Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Characterising sediments of a tropical sediment-starved shelf using cluster analysis of physical and geochemical variables

Lynda C. Radke A C , Jin Li A , Grant Douglas B , Rachel Przeslawski A , Scott Nichol A , Justy Siwabessy A , Zhi Huang A , Janice Trafford A , Tony Watson A and Tanya Whiteway A
+ Author Affiliations
- Author Affiliations

A Coastal, Marine and Climate Change Group, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia.

B CSIRO Land and Water, Private Bag 5, Wembley WA 6913, Australia.

C Corresponding author. Email: lynda.radke@ga.gov.au

Environmental Chemistry 12(2) 204-226 https://doi.org/10.1071/EN14126
Submitted: 9 October 2014  Accepted: 11 December 2014   Published: 18 March 2015

Environmental context. Australia's tropical marine estate is a biodiversity hotspot that is threatened by human activities. Analysis and interpretation of large physical and geochemistry data sets provides important information on processes occurring at the seafloor in this poorly known area. These processes help us to understand how the seafloor functions to support biodiversity in the region.

Abstract. Baseline information on habitats is required to manage Australia's northern tropical marine estate. This study aims to develop an improved understanding of seafloor environments of the Timor Sea. Clustering methods were applied to a large data set comprising physical and geochemical variables that describe organic matter (OM) reactivity, quantity and source, and geochemical processes. Arthropoda (infauna) were used to assess different groupings. Clusters based on physical and geochemical data discriminated arthropods better than geomorphic features. Major variations among clusters included grain size and a cross-shelf transition from authigenic-Mn–As enrichments (inner shelf) to authigenic-P enrichment (outer