Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Antimony leaching from contaminated soil under manganese- and iron-reducing conditions: column experiments

Kerstin Hockmann A C , Susan Tandy A , Markus Lenz B and Rainer Schulin A
+ Author Affiliations
- Author Affiliations

A Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, CH-8092 Zurich, Switzerland.

B Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, CH-4132 Muttenz, Switzerland.

C Corresponding author. Email: kerstin.hockmann@env.ethz.ch

Environmental Chemistry 11(6) 624-631 https://doi.org/10.1071/EN14123
Submitted: 30 June 2014  Accepted: 13 August 2014   Published: 5 December 2014

Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND

Environmental context. Contamination of shooting range soils by antimony (Sb) released from corroding ammunition has become an issue of public environmental concern. Because many of these sites are subject to waterlogging and consequently limited aeration, we performed column experiments with contaminated shooting range soil to investigate Sb mobility under such conditions. The results are important for our understanding of the risks arising from Sb-contaminated soils, and also for the derivation of appropriate management strategies for such sites.

Abstract. Despite the environmental risks arising from antimony-contaminated sites, critical factors controlling the mobility of Sb in soils have still not been fully identified to date. We performed column experiments to investigate how reducing conditions affect Sb leaching from a calcareous shooting range soil, with a special focus on the relationship between Sb release and mineral dissolution processes. After eluting the columns for 5 days with 15 mM lactate solution at a flow rate of 33 mm day–1, the flow was interrupted for 37 days and then resumed for another 5 days. With the transition to moderately reducing conditions (~300 mV) after 1 day of flow, effluent SbV and manganese (Mn) concentrations showed a concomitant increase, providing evidence that SbV associated to these phases was released by the reductive dissolution of Mn minerals. The release of SbV was counteracted by the reduction to SbIII, which was first scavenged by iron (Fe) (hydr)oxides and then slowly liberated again when the redox potential further decreased to Fe-reducing conditions. Laser ablation–inductively coupled plasma–mass spectrometry revealed the presence of an initial pool of Sb associated with Mn-containing, Fe-free phases, underpinning the important role of the latter in addition to Fe (hydr)oxides as Sb sorbents.

Additional keywords: microbial reduction, redox speciation, Sb mobilisation, Sb transport, shooting range soil.


References

[1]  W. C. Butterman, J. F. Carlin, US Geological Survery Mineral Commodity Profiles: Antimony. Open-File Report 03-019 2004 (US Department of the Interior & US Geological Survey). Available at http://pubs.usgs.gov/of/2003/of03-019/of03-019.pdf [Verified 9 October 2014].

[2]  F. Baroni, A. Boscagli, G. Protano, F. Riccobono, Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ. Pollut. 2000, 109, 347.
Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFSrtbo%3D&md5=2d93d60f8d68baa454e23b96f8dd3bd6CAS | 15092905PubMed |

[3]  B. H. Robinson, S. Bischofberger, A. Stoll, D. Schroer, G. Furrer, S. Roulier, A. Gruenwald, W. Attinger, R. Schulin, Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environ. Pollut. 2008, 153, 668.
Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVagtLc%3D&md5=dfa887f921ec2bc021b414b2765c9945CAS | 17949872PubMed |

[4]  J. Clausen, N. Korte, The distribution of metals in soils and pore water at three US Military training facilities. Soil Sediment Contam. 2009, 18, 546.
The distribution of metals in soils and pore water at three US Military training facilities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ehtbvM&md5=86d60cfa2aa62b839b46fd3a8104951bCAS |

[5]  M. Filella, N. Belzile, Y. W. Chen, Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Sci. Rev. 2002, 57, 125.
Antimony in the environment: a review focused on natural waters I. Occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Wgsr4%3D&md5=f86f9ed3fb613780dd470c9cfbcf69dcCAS |

[6]  R. Mathys, J. Dittmar, A. Johnson, Antimony in Switzerland: A Substance Flow Analysis 2007 (Federal Office for the Environment: Bern, Switzerland).

