 1.
| Influence of polymer/fullerene–graphene structure on organic polymer solar devices.Crossref | GoogleScholarGoogle Scholar |
[59] N. J. Alley, K. S. Liao, E. Andreoli, S. Dias, E. P. Dillon, A. W. Orbaek, A. R. Barron, H. J. Byrne, S. A. Curran, Effect of carbon nanotube-fullerene hybrid additive on P3HT:PCBM bulk-heterojunction organic photovoltaics. Synth. Met. 2012, 162, 95.
| Effect of carbon nanotube-fullerene hybrid additive on P3HT:PCBM bulk-heterojunction organic photovoltaics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1KgsQ%3D%3D&md5=a52ce524c1a5113ad8d431f006750b8eCAS |
[60] Z. B. Liu, Y. F. Xu, X. Y. Zhang, X. L. Zhang, Y. S. Chen, J. G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 2009, 113, 9681.
| Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFWrsr8%3D&md5=35f9a3984a8a2ccde58b913a88be0e2eCAS | 19569625PubMed | 19569625PubMed |
[61] Y. F. Li, T. Kaneko, R. Hatakeyama, Electrical transport properties of fullerene peapods interacting with light. Nanotechnology 2008, 19, 415201.
| Electrical transport properties of fullerene peapods interacting with light.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjlsVaitA%3D%3D&md5=7e394c24c7a54c928f459bc24938818cCAS | 21832638PubMed | 21832638PubMed |
[62] J. G. Wang, Y. S. Wang, D. W. He, H. P. Wu, H. T. Wang, P. Zhou, M. Fu, Influence of polymer/fullerene–graphene structure on organic polymer solar devices. Integr. Ferroelectr. 2012, 137, 1.
| Influence of polymer/fullerene–graphene structure on organic polymer solar devices.Crossref | GoogleScholarGoogle Scholar |
[63] V. C. Tung, J. H. Huang, I. Tevis, F. Kim, J. Kim, C. W. Chu, S. I. Stupp, J. X. Huang, Surfactant-free water-processable photoconductive all-carbon composite. J. Am. Chem. Soc. 2011, 133, 4940.
| Surfactant-free water-processable photoconductive all-carbon composite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyjsLo%3D&md5=2b78614051994384c2a012d6fea2e48cCAS | 21391674PubMed | 21391674PubMed |
[64] V. Mani, B. Devadas, S. M. Chen, Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide–multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens. Bioelectron. 2013, 41, 309.
| Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide–multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamurrI&md5=a26e1c97660f5eb8561d1a7f064b96b0CAS | 22964382PubMed | 22964382PubMed |
[65] S. H. Hwang, H. W. Park, Y. B. Park, Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets. Smart Mater. Struct. 2013, 22, 015013.
| Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets.Crossref | GoogleScholarGoogle Scholar |
[66] B. Wu, Y. Kuang, X. Zhang, J. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 2011, 6, 75.
| Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslGhsLg%3D&md5=51577fce6d33fdef26dd6b101392ebd3CAS |
[67] P. C. P. Watts, W. K. Hsu, D. P. Randall, V. Kotzeva, G. Z. Chen, Fe-filled carbon nanotubes: nano-electromagnetic inductors. Chem. Mater. 2002, 14, 4505.
| Fe-filled carbon nanotubes: nano-electromagnetic inductors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Clsbw%3D&md5=7945fc91cbf5c22a85855806e46f2d23CAS |
[68] H. Shinohara, M. Takata, M. Sakata, T. Hashizume, T. Sakurai, Metallofullerenes: their formation and characterization, in Cluster Assembled Materials (Ed. K. Sattler) 1996, pp. 207–232 (Trans Tech Publications Ltd: Enfield, NH).
[69] B. M. Kim, S. Qian, H. H. Bau, Filling carbon nanotubes with particles. Nano Lett. 2005, 5, 873.
| Filling carbon nanotubes with particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVKiu7s%3D&md5=b41c580d4a38f84ef6783a7d6eec031eCAS | 15884886PubMed |
[70] E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki, Capillarity and wetting of carbon nanotubes. Science 1994, 265, 1850.
| Capillarity and wetting of carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVaisg%3D%3D&md5=30dcc86f1404d97c7e75f16d4b8e9d77CAS | 17797225PubMed | 17797225PubMed |
[71] R. Chitta, A. S. D. Sandanayaka, A. L. Schumacher, L. D’Souza, Y. Araki, O. Ito, F. D’Souza, Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J. Phys. Chem. C 2007, 111, 6947.
| Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlyjtbk%3D&md5=c798ae7e14bea48d73efb1d0059ef87bCAS |
[72] J. B. Liu, Y. L. Li, Y. M. Li, J. H. Li, Z. X. Deng, Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 2010, 20, 900.
| Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Gjtw%3D%3D&md5=ee0b08ad5585fade1ce9ba39379db563CAS |
[73] C.-H. Wu, C.-Y. Kuo, S.-T. Chen, Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation. Environ. Technol. 2013, 34, 2513.
| Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Kktb8%3D&md5=97156c9402037411015ba20eb17450e9CAS | 24527612PubMed | 24527612PubMed |
[74] S. J. Ding, D. Y. Luan, F. Y. C. Boey, J. S. Chen, X. W. Lou, SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 2011, 47, 7155.
| SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVCmtrs%3D&md5=01ed71038927f55c27805677dcdce17bCAS |
[75] D. Eder, Carbon nanotube–inorganic hybrids. Chem. Rev. 2010, 110, 1348.
| Carbon nanotube–inorganic hybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Sgtrk%3D&md5=64d4673781abc568926884811524a346CAS | 20108978PubMed | 20108978PubMed |
[76] Y. J. Zou, C. L. Xiang, L. X. Sun, F. Xu, Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan–SiO2 sol-gel. Biosens. Bioelectron. 2008, 23, 1010.
| Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan–SiO2 sol-gel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFymsrY%3D&md5=3abc7f8f31db0cc9e5bf186527ab521cCAS |
[77] H. Chu, Z. Jin, Y. Zhang, W. Zhou, L. Ding, Y. Li, Site-specific deposition of gold nanoparticles on SWNTs. J. Phys. Chem. C 2008, 112, 13437.
| Site-specific deposition of gold nanoparticles on SWNTs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVegt7s%3D&md5=7b3dec6081956292c4e00bc55321f5a1CAS |
[78] R. Paul, P. Kumbhakar, A. K. Mitra, Visible photoluminescence of MWCNT/CdS nanohybrid structure synthesized by a simple chemical process. Mater. Sci. Eng. B 2010, 167, 97.
| Visible photoluminescence of MWCNT/CdS nanohybrid structure synthesized by a simple chemical process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFWgtbc%3D&md5=082c749a081c1aede7ebce183c55c4daCAS | 1:CAS:528:DC%2BC3cXivFWgtbc%3D&md5=082c749a081c1aede7ebce183c55c4daCAS |
[79] N. Karousis, G.-E. Tsotsou, F. Evangelista, P. Rudolf, N. Ragoussis, N. Tagmatarchis, Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity. J. Phys. Chem. C 2008, 112, 13463.
| Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslahu7g%3D&md5=e071c6e729968cf5d9384e0e11f26137CAS | 1:CAS:528:DC%2BD1cXpslahu7g%3D&md5=e071c6e729968cf5d9384e0e11f26137CAS |
[80] Y. Li, X. Fan, J. Qi, J. Ji, S. Wang, G. Zhang, F. Zhang, Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction. Mater. Res. Bull. 2010, 45, 1413.
| Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1WntLg%3D&md5=38f16b85496b8d99aae14e7dc45f8578CAS | 1:CAS:528:DC%2BC3cXps1WntLg%3D&md5=38f16b85496b8d99aae14e7dc45f8578CAS |
[81] H.-i. Kim, G.-h. Moon, D. Monllor-Satoca, Y. Park, W. Choi, Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. J. Phys. Chem. C 2012, 116, 1535.
| Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2jtb3P&md5=10fc84c9f42d5f6d30005113422dacd1CAS | 1:CAS:528:DC%2BC3MXhsV2jtb3P&md5=10fc84c9f42d5f6d30005113422dacd1CAS |
[82] Y. W. Zhu, H. I. Elim, Y. L. Foo, T. Yu, Y. J. Liu, W. Ji, J. Y. Lee, Z. X. Shen, A. T. S. Wee, J. T. L. Thong, C. H. Sow, Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv. Mater. 2006, 18, 587.
| Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1SntLs%3D&md5=037b4dbdb18e5d21bf87f6653bf6de2cCAS | 1:CAS:528:DC%2BD28Xjt1SntLs%3D&md5=037b4dbdb18e5d21bf87f6653bf6de2cCAS |
[83] P. Chen, H. Chen, J. Qiu, C. Zhou, Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594.
| Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFehsLc%3D&md5=ff7f9a9fca66db5ed5ab8b657fecf48eCAS | 1:CAS:528:DC%2BC3cXpvFehsLc%3D&md5=ff7f9a9fca66db5ed5ab8b657fecf48eCAS |
[84] S. Ding, J. S. Chen, D. Luan, F. Y. C. Boey, S. Madhavi, X. W. Lou, Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chem. Commun. 2011, 47, 5780.
| Graphene-supported anatase TiO2 nanosheets for fast lithium storage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Clurk%3D&md5=c3f346a0a81391ea08b76726dfc96e14CAS | 1:CAS:528:DC%2BC3MXls1Clurk%3D&md5=c3f346a0a81391ea08b76726dfc96e14CAS |
[85] R. I. Jafri, T. Arockiados, N. Rajalakshmi, S. Ramaprabhu, Nanostructured Pt dispersed on graphene–multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. J. Electrochem. Soc. 2010, 157, B874–B9.
| Nanostructured Pt dispersed on graphene–multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC.Crossref | GoogleScholarGoogle Scholar |
[86] S. Guo, D. Wen, Y. Zhai, S. Dong, E. Wang, Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4, 3959.
| Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVeju7s%3D&md5=e6728dc731d71434ccf6d4c509fd7329CAS | 1:CAS:528:DC%2BC3cXnvVeju7s%3D&md5=e6728dc731d71434ccf6d4c509fd7329CAS | 20568706PubMed | 20568706PubMed |
[87] M.-L. Chen, Y.-J. He, X.-W. Chen, J.-H. Wang, Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 2012, 28, 16469.
| Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1entrnI&md5=4ebec40ab7bfe6be578f6dae5eac56bbCAS | 1:CAS:528:DC%2BC38Xhs1entrnI&md5=4ebec40ab7bfe6be578f6dae5eac56bbCAS | 23131026PubMed | 23131026PubMed |
[88] X. J. Liu, L. K. Pan, T. Lv, G. Zhu, T. Lu, Z. Sun, C. Q. Sun, Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv. 2011, 1, 1245.
| Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2qurvK&md5=07c06c362d1c34ef5798200fc636270bCAS | 1:CAS:528:DC%2BC3MXhsV2qurvK&md5=07c06c362d1c34ef5798200fc636270bCAS |
[89] T. Kavitha, A. I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 2012, 50, 2994.
| Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2isL4%3D&md5=038d4aa4f0116c716c03621c7db1fa24CAS | 1:CAS:528:DC%2BC38XksV2isL4%3D&md5=038d4aa4f0116c716c03621c7db1fa24CAS |
[90] C.-Y. Shu, E.-Y. Zhang, J.-F. Xiang, C.-F. Zhu, C.-R. Wang, X.-L. Pei, H.-B. Han, Aggregation studies of the water-soluble gadofullerene magnetic resonance imaging contrast agent: [Gd@C82O6(OH)16(NHCH2CH2COOH)8]x.. J. Phys. Chem. B 2006, 110, 15597.
| Aggregation studies of the water-soluble gadofullerene magnetic resonance imaging contrast agent: [Gd@C82O6(OH)16(NHCH2CH2COOH)8]x..Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVGht74%3D&md5=0a85c2b2d62dc2ce0682812b72cf8b36CAS | 1:CAS:528:DC%2BD28XmvVGht74%3D&md5=0a85c2b2d62dc2ce0682812b72cf8b36CAS | 16884284PubMed | 16884284PubMed |
[91] J. Zhang, J. Ge, M. D. Shultz, E. Chung, G. Singh, C. Shu, P. P. Fatouros, S. C. Henderson, F. D. Corwin, D. B. Geohegan, A. A. Puretzky, C. M. Rouleau, K. More, C. Rylander, M. N. Rylander, H. W. Gibson, H. C. Dorn, In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. Nano Lett. 2010, 10, 2843.
| In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFyisrw%3D&md5=b597d09e672d577a12ae0d98715ad86fCAS | 1:CAS:528:DC%2BC3cXptFyisrw%3D&md5=b597d09e672d577a12ae0d98715ad86fCAS | 20698597PubMed | 20698597PubMed |
[92] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442.
| Biosensing with plasmonic nanosensors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVejt7g%3D&md5=e6e95da477971e8fa94f86e33f8000adCAS | 1:CAS:528:DC%2BD1cXmsVejt7g%3D&md5=e6e95da477971e8fa94f86e33f8000adCAS | 18497851PubMed | 18497851PubMed |
[93] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167.
| Applications of magnetic nanoparticles in biomedicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVChs78%3D&md5=57e6ed863feb79757016cd2631d73523CAS | 1:CAS:528:DC%2BD3sXlvVChs78%3D&md5=57e6ed863feb79757016cd2631d73523CAS |
[94] P. V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002, 106, 7729.
| Photophysical, photochemical and photocatalytic aspects of metal nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlCntLg%3D&md5=3195ea14d3f303e91568da9eabc1b3f4CAS | 1:CAS:528:DC%2BD38XltlCntLg%3D&md5=3195ea14d3f303e91568da9eabc1b3f4CAS |
[95] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933.
| Semiconductor clusters, nanocrystals, and quantum dots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFCrtb0%3D&md5=63939650bbace3ac262c303a65c43670CAS | 1:CAS:528:DyaK28XhtFCrtb0%3D&md5=63939650bbace3ac262c303a65c43670CAS |
[96] K. Major, C. De, S. Obare, Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 2009, 4, 61.
| Recent advances in the synthesis of plasmonic bimetallic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFOjt7o%3D&md5=695dfbabe94601b70c3370d7807a9a7fCAS | 1:CAS:528:DC%2BD1MXjtFOjt7o%3D&md5=695dfbabe94601b70c3370d7807a9a7fCAS |
[97] M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, M. Nishio, Crystal structures and growth mechanisms of Au@Ag core–shell nanoparticles prepared by the microwave–polyol method. Cryst. Growth Des. 2006, 6, 1801.
| Crystal structures and growth mechanisms of Au@Ag core–shell nanoparticles prepared by the microwave–polyol method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVygsr0%3D&md5=e58730662bf29eea93c68931ad93318fCAS | 1:CAS:528:DC%2BD28XmtVygsr0%3D&md5=e58730662bf29eea93c68931ad93318fCAS |
[98] C.-y. Wang, C.-y. Liu, X. Zheng, J. Chen, T. Shen, The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloids Surf. A Physicochem. Eng. Asp. 1998, 131, 271.
| The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktl2rsw%3D%3D&md5=32a2dd750f31a75cdd5d8f4a63f902c8CAS | 1:CAS:528:DyaK1cXktl2rsw%3D%3D&md5=32a2dd750f31a75cdd5d8f4a63f902c8CAS |
[99] S.-D. Kim, W.-G. Choe, J.-R. Jeong, Environmentally friendly electroless plating for Ag/TiO2-coated core–shell magnetic particles using ultrasonic treatment. Ultrason. Sonochem. 2013, 20, 1456.