[7]  C. A. Johnson, H. Moench, P. Wersin, P. Kugler, C. Wenger, Solubility of antimony and other elements in samples taken from shooting ranges. J. Environ. Qual. 2005, 34, 248.
| 1:CAS:528:DC%2BD2MXotlShsA%3D%3D&md5=e35473c245ea69a8a80c0073e636158fCAS | 15647555PubMed |

[8]  X.-m. Wan, S. Tandy, K. Hockmann, R. Schulin, Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake. Environ. Pollut. 2013, 172, 53.
Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12itb7L&md5=2efabb0b229b0eca37b2ad5d17b8ab5dCAS | 22982553PubMed |

[9]  D. I. Bannon, J. W. Drexler, G. M. Fent, S. W. Casteel, P. J. Hunter, W. J. Brattin, M. A. Major, Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ. Sci. Technol. 2009, 43, 9071.
Evaluation of small arms range soils for metal contamination and lead bioavailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVahtrfE&md5=6bc831afb9088cdc234f6eb80cbbe459CAS | 20000496PubMed |

[10]  J. Sorvari, Environmental risks at Finnish shooting ranges – a case study. Hum. Ecol. Risk Assess. 2007, 13, 1111.
Environmental risks at Finnish shooting ranges – a case study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOrtLnK&md5=1491aac93b5f57dbc3ef1be84fd59434CAS |

[11]  J. Sorvari, R. Antikainen, O. Pyy, Environmental contamination at Finnish shooting ranges – the scope of the problem and management options. Sci. Total Environ. 2006, 366, 21.
Environmental contamination at Finnish shooting ranges – the scope of the problem and management options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvValsrY%3D&md5=7941c7e543367b81f0b1b28a2de5b333CAS | 16458952PubMed |

[12]  A. E. Strømseng, M. Ljones, L. Bakka, E. Mariussen, Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range. J. Environ. Monit. 2009, 11, 1259.
Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range.Crossref | GoogleScholarGoogle Scholar | 19513458PubMed |

[13]  Water Related Fate of the 129 Priority Pollutants, Vol. 1 1979 (United States Environmental Protection Agency: Washington, DC).

[14]  Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, Official Journal L 330/32 1998 (Council of the European Communities). Available at https://www.fsai.ie/uploadedFiles/Legislation/Food_Legisation_Links/Water/EU_Directive_98_83_EC.pdf [Verified 10 October 2014].

[15]  Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Antimony and Compounds 1992 (US Department of Health and Human Services: Georgia, USA).

[16]  M. Filella, N. Belzile, Y. W. Chen, Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Sci. Rev. 2002, 59, 265.
Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCmsrw%3D&md5=a1b9af669f3b9ca2196a725673656953CAS |

[17]  S. C. Wilson, P. V. Lockwood, P. M. Ashley, M. Tighe, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ. Pollut. 2010, 158, 1169.
The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Knt7g%3D&md5=67c846c71d555e25e02166d0d66ecfbcCAS | 19914753PubMed |

[18]  K. Hockmann, R. Schulin, Leaching of antimony from contaminated soils, in Competitive Sorption and Transport of Heavy Metals in Soils (Ed. H. M. Selim) 2013, pp. 119–145 (CRC Press: Boca Raton, FL).

[19]  A. K. Leuz, H. Monch, C. A. Johnson, Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ. Sci. Technol. 2006, 40, 7277.
Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOqsb8%3D&md5=d0d3cbbaff0948c94d1bb1db6c62c1f6CAS | 17180978PubMed |

[20]  K. Blay, Sorption wässriger Antimon-Spezies an bodenbildende Festphasen und Remobilisierung durch natürliche Komplexbildner 1999, Ph.D thesis, Technische Universität.

[21]  A. C. Scheinost, A. Rossberg, D. Vantelon, I. Xifra, R. Kretzschmar, A. K. Leuz, H. Funke, C. A. Johnson, Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim. Cosmochim. Acta 2006, 70, 3299.
Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFarsbw%3D&md5=3f9642bd436390543a872e8559218cfcCAS |

[22]  K. Hockmann, S. Tandy, M. Lenz, M. Nachtegaal, M. Janousch, R. Schulin, Release of antimony from contaminated soil induced by redox changes. J. Hazard. Mater. 2014, 275, 215.
Release of antimony from contaminated soil induced by redox changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12lsbw%3D&md5=bd914ba803fa1cc6f03e1ebb17362fe3CAS | 24862348PubMed |

[23]  S. Mitsunobu, Y. Takahashi, Y. Terada, μ-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing. Environ. Sci. Technol. 2010, 44, 1281.
μ-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Wjsg%3D%3D&md5=aaafad914387b62df38935bd73a005caCAS | 20085342PubMed |

[24]  N. Belzile, Y. W. Chen, Z. J. Wang, Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides. Chem. Geol. 2001, 174, 379.
Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVens78%3D&md5=ac2bcbda9ce560ab7c269d6966329d17CAS |

[25]  X. Wang, M. He, C. Lin, Y. Gao, L. Zheng, Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chemie der Erde – Geochemistry 2012, 72, 41.
Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Oru7Y%3D&md5=82976c189382e3a98c7dec2c246183bfCAS |

[26]  P. Thanabalasingam, W. F. Pickering, Specific sorption of antimony(III) by the hydrous oxides of Mn, Fe, and Al. Water Air Soil Pollut. 1990, 49, 175.
Specific sorption of antimony(III) by the hydrous oxides of Mn, Fe, and Al.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1aqt78%3D&md5=005e1166135cb4acba0d66618f1a94ebCAS |

[27]  S. Mitsunobu, T. Harada, Y. Takahashi, Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ. Sci. Technol. 2006, 40, 7270.
Comparison of antimony behavior with that of arsenic under various soil redox conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7vI&md5=6099d007e1cd44eeef5f411d7869d25dCAS | 17180977PubMed |

[28]  B. Müller, L. Granina, T. Schaller, A. Ulrich, B. Wehrli, P, As, Sb, Mo, and other elements in sedimentary Fe/Mn layers of Lake Baikal. Environ. Sci. Technol. 2002, 36, 411.
P, As, Sb, Mo, and other elements in sedimentary Fe/Mn layers of Lake Baikal.Crossref | GoogleScholarGoogle Scholar | 11871556PubMed |

[29]  C. A. J. Appelo, D. Postma, Geochemistry, Groundwater and Pollution, Second Edition. 2005 (Taylor & Francis: Amsterdam).

[30]  G. Cornelis, C. A. Johnson, T. Van Gerven, C. Vandecasteele, Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Appl. Geochem. 2008, 23, 955.
Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGrsbo%3D&md5=429a29c96a39d5b747307f142cf4f994CAS |

[31]  D. R. Jackson, B. C. Garrett, T. A. Bishop, Comparison of batch and column methods for assessing leachability of hazardous waste. Environ. Sci. Technol. 1984, 18, 668.
Comparison of batch and column methods for assessing leachability of hazardous waste.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkslygs7k%3D&md5=cfa56480d98243eadc8a5c658b5ce241CAS |

[32]  Soil Survey Division Staff, Soil Survey Manual. Handbook 18 1993 (US Department of Agriculture). Available at http://soils.usda.gov/technical/manual/ [Verified 11 November 2014].

[33]  Bestimmung des organisch gebundenen Kohlenstoffs (Corg), Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten 1996 (Agroscope FAL Reckenholz, Agroscope RAC Changins, Agroscope FAW Wädenswil).

[34]  H. M. Conesa, M. Wieser, M. Gasser, K. Hockmann, M. W. H. Evangelou, B. Studer, R. Schulin, Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils. J. Hazard. Mater. 2010, 181, 845.
Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2nsbs%3D&md5=892e908b9b9bb10695baed63ca9fe1d3CAS | 20542377PubMed |

[35]  J. Lintschinger, B. Michalke, S. Schulte-Hostede, P. Schramel, Studies on speciation of antimony in soil contaminated by industrial activity. Int. J. Environ. Anal. Chem. 1998, 72, 11.
Studies on speciation of antimony in soil contaminated by industrial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFygs74%3D&md5=19d1d4a5a1d74ba3e65ce78e23dc4fb8CAS |

[36]  J. Hellström, C. Paton, J. Hergt, Iolite: software for spatially resolved LA-(QUAD and MC) ICP-MS analysis, in Laser-Ablation-ICP-MS in the Earth Sciences (Ed. P. Sylvester) 2008, short course 40, pp. 343–348 (Mineralogical Association of Canada: Quebec City, QC).

[37]  S. Ackermann, R. Gieré, M. Newville, J. Majzlan, Antimony sinks in the weathering crust of bullets from Swiss shooting ranges. Sci. Total Environ. 2009, 407, 1669.
Antimony sinks in the weathering crust of bullets from Swiss shooting ranges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GnsrY%3D&md5=70306e9dce8c091967bae8db2ccd5a3fCAS | 19117594PubMed |

[38]  S. Fendorf, B. D. Kocar, Biogeochemical processes controlling the fate and transport of arsenic: implications for South and Southeast Asia. Adv. Agron. 2009, 104, 137.
Biogeochemical processes controlling the fate and transport of arsenic: implications for South and Southeast Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1aitLnK&md5=c08f129bba75bd48aec7583c4f33943eCAS |

[39]  G. Okkenhaug, Y.-G. Zhu, L. Luo, M. Lei, J. Mulder, Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ. Pollut. 2011, 159, 2427.
Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFeht7bF&md5=b6cc215c798955332f5d8af087e68a6dCAS | 21767897PubMed |

[40]  M. Biver, M. Krachler, W. Shotyk, The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride. J. Environ. Qual. 2011, 40, 1143.
The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFKitbs%3D&md5=fb1a6ed1238d7cd749f2602a2f1ff562CAS | 21712584PubMed |

[41]  N. P. McNamara, H. I. J. Black, N. A. Beresford, N. R. Parekh, Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl. Soil Ecol. 2003, 24, 117.
Effects of acute gamma irradiation on chemical, physical and biological properties of soils.Crossref | GoogleScholarGoogle Scholar |

[42]  C. A. Abin, J. T. Hollibaugh, Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism. Environ. Sci. Technol. 2014, 48, 681.
Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2mt7vE&md5=5134c81cfdd4baedd673f006408e3d32CAS | 24319985PubMed |

[43]  T. R. Kulp, L. G. Miller, F. Braiotta, S. M. Webb, B. D. Kocar, J. S. Blum, R. S. Oremland, Microbiological reduction of Sb(V) in anoxic freshwater sediments. Environ. Sci. Technol. 2014, 48, 218.
Microbiological reduction of Sb(V) in anoxic freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVCis7rN&md5=949dfd696c17ad1d2c3df98b4f4b8d62CAS | 24274659PubMed |

[44]  R. Kirsch, A. C. Scheinost, A. Rossberg, D. Banerjee, L. Charlet, Reduction of antimony by nano-particulate magnetite and mackinawite. Mineral. Mag. 2008, 72, 185.
Reduction of antimony by nano-particulate magnetite and mackinawite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2rtrbJ&md5=7fc282c0a86559c9e29a836f2a9fa8a6CAS |

[45]  R. Polack, Y.-W. Chen, N. Belzile, Behaviour of Sb(V) in the presence of dissolved sulfide under controlled anoxic aqueous conditions. Chem. Geol. 2009, 262, 179.
Behaviour of Sb(V) in the presence of dissolved sulfide under controlled anoxic aqueous conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt12ktbg%3D&md5=fa121228df8d69375545e1a1edd6b96aCAS |

[46]  G. Okkenhaug, Y. G. Zhu, J. W. He, X. Li, L. Luo, J. Mulder, Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environ. Sci. Technol. 2012, 46, 3155.
Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSrsb4%3D&md5=53467a6ce86ee61e594283b186bd55a4CAS | 22309044PubMed |

[47]  R. M. Cornell, U. Schwertmann, The Iron Oxides 2004 (Wiley-VCH: Weinheim).

[48]  R. Gilkes, R. McKenzie, Geochemistry and mineralogy of manganese in soils, in Manganese in Soils and Plants (Eds D. R. Graham, R.J. Hannam, N. C. Uren) 1988 pp 23–35 (Kluwer Academic Publishers: Dordrecht, Netherlands).

[49]  M. Filella, S. Philippo, N. Belzile, Y. Chen, F. Quentel, Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg. Sci. Total Environ. 2009, 407, 6205.
Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCmt77M&md5=3f4fddc1c6ddc891807709c6fcb628e9CAS | 19775729PubMed |

[50]  A. C. Scheinost, Metal oxides, in Encyclopedia of Soils in the Environment (Ed. D. Hillel) 2005, pp. 428–438 (Elsevier: Amsterdam, Netherlands).

[51]  G. Kirk, The Biogeochemistry of Submerged Soils 2004 (Wiley: Chichester, UK).