| Environmentally friendly electroless plating for Ag/TiO2-coated core–shell magnetic particles using ultrasonic treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVehs78%3D&md5=ebdda439be3be6e6887869b78ad401aeCAS | 23611665PubMed | 23611665PubMed |
[100] M. Sun, W. Fu, H. Yang, Y. Sui, B. Zhao, G. Yin, Q. Li, H. Zhao, G. Zou, One-step synthesis of coaxial Ag/TiO2 nanowire arrays on transparent conducting substrates: enhanced electron collection in dye-sensitized solar cells. Electrochem. Commun. 2011, 13, 1324.
| One-step synthesis of coaxial Ag/TiO2 nanowire arrays on transparent conducting substrates: enhanced electron collection in dye-sensitized solar cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFart7jI&md5=c5a47db5b2365bd5f7f7d8b5b25d7ceeCAS |
[101] K. Namratha, K. Byrappa, Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals. Prog. Cryst. Growth Charact. Mater. 2012, 58, 14.
| Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslOhsg%3D%3D&md5=6036162101319412061968d433482f68CAS |
[102] O. Peña, U. Pal, L. Rodríguez-Fernández, H. C. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. S. Arenas-Alatorre, A. Oliver, Formation of Au–Ag core–shell nanostructures in silica matrix by sequential ion implantation. J. Phys. Chem. C 2009, 113, 2296.
| Formation of Au–Ag core–shell nanostructures in silica matrix by sequential ion implantation.Crossref | GoogleScholarGoogle Scholar |
[103] A. Sánchez-Iglesias, E. Carbó-Argibay, A. Glaria, B. Rodríguez-González, J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, Rapid epitaxial growth of Ag on Au nanoparticles: from Au nanorods to core–shell Au@Ag octahedrons. Chemistry 2010, 16, 5558.
| Rapid epitaxial growth of Ag on Au nanoparticles: from Au nanorods to core–shell Au@Ag octahedrons.Crossref | GoogleScholarGoogle Scholar | 20376828PubMed | 20376828PubMed |
[104] T. Johannessen, J. R. Jenson, M. Mosleh, J. Johansen, U. Quaade, H. Livbjerg, Flame synthesis of nanoparticles – applications in catalysis and product/process engineering. Chem. Eng. Res. Des. 2004, 82, 1444.
| Flame synthesis of nanoparticles – applications in catalysis and product/process engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOis73L&md5=9a1b9e355129fde4174c7943699b1428CAS |
[105] S. H. Kim, C.-H. Jung, N. Sahu, D. Park, J. Y. Yun, H. Ha, J. Y. Park, Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Appl. Catal. A Gen. 2013, 454, 53.
| Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVCisbc%3D&md5=81c2d91fa62b3b45187d71142f2f14ecCAS |
[106] S. Anandan, F. Grieser, M. Ashokkumar, Sonochemical synthesis of Au–Ag core–shell bimetallic nanoparticles. J. Phys. Chem. C 2008, 112, 15102.
| Sonochemical synthesis of Au–Ag core–shell bimetallic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyrt7rN&md5=7184058b15811ff2b8e4c1c15d92ce12CAS |
[107] F.-K. Liu, P.-W. Huang, Y.-C. Chang, F.-H. Ko, T.-C. Chu, combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 2005, 21, 2519.
| combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ejsbw%3D&md5=ccf9219cf2f62261bea3333af25158e1CAS | 15752048PubMed |
[108] J. Zhang, P. Zhan, H. Liu, Z. Wang, N. Ming, A facile colloidal templating method to monodisperse hollow Ag and Ag/Au submicrometer spheres. Mater. Lett. 2006, 60, 280.
| A facile colloidal templating method to monodisperse hollow Ag and Ag/Au submicrometer spheres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOmsLvF&md5=93af0475c3052455c66ad757bb775ef0CAS |
[109] X. Wang, D. R. G. Mitchell, K. Prince, A. J. Atanacio, R. A. Caruso, Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem. Mater. 2008, 20, 3917.
| Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVSkurw%3D&md5=fa38efc43d4f74696cd051ca6cec7419CAS |
[110] Y. L. Chueh, L. J. Chou, Z. L. Wang, SiO2/Ta2O5 core–shell nanowires and nanotubes. Angew. Chem. Int. Ed. 2006, 45, 7773.
| SiO2/Ta2O5 core–shell nanowires and nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12rs7bL&md5=ede255e6cb82b0c5567d10da3c001b96CAS |
[111] M.-L. Wu, L.-B. Lai, Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2004, 244, 149.
| Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVGht7g%3D&md5=131dc1c6c74b95c17a80e253555b7e3dCAS |
[112] H. Liu, J. Wu, J. H. Min, X. Zhang, Y. K. Kim, Tunable synthesis and multifunctionalities of Fe3O4–ZnO hybrid core–shell nanocrystals. Mater. Res. Bull. 2013, 48, 551.
| Tunable synthesis and multifunctionalities of Fe3O4–ZnO hybrid core–shell nanocrystals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslyjt7rJ&md5=1868691485f962c47cdbe27ebfb21f39CAS |
[113] J. W. Fan, T. T. Tseng, C. N. Chen, M. H. Wei, W. J. Tseng, Preparation of ITO/Ag nanohybrid particles by a reverse micellar layer-by-layer coating. Ceram. Int. 2011, 37, 43.
| Preparation of ITO/Ag nanohybrid particles by a reverse micellar layer-by-layer coating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmtbjP&md5=54b7cc3418952927b495ff3f257190bdCAS |
[114] W. Chen, N. F. Xu, L. G. Xu, L. B. Wang, Z. K. Li, W. Ma, Y. Y. Zhu, C. L. Xu, N. A. Kotov, Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics). Macromol. Rapid Commun. 2010, 31, 228.
| 1:CAS:528:DC%2BC3cXos1Cquw%3D%3D&md5=99e532185f51146baa6cebef62ee0334CAS |
| 1:CAS:528:DC%2BC3cXos1Cquw%3D%3D&md5=99e532185f51146baa6cebef62ee0334CAS | 21590896PubMed |
[115] Y. Zhai, J. Zhai, Y. Wang, S. Guo, W. Ren, S. Dong, Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced raman scattering. J. Phys. Chem. C 2009, 113, 7009.
| Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced raman scattering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFeltr4%3D&md5=fcca6c5522ec9172adfaae072847da67CAS | 1:CAS:528:DC%2BD1MXktFeltr4%3D&md5=fcca6c5522ec9172adfaae072847da67CAS |
[116] S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004, 275, 496.
| Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFKitbk%3D&md5=84a35fa959248812d7ca7f6065c6d3bfCAS | 1:CAS:528:DC%2BD2cXksFKitbk%3D&md5=84a35fa959248812d7ca7f6065c6d3bfCAS | 15178278PubMed |
[117] N. C. Bigall, W. J. Parak, D. Dorfs, Fluorescent, magnetic and plasmonic–hybrid multifunctional colloidal nano objects. Nano Today 2012, 7, 282.
| Fluorescent, magnetic and plasmonic–hybrid multifunctional colloidal nano objects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSgsrzE&md5=e9d594769e6ac9876ba7770c2b7ae9b5CAS | 1:CAS:528:DC%2BC38XhtlSgsrzE&md5=e9d594769e6ac9876ba7770c2b7ae9b5CAS |
[118] Y.-F. Yang, P. Sangeetha, Y.-W. Chen, Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream. Int. J. Hydrogen Energy 2009, 34, 8912.
| Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ogt7jL&md5=81f80e2f0aa780b371a42ea1cab49544CAS | 1:CAS:528:DC%2BD1MXht1Ogt7jL&md5=81f80e2f0aa780b371a42ea1cab49544CAS |
[119] J. M. Liu, X. X. Wang, M. L. Cui, L. P. Lin, S. L. Jiang, L. Jiao, L. H. Zhang, A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine. Sens. Actuators B Chem. 2013, 176, 97.
| A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKntw%3D%3D&md5=3c2eaadca660fc08fc5b8230b27d489cCAS | 1:CAS:528:DC%2BC3sXlvVKntw%3D%3D&md5=3c2eaadca660fc08fc5b8230b27d489cCAS |
[120] M. Li, M. E. Noriega-Trevino, N. Nino-Martinez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz, E. M. V. Hoek, Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environ. Sci. Technol. 2011, 45, 8989.
| Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOqu7%2FP&md5=b2966e222993c79521a10521d41eaab0CAS | 1:CAS:528:DC%2BC3MXhtFOqu7%2FP&md5=b2966e222993c79521a10521d41eaab0CAS | 21866941PubMed |
[121] T. A. Larson, J. Bankson, J. Aaron, K. Sokolov, Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007, 18, 325101.
| Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells.Crossref | GoogleScholarGoogle Scholar |
[122] C. Wang, J. Irudayaraj, Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 2010, 6, 283.
| Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2gtw%3D%3D&md5=cb4ad3115f0ae36db5fc21521450a777CAS | 1:CAS:528:DC%2BC3cXosF2gtw%3D%3D&md5=cb4ad3115f0ae36db5fc21521450a777CAS | 19943255PubMed |
[123] J. Gao, W. Zhang, P. Huang, B. Zhang, X. Zhang, B. Xu, Intracellular spatial control of fluorescent magnetic nanoparticles. J. Am. Chem. Soc. 2008, 130, 3710.
| Intracellular spatial control of fluorescent magnetic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Giu7o%3D&md5=99c87877a89652906d0f6ef46e5909efCAS | 1:CAS:528:DC%2BD1cXis1Giu7o%3D&md5=99c87877a89652906d0f6ef46e5909efCAS | 18314984PubMed | 18314984PubMed |
[124] M. M. Maye, O. Gang, M. Cotlet, Photoluminescence enhancement in CdSe/ZnS–DNA linked-Au nanoparticle heterodimers probed by single molecule spectroscopy. Chem. Commun. 2010, 46, 6111.
| Photoluminescence enhancement in CdSe/ZnS–DNA linked-Au nanoparticle heterodimers probed by single molecule spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVWqtLrF&md5=836154350aa8136e04a621582eb9612cCAS | 1:CAS:528:DC%2BC3cXhtVWqtLrF&md5=836154350aa8136e04a621582eb9612cCAS |
[125] F. D’Souza, O. Ito, Supramolecular donor–acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications. Chem. Commun. 2009, 4913.
| Supramolecular donor–acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps12ju70%3D&md5=4d662df8acaaa41d6f21d29cd6f6e548CAS | 1:CAS:528:DC%2BD1MXps12ju70%3D&md5=4d662df8acaaa41d6f21d29cd6f6e548CAS |
[126] D. S. Achilleos, M. Vamvakaki, End-grafted polymer chains onto inorganic nano-objects. Materials 2010, 3, 1981.
| End-grafted polymer chains onto inorganic nano-objects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFentrk%3D&md5=e8357f5d914d4e203cb604dcef6b8fdeCAS | 1:CAS:528:DC%2BC3cXjvFentrk%3D&md5=e8357f5d914d4e203cb604dcef6b8fdeCAS |
[127] L. H. Qiu, Y. J. Peng, B. Q. Liu, B. C. Lin, Y. Peng, M. J. Malik, F. Yan, Polypyrrole nanotube-supported gold nanoparticles: an efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Appl. Catal. A Gen. 2012, 413–414, 230.
| Polypyrrole nanotube-supported gold nanoparticles: an efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol.Crossref | GoogleScholarGoogle Scholar |
[128] U. Yogeswaran, S. Thiagarajan, S.-M. Chen, recent updates of DNA incorporated in carbon nanotubes and nanoparticles for electrochemical sensors and biosensors. Sensors 2008, 8, 7191.
| recent updates of DNA incorporated in carbon nanotubes and nanoparticles for electrochemical sensors and biosensors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2ms7%2FM&md5=0bffc65f13f978a2524f7dcf593a8ac6CAS | 1:CAS:528:DC%2BD1cXhsV2ms7%2FM&md5=0bffc65f13f978a2524f7dcf593a8ac6CAS |
[129] C. R. Sun, K. Du, C. Fang, N. Bhattarai, O. Veiseh, F. Kievit, Z. Stephen, D. H. Lee, R. G. Ellenbogen, B. Ratner, M. Q. Zhang, PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano 2010, 4, 2402.
| PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Gjsrc%3D&md5=c1650692d60aa8e0e0477a8904e2c634CAS | 1:CAS:528:DC%2BC3cXjt1Gjsrc%3D&md5=c1650692d60aa8e0e0477a8904e2c634CAS |
[130] Y. Hu, Q. Chen, Y. Ding, R. T. Li, X. Q. Jiang, B. R. Liu, Entering and lighting up nuclei using hollow chitosan–gold hybrid nanospheres. Adv. Mater. 2009, 21, 3639.
| Entering and lighting up nuclei using hollow chitosan–gold hybrid nanospheres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SrurbL&md5=3515767eedf3d2c2222cfa5321443c03CAS | 1:CAS:528:DC%2BD1MXht1SrurbL&md5=3515767eedf3d2c2222cfa5321443c03CAS |
[131] C. Samorì, H. Ali-Boucetta, R. Sainz, C. Guo, F. M. Toma, C. Fabbro, T. da Ros, M. Prato, K. Kostarelos, A. Bianco, Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem. Commun. 2010, 46, 1494.
| Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers.Crossref | GoogleScholarGoogle Scholar |
[132] W. T. Wu, J. Shen, P. Banerjee, S. Q. Zhou, Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 2010, 31, 7555.
| Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsV2qtLo%3D&md5=783ce0cd4360bf2ed62a9c1c152b33e4CAS | 1:CAS:528:DC%2BC3cXpsV2qtLo%3D&md5=783ce0cd4360bf2ed62a9c1c152b33e4CAS |
[133] M. Tagliazucchi, M. G. Blaber, G. C. Schatz, E. A. Weiss, I. Szleifert, Optical properties of responsive hybrid Au@polymer nanoparticles. ACS Nano 2012, 6, 8397.
| Optical properties of responsive hybrid Au@polymer nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1egtrjI&md5=31bd5a0f24c4620a69750dd9aac8ae02CAS | 1:CAS:528:DC%2BC38Xht1egtrjI&md5=31bd5a0f24c4620a69750dd9aac8ae02CAS | 22954258PubMed | 22954258PubMed |
[134] M. Tejamaya, I. Römer, R. C. Merrifield, J. R. Lead, stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012, 46, 7011.
| stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFGrsb8%3D&md5=507e8b4f722a1723b974cf4daeb07d8bCAS | 1:CAS:528:DC%2BC38XktFGrsb8%3D&md5=507e8b4f722a1723b974cf4daeb07d8bCAS | 22432856PubMed | 22432856PubMed |
[135] S. Diegoli, A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead, J. A. Preece, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008, 402, 51.
| Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Kqu7s%3D&md5=31a7a5255c4b927ecbd5000fe0114b44CAS | 1:CAS:528:DC%2BD1cXnt1Kqu7s%3D&md5=31a7a5255c4b927ecbd5000fe0114b44CAS | 18534664PubMed | 18534664PubMed |
[136] N. Saleh, K. Sirk, Y. Liu, T. Phenrat, B. Dufour, K. Matyjaszewski, R. D. Tilton, G. V. Lowry, Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ. Eng. Sci. 2007, 24, 45.
| Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlajs7jI&md5=e074f9d8ab3d97b441bd7dbad2f62935CAS | 1:CAS:528:DC%2BD28Xhtlajs7jI&md5=e074f9d8ab3d97b441bd7dbad2f62935CAS |
[137] N. Saleh, T. Phenrat, K. Sirk, B. Dufour, J. Ok, T. Sarbu, K. Matyjaszewski, R. D. Tilton, G. V. Lowry, Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett. 2005, 5, 2489.
| Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SrsbbE&md5=b90aab96c1eaa8c9b856c5be505822a4CAS | 1:CAS:528:DC%2BD2MXht1SrsbbE&md5=b90aab96c1eaa8c9b856c5be505822a4CAS | 16351201PubMed | 16351201PubMed |
[138] D. Wróbel, A. Graja, Photoinduced electron transfer processes in fullerene–organic chromophore systems. Coord. Chem. Rev. 2011, 255, 2555.
| Photoinduced electron transfer processes in fullerene–organic chromophore systems.Crossref | GoogleScholarGoogle Scholar |
[139] D. M. Guldi, E. Menna, M. Maggini, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, G. M. A. Rahman, S. Schergna, Supramolecular hybrids of [60]fullerene and single-wall carbon nanotubes. Chemistry 2006, 12, 3975.
| Supramolecular hybrids of [60]fullerene and single-wall carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsV2qsb0%3D&md5=0faa99243254a0109f54663a9fc3da5cCAS | 1:CAS:528:DC%2BD28XlsV2qsb0%3D&md5=0faa99243254a0109f54663a9fc3da5cCAS | 16586415PubMed | 16586415PubMed |
[140] D. M. Guldi, H. Taieb, G. M. A. Rahman, N. Tagmatarchis, M. Prato, Novel photoactive single-walled carbon nanotube–porphyrin polymer wraps: efficient and long-lived intracomplex charge separation. Adv. Mater. 2005, 17, 871.
| Novel photoactive single-walled carbon nanotube–porphyrin polymer wraps: efficient and long-lived intracomplex charge separation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFWitbo%3D&md5=835191a37b7d7371f2cd893235405e6bCAS | 1:CAS:528:DC%2BD2MXjsFWitbo%3D&md5=835191a37b7d7371f2cd893235405e6bCAS |
[141] I. Banerjee, D. Mondal, J. Martin, R. S. Kane, Photoactivated antimicrobial activity of carbon nanotube–porphyrin conjugates. Langmuir 2010, 26, 17369.
| Photoactivated antimicrobial activity of carbon nanotube–porphyrin conjugates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KhsbzL&md5=dacbdfa831b4d185a53a870d53c16356CAS | 1:CAS:528:DC%2BC3cXht1KhsbzL&md5=dacbdfa831b4d185a53a870d53c16356CAS | 20931992PubMed | 20931992PubMed |
[142] T. L. Kirschling, P. L. Golas, J. M. Unrine, K. Matyjaszewski, K. B. Gregory, G. V. Lowry, R. Tilton, D. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ. Sci. Technol. 2011, 45, 5253.
| D. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVeqsr4%3D&md5=1c4e1a6a11160ec8714b1a7cb1904ef3CAS | 1:CAS:528:DC%2BC3MXmsVeqsr4%3D&md5=1c4e1a6a11160ec8714b1a7cb1904ef3CAS | 21609011PubMed | 21609011PubMed |
[143] O. Choi, Z. Hu, Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42, 4583.
| Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOjsLk%3D&md5=9d9d2c6ac289479cc709112aa6d11c29CAS | 1:CAS:528:DC%2BD1cXlslOjsLk%3D&md5=9d9d2c6ac289479cc709112aa6d11c29CAS | 18605590PubMed | 18605590PubMed |
[144] S. Pal, Y. K. Tak, J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli.. Appl. Environ. Microbiol. 2007, 73, 1712.
| Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli..Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ahtrk%3D&md5=8f9104bf1769af2b4ecb6d243157082fCAS | 1:CAS:528:DC%2BD2sXjs1ahtrk%3D&md5=8f9104bf1769af2b4ecb6d243157082fCAS | 17261510PubMed | 17261510PubMed |
[145] B. A. Chambers, A. R. M. N. Afrooz, S. Bae, N. Aich, L. Katz, N. B. Saleh, M. J. Kirisits, Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol. 2014, 48, 761.
| Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWqsbrF&md5=bd9357f0ef935a2c0878083a7252b578CAS | 1:CAS:528:DC%2BC3sXhvFWqsbrF&md5=bd9357f0ef935a2c0878083a7252b578CAS | 24328237PubMed | 24328237PubMed |
[146] K. Van Hoecke, K. A. C. De Schamphelaere, Z. Ali, F. Zhang, A. Elsaesser, P. Rivera-Gil, W. J. Parak, G. Smagghe, C. V. Howard, C. R. Janssen, Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 2013, 7, 37.
| Ecotoxicity and uptake of polymer coated gold nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVKrsw%3D%3D&md5=95009a79b204270192ddf52cd2545fe6CAS | 1:CAS:528:DC%2BC3sXntVKrsw%3D%3D&md5=95009a79b204270192ddf52cd2545fe6CAS | 22023156PubMed | 22023156PubMed |
[147] T. Yoshida, T. Yoshikawa, H. Nabeshi, Y. Tsutsumi, relation analysis between intracellular distribution of nanomateriarls, ROS generation and DNA damage. Yakugaku Zasshi 2012, 132, 295.
| relation analysis between intracellular distribution of nanomateriarls, ROS generation and DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlWrtr8%3D&md5=26b2c820e91326cfc9946db9d756d635CAS | 1:CAS:528:DC%2BC38XmtlWrtr8%3D&md5=26b2c820e91326cfc9946db9d756d635CAS | 22382833PubMed | 22382833PubMed |
[148] L. Brunet, D. Y. Lyon, E. M. Hotze, P. J. J. Alvarez, M. R. Wiesner, comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 4355.
| comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVGks7k%3D&md5=bfd7fbc7a713c08d6508f1b1d5e1cda2CAS | 1:CAS:528:DC%2BD1MXlvVGks7k%3D&md5=bfd7fbc7a713c08d6508f1b1d5e1cda2CAS | 19603646PubMed | 19603646PubMed |
[149] L. Clément, C. Hurel, N. Marmier, Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 2013, 90, 1083.
| Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure.Crossref | GoogleScholarGoogle Scholar | 23062945PubMed | 23062945PubMed |
[150] H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y.-P. Liao, M. Wang, L. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Mädler, Y. Cohen, J. I. Zink, A. E. Nel, Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 2012, 6, 4349.
| Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFemtbk%3D&md5=104ff30efc83a4c7b0535146399e3ca6CAS | 1:CAS:528:DC%2BC38XlsFemtbk%3D&md5=104ff30efc83a4c7b0535146399e3ca6CAS | 22502734PubMed | 22502734PubMed |
[151] A. R. M. N. Afrooz, S. T. Sivalapalan, C. J. Murphy, S. M. Hussain, J. J. Schlager, N. B. Saleh, Spheres vs. rods: the shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere 2013, 91, 93.
| Spheres vs. rods: the shape of gold nanoparticles influences aggregation and deposition behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCrsb%2FN&md5=5756eae99c41d905839fd508738bdad5CAS | 1:CAS:528:DC%2BC38XhvVCrsb%2FN&md5=5756eae99c41d905839fd508738bdad5CAS |
[152] D. P. Jaisi, N. B. Saleh, R. E. Blake, M. Elimelech, Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ. Sci. Technol. 2008, 42, 8317.
| Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ohs73K&md5=f40fdc8559e30aa844dbdec1cee4fb8fCAS | 1:CAS:528:DC%2BD1cXht1Ohs73K&md5=f40fdc8559e30aa844dbdec1cee4fb8fCAS | 19068812PubMed | 19068812PubMed |
[153] G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
| transformations of nanomaterials in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=ffe75c0f5fd3c0eb997ff49828357fb0CAS | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=ffe75c0f5fd3c0eb997ff49828357fb0CAS | 22582927PubMed | 22582927PubMed |
[154] P. Conte, A. Agretto, R. Spaccini, A. Piccolo, Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ. Pollut. 2005, 135, 515.
| Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2mtL8%3D&md5=16352c363ba9cae87accd5949222de8bCAS | 1:CAS:528:DC%2BD2MXhvF2mtL8%3D&md5=16352c363ba9cae87accd5949222de8bCAS | 15749548PubMed | 15749548PubMed |
[155] I. A. Khan, A. R. M. N. Afrooz, J. R. V. Flora, P. A. Schierz, P. L. Ferguson, T. Sabo-Attwood, N. B. Saleh, Chirality affects aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 2013, 47, 1844.
| Chirality affects aggregation kinetics of single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Krs7k%3D&md5=c8134535232bb95ff403bff7072a2240CAS | 1:CAS:528:DC%2BC3sXht1Krs7k%3D&md5=c8134535232bb95ff403bff7072a2240CAS | 23343128PubMed | 23343128PubMed |
[156] T. Shimada, Y. Ohno, T. Okazaki, T. Sugai, K. Suenaga, S. Kishimoto, T. Mizutani, T. Inoue, R. Taniguchi, N. Fukui, H. Okubo, H. Shinohara, Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect transistors. Physica E 2004, 21, 1089.
| Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect transistors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlKitrc%3D&md5=a5eb86e65694315d06fbd78e9164f534CAS | 1:CAS:528:DC%2BD2cXitlKitrc%3D&md5=a5eb86e65694315d06fbd78e9164f534CAS |
[157] M. Otani, S. Okada, A. Oshiyama, Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes. Phys. Rev. B 2003, 68, 125424.
| Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes.Crossref | GoogleScholarGoogle Scholar |
[158] A. G. Ryabenko, N. A. Kiselev, J. L. Hutchison, T. N. Moroz, S. S. Bukalov, L. A. Mikhalitsyn, R. O. Loutfy, A. P. Moravsky, Spectral properties of single-walled carbon nanotubes encapsulating fullerenes. Carbon 2007, 45, 1492.
| Spectral properties of single-walled carbon nanotubes encapsulating fullerenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGktLg%3D&md5=65abe3fbeedcb547d54e47b4241619b2CAS | 1:CAS:528:DC%2BD2sXmtVGktLg%3D&md5=65abe3fbeedcb547d54e47b4241619b2CAS |
[159] B. W. Smith, D. E. Luzzi, Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 2000, 321, 169.
| Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFemsbg%3D&md5=085f4891ea10cb9f45b7fefa1c2a5032CAS | 1:CAS:528:DC%2BD3cXisFemsbg%3D&md5=085f4891ea10cb9f45b7fefa1c2a5032CAS |
[160] J. Hao, L. Guan, X. Guo, Y. Lian, S. Zhao, J. Dong, S. Yang, H. Zhang, B. Sun, Interaction between fullerenes and single-wall carbon nanotubes: the influence of fullerene size and electronic structure. J. Nanosci. Nanotechnol. 2011, 11, 7857.
| Interaction between fullerenes and single-wall carbon nanotubes: the influence of fullerene size and electronic structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOku77E&md5=b891d29cd2ac88277bd995ce78eec304CAS | 1:CAS:528:DC%2BC3MXhtlOku77E&md5=b891d29cd2ac88277bd995ce78eec304CAS | 22097497PubMed | 22097497PubMed |
[161] J. Zhu, Z. Y. Pan, Y. X. Wang, L. Zhou, Q. Jiang, The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes. Nanotechnology 2007, 18, 275702.
| The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes.Crossref | GoogleScholarGoogle Scholar |
[162] A. Shahabi, M. Ghassemi, S. M. Mirnouri Langroudi, H. Rezaei Nejad, M. H. Hamedi, Effect of defect and C60s density variation on tensile and compressive properties of peapod. Comput. Mater. Sci. 2010, 50, 586.
| Effect of defect and C60s density variation on tensile and compressive properties of peapod.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGisLnL&md5=43d5ab9b0cba2719a051948153cbcf06CAS | 1:CAS:528:DC%2BC3cXhsVGisLnL&md5=43d5ab9b0cba2719a051948153cbcf06CAS |
[163] C. Wu, X. Y. Huang, X. F. Wu, L. Y. Xie, K. Yang, P. K. Jiang, Graphene oxide–encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 2013, 5, 3847.
| Graphene oxide–encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Sgt7k%3D&md5=6dac06da4a89011a5f774de137de283bCAS | 1:CAS:528:DC%2BC3sXmt1Sgt7k%3D&md5=6dac06da4a89011a5f774de137de283bCAS | 23525168PubMed | 23525168PubMed |
[164] J. D. Fortner, D.-I. Kim, A. M. Boyd, J. C. Falkner, S. Moran, V. L. Colvin, J. B. Hughes, J.-H. Kim, Reaction of water-stable C60 aggregates with ozone. Environ. Sci. Technol. 2007, 41, 7497.
| Reaction of water-stable C60 aggregates with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOhtrjJ&md5=360084808062ffdc83ddd49be0e22d68CAS | 1:CAS:528:DC%2BD2sXhtVOhtrjJ&md5=360084808062ffdc83ddd49be0e22d68CAS | 18044532PubMed | 18044532PubMed |
[165] C. W. Isaacson, D. C. Bouchard, Effects of humic acid and sunlight on the generation and aggregation state of Aqu/C60 nanoparticles. Environ. Sci. Technol. 2010, 44, 8971.
| Effects of humic acid and sunlight on the generation and aggregation state of Aqu/C60 nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyhtb%2FL&md5=a85c4787c4d74a53a24d9f8cf1cb6842CAS | 1:CAS:528:DC%2BC3cXhtlyhtb%2FL&md5=a85c4787c4d74a53a24d9f8cf1cb6842CAS | 21053957PubMed | 21053957PubMed |
[166] N. B. Saleh, L. D. Pfefferle, M. Elimelech, Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 2010, 44, 2412.
| Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVaisLs%3D&md5=0f7bbd183c069ac0e8e6656cc970f459CAS | 1:CAS:528:DC%2BC3cXisVaisLs%3D&md5=0f7bbd183c069ac0e8e6656cc970f459CAS | 20184360PubMed | 20184360PubMed |
[167] M. Safi, J. Courtois, M. Seigneuret, H. Conjeaud, J. F. Berret, The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 2011, 32, 9353.
| The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Oqu77I&md5=1d22aa16ff358c9057356eabb57ff126CAS | 1:CAS:528:DC%2BC3MXht1Oqu77I&md5=1d22aa16ff358c9057356eabb57ff126CAS | 21911254PubMed | 21911254PubMed |
[168] I. A. Khan, N. D. Berge, T. Sabo-Attwood, L. Ferguson, N. B. Saleh, Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions. Environ. Sci. Technol. 2013, 47, 8425.
| 1:CAS:528:DC%2BC3sXhtVeisLvM&md5=49f2e2d30a62039c62aac7f7121db9f6CAS |
| 1:CAS:528:DC%2BC3sXhtVeisLvM&md5=49f2e2d30a62039c62aac7f7121db9f6CAS | 23815465PubMed | 23815465PubMed |
[169] D. Jassby, J. Farner Budarz, M. Wiesner, Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 2012, 46, 6934.
| Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1SlsA%3D%3D&md5=fe5fba82d8a0de62230ba4baff3d00d8CAS | 1:CAS:528:DC%2BC38Xjt1SlsA%3D%3D&md5=fe5fba82d8a0de62230ba4baff3d00d8CAS | 22225505PubMed | 22225505PubMed |
[170] W. J. Lee, J. M. Lee, S. T. Kochuveedu, T. H. Han, H. Y. Jeong, M. Park, J. M. Yun, J. Kwon, K. No, D. H. Kim, S. O. Kim, Biomineralized n-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano 2012, 6, 935.
| Biomineralized n-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OjtLfF&md5=3c7cba02e878b265c0471a9639851283CAS | 1:CAS:528:DC%2BC3MXhs1OjtLfF&md5=3c7cba02e878b265c0471a9639851283CAS | 22195985PubMed | 22195985PubMed |
[171] D. Zhao, X. Yang, C. Chen, X. Wang, Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes–TiO2. J. Colloid Interface Sci. 2013, 398, 234.
| Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes–TiO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVOksbc%3D&md5=fffc4a61dc6810be87bb2ec8d118ec66CAS | 1:CAS:528:DC%2BC3sXjvVOksbc%3D&md5=fffc4a61dc6810be87bb2ec8d118ec66CAS | 23489609PubMed | 23489609PubMed |
[172] N. R. Khalid, E. Ahmed, Z. Hong, L. Sana, M. Ahmed, Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation. Curr. Appl. Phys. 2013, 13, 659.
| Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation.Crossref | GoogleScholarGoogle Scholar |
[173] Y.-C. Lee, J.-W. Yang, Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J. Ind. Eng. Chem. 2012, 18, 1178.
| Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1OqsLY%3D&md5=80beaa9806d4d8f0e3598504ccb04834CAS | 1:CAS:528:DC%2BC38Xjs1OqsLY%3D&md5=80beaa9806d4d8f0e3598504ccb04834CAS |
[174] R. Ma, J. Stegemeier, C. Levard, J. G. Dale, C. W. Noack, T. Yang, G. E. Brown, G. V. Lowry, Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environ. Sci. Nano. 2014, 1, 347.
| 1:CAS:528:DC%2BC2cXhtFygtrvP&md5=d0e741b07eef226578afc4adc86657d4CAS |
| 1:CAS:528:DC%2BC2cXhtFygtrvP&md5=d0e741b07eef226578afc4adc86657d4CAS |
[175] R. Ma, C. Levard, S. M. Marinakos, Y. Cheng, J. Liu, F. M. Michel, G. E. Brown, G. V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 752.
| Size-controlled dissolution of organic-coated silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGqsrnF&md5=5af3c81d2b7d3a31dca335e610d1083bCAS | 1:CAS:528:DC%2BC3MXhsFGqsrnF&md5=5af3c81d2b7d3a31dca335e610d1083bCAS | 22142034PubMed | 22142034PubMed |
[176] J. Gorham, R. MacCuspie, K. Klein, D. H. Fairbrother, R. D. Holbrook, UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. J. Nanopart. Res. 2012, 14, 1139.
| UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions.Crossref | GoogleScholarGoogle Scholar |
[177] T. Li, B. Albee, M. Alemayehu, R. Diaz, L. Ingham, S. Kamal, M. Rodriguez, S. W. Bishnoi, Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 2010, 398, 689.
| Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFOit7Y%3D&md5=ffdd41bf19eae52f89e5d28acae5e1c2CAS | 1:CAS:528:DC%2BC3cXnvFOit7Y%3D&md5=ffdd41bf19eae52f89e5d28acae5e1c2CAS | 20577719PubMed | 20577719PubMed |
[178] D. M. Mott, D. T. N. Anh, P. Singh, C. Shankar, S. Maenosono, Electronic transfer as a route to increase the chemical stability in gold and silver core–shell nanoparticles. Adv. Colloid Interface Sci. 2012, 185–186, 14.
| Electronic transfer as a route to increase the chemical stability in gold and silver core–shell nanoparticles.Crossref | GoogleScholarGoogle Scholar | 22999044PubMed | 22999044PubMed |
[179] S. Tokonami, N. Morita, K. Takasaki, N. Toshima, Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles. J. Phys. Chem. C 2010, 114, 10336.
| Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKmtrc%3D&md5=36a9c7eb97acad1fc4c17859a34a8e98CAS | 1:CAS:528:DC%2BC3cXmtFKmtrc%3D&md5=36a9c7eb97acad1fc4c17859a34a8e98CAS |
[180] D. Y. Lyon, J. D. Fortner, C. M. Sayes, V. L. Colvin, J. B. Hughes, Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ. Toxicol. Chem. 2005, 24, 2757.
| Bacterial cell association and antimicrobial activity of a C60 water suspension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgsL7P&md5=0eaf77651f99b0e0ac0f476fde1a9f68CAS | 1:CAS:528:DC%2BD2MXhtFCgsL7P&md5=0eaf77651f99b0e0ac0f476fde1a9f68CAS | 16398110PubMed | 16398110PubMed |
[181] E. Oberdörster, S. Q. Zhu, T. M. Blickley, P. McClellan-Green, M. L. Haasch, Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 2006, 44, 1112.
| Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms.Crossref | GoogleScholarGoogle Scholar |
[182] S. Kang, M. S. Mauter, M. Elimelech, Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ. Sci. Technol. 2009, 43, 2648.
| Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlyksrk%3D&md5=9a6e79cb218593232b9e13bbe0b7d4edCAS | 1:CAS:528:DC%2BD1MXitlyksrk%3D&md5=9a6e79cb218593232b9e13bbe0b7d4edCAS | 19452930PubMed | 19452930PubMed |
[183] O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731.
| Toxicity of graphene and graphene oxide nanowalls against bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kht77K&md5=79cbca9a9bd6cd0417cb0980667e3076CAS | 1:CAS:528:DC%2BC3cXht1Kht77K&md5=79cbca9a9bd6cd0417cb0980667e3076CAS | 20925398PubMed | 20925398PubMed |
[184] M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308.
| Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFCmtro%3D&md5=50d90e637fdb1ab19a28fcdcd2488e74CAS | 1:CAS:528:DC%2BD1cXktFCmtro%3D&md5=50d90e637fdb1ab19a28fcdcd2488e74CAS | 18194809PubMed | 18194809PubMed |
[185] S. Q. Zhu, E. Oberdorster, M. L. Haasch, Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res. 2006, 62, S5.
| Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFSisbg%3D&md5=e70a1fcbab9e96514b9de406c4ad7a36CAS | 1:CAS:528:DC%2BD28XmtFSisbg%3D&md5=e70a1fcbab9e96514b9de406c4ad7a36CAS |
[186] D. Y. Lyon, P. J. J. Alvarez, Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ. Sci. Technol. 2008, 42, 8127.
| Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SmtrvP&md5=1e62e6d72f0d7af418749693c3c46adcCAS | 1:CAS:528:DC%2BD1cXht1SmtrvP&md5=1e62e6d72f0d7af418749693c3c46adcCAS | 19031913PubMed | 19031913PubMed |
[187] C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423.
| Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFehs7o%3D&md5=969e653397e981e8c638d54a58281b77CAS | 1:CAS:528:DC%2BD1cXotFehs7o%3D&md5=969e653397e981e8c638d54a58281b77CAS | 18654567PubMed | 18654567PubMed |
[188] T. M. Scown, E. M. Santos, B. D. Johnston, B. Gaiser, M. Baalousha, S. Mitov, J. R. Lead, V. Stone, T. F. Fernandes, M. Jepson, R. van Aerle, C. R. Tyler, Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci. 2010, 115, 521.
| Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGms70%3D&md5=6dc4f2654b35d05508fa334f92f57fa7CAS | 1:CAS:528:DC%2BC3cXmsVGms70%3D&md5=6dc4f2654b35d05508fa334f92f57fa7CAS | 20219766PubMed | 20219766PubMed |
[189] K. W. H. Kwok, M. Auffan, A. R. Badireddy, C. M. Nelson, M. R. Wiesner, A. Chilkoti, J. Liu, S. M. Marinakos, D. E. Hinton, Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat. Toxicol. 2012, 120–121, 59.
| Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials.Crossref | GoogleScholarGoogle Scholar |
[190] B. C. Reinsch, C. Levard, Z. Li, R. Ma, A. Wise, K. B. Gregory, G. E. Brown, G. V. Lowry, Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol. 2012, 46, 6992.
| Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCitr0%3D&md5=961db0a4d2bd7867c46352bed4dd07e1CAS | 1:CAS:528:DC%2BC38XhsFCitr0%3D&md5=961db0a4d2bd7867c46352bed4dd07e1CAS | 22296331PubMed | 22296331PubMed |
[191] E.-J. Kim, T. Le Thanh, Y.-S. Chang, Comparative toxicity of bimetallic Fe nanoparticles toward Escherichia coli: mechanism and environmental implications. Environ. Sci. Nano 2014, 1, 233.
| Comparative toxicity of bimetallic Fe nanoparticles toward Escherichia coli: mechanism and environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFyqtLg%3D&md5=06a13b71abc9d275d68f7414e5325264CAS | 1:CAS:528:DC%2BC2cXotFyqtLg%3D&md5=06a13b71abc9d275d68f7414e5325264CAS |
[192] Y. Zhao, C. Ye, W. Liu, R. Chen, X. Jiang, Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew. Chem. Int. Ed. 2014, 53, 8127.
| Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVyls7s%3D&md5=5ea7508149ec3733f10c81dfb5b6150eCAS | 1:CAS:528:DC%2BC2cXotVyls7s%3D&md5=5ea7508149ec3733f10c81dfb5b6150eCAS |
[193] Y. H. Siddique, W. Khan, S. Khanam, S. Jyoti, F. Naz, R. Sachdev, B. R. Singh, A. H. Naqvi, Toxic potential of synthesized graphene-zinc-oxide nanocomposite (GZNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. BioMed Res. Int 2014, 2014, 1.
| Toxic potential of synthesized graphene-zinc-oxide nanocomposite (GZNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9.Crossref | GoogleScholarGoogle Scholar |
[194] Y. H. Siddique, A. Fatima, S. Jyoti, F. Naz, B. R. Rahul, A. H. Singh, Naqvi, Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. PLoS ONE 2013, 8, e80944.
| Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9.Crossref | GoogleScholarGoogle Scholar | 24339891PubMed | 24339891PubMed |
[195] G. A. Sotiriou, C. Watson, K. M. Murdaugh, T. H. Darrah, G. Pyrgiotakis, A. Elder, J. D. Brain, P. Demokritou, Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential. Environ. Sci. Nano 2014, 1, 144.
| Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Grsrs%3D&md5=63111a3b33d8a4d6a4acb28ec37eddd2CAS | 1:CAS:528:DC%2BC2cXks1Grsrs%3D&md5=63111a3b33d8a4d6a4acb28ec37eddd2CAS | 24955241PubMed | 24955241PubMed |
[196] S. Li, X. Pan, L. K. Wallis, Z. Fan, Z. Chen, S. A. Diamond, Comparison of TiO2 nanoparticle and graphene–TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes. Chemosphere 2014, 112, 62.
| Comparison of TiO2 nanoparticle and graphene–TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqsbnF&md5=40f7e21d9c58c12e6042ed54e62dc342CAS | 1:CAS:528:DC%2BC2cXhtFyqsbnF&md5=40f7e21d9c58c12e6042ed54e62dc342CAS | 25048889PubMed | 25048889PubMed |
[197] R. Subbiah, S. Ramasundaram, P. Du, K. Hyojin, D. Sung, K. Park, N.-E. Lee, K. Yun, K. J. Choi, Evaluation of cytotoxicity, biophysics and biomechanics of cells treated with functionalized hybrid nanomaterials. J. R. Soc. Interface 2013, 10, 20130694.
| Evaluation of cytotoxicity, biophysics and biomechanics of cells treated with functionalized hybrid nanomaterials.Crossref | GoogleScholarGoogle Scholar | 23985739PubMed | 23985739PubMed |
[198] R. Bhandavat, G. Singh, Stable and efficient Li–ion battery anodes prepared from polymer-derived silicon oxycarbide–carbon nanotube shell/core composites. J. Phys. Chem. C 2013, 117, 11899.
| Stable and efficient Li–ion battery anodes prepared from polymer-derived silicon oxycarbide–carbon nanotube shell/core composites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFyhtLw%3D&md5=a6bab34ae7c81b1d919be701afa780ddCAS | 1:CAS:528:DC%2BC3sXosFyhtLw%3D&md5=a6bab34ae7c81b1d919be701afa780ddCAS |
[199] K. Kariatsumari, High-performance Li–ion capacitor developed with CNT, lithium titanate 2010 (Nikkei Business Publication, Inc.: Tokyo, Japan). Available at http://techon.nikkeibp.co.jp/english/NEWS_EN/20100415/181879/ [Verified 27 November 2014].
[200] 3M-ESPE, Nano hybrid composite 2013 (3M: St Paul, MN, USA). Available at http://solutions.3mae.ae/wps/portal/3M/en_AE/3M_ESPE/Dental-Manufacturers/Products/Dental-Restorative-Materials/Dental-Composites/Nano-Hybridcomposite/#tab1 [Verified 27 November 2014].
[201] B. J. LeBlanc, Nanohybrid composite restorations: dentistry’s most versatile solution 2013 (dentaleconomics.com: Tulsa, OK, USA). Available at http://www.dentaleconomics.com/articles/print/volume-99/issue-5/features/nanohybrid-composite-restorations-dentistry39s-most-versatile-solution.html [Verified 27 November 2014].
[202] V. Madina, S. Read, G. Grundmeier, S. Ghosh, D. Jacobsson, V. Matres, M. G. Sierra, Development and evaluation of coatings and surface conditions on steel for antibacterial and easy-to-clean properties 2010 (European Commission: Luxembourg).
[203] XTI, Self-regenerating super germ killing designer face mask (XTI Active-Nano Face Mask) 2010 (XTI). Available at http://www.xti.tm/prod/productseng.htm [Verified 27 November 2014].
[204] TDA, Carbons (TDA Research Inc: Wheat Ridge, CO, USA). Available at http://www.tda.com/Research/research.htm [Verified 27 November 2014].
[205] SBU researchers develop groundbreaking new graphene-based MRI contrast agent 2013 (Stony Brook University: Stony Brook, NY, USA). Available at http://commcgi.cc.stonybrook.edu/am2/publish/General_University_News_2/SBU_Researchers_Develop_Groundbreaking_New_Graphene-Based_MRI_Contrast_Agent.shtml [Verified 27 November 2014].
[206] D. Johson, Graphene hybrid material comes to the rescue of Li-ion battery-powered vehicles 2013 (IEEE Spectrum, IEEE: Washington, DC, USA). Available at http://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/graphene-hybrid-material-lithium-ion-battery-powered-vehicles [Verified 27 November 2014].
[207] C. Li, S. Mitra, United States patent US20090205713 A1 2009.
[208] N. Zhou, T. Yang, K. Jiao, C. X. Song, Electrochemical deoxyribonucleic acid biosensor based on multiwalled carbon nanotubes/Ag–TiO2 composite film for label-free phosphinothricin acetyltransferase gene detection by electrochemical impedance spectroscopy. Chin. J. Anal. Chem 2010, 38, 301.
| Electrochemical deoxyribonucleic acid biosensor based on multiwalled carbon nanotubes/Ag–TiO2 composite film for label-free phosphinothricin acetyltransferase gene detection by electrochemical impedance spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslGgtrg%3D&md5=a519dea23d6b2b64494420e700982e00CAS | 1:CAS:528:DC%2BC3cXlslGgtrg%3D&md5=a519dea23d6b2b64494420e700982e00CAS |
[209] X. Bian, K. Hong, L. Liu, M. Xu, Magnetically separable hybrid CdS–TiO2–Fe3O4 nanomaterial: enhanced photocatalystic activity under UV and visible irradiation. Appl. Surf. Sci. 2013, 280, 349.
| Magnetically separable hybrid CdS–TiO2–Fe3O4 nanomaterial: enhanced photocatalystic activity under UV and visible irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVGgurs%3D&md5=ae54bdde6a541f90481d017836244283CAS | 1:CAS:528:DC%2BC3sXosVGgurs%3D&md5=ae54bdde6a541f90481d017836244283CAS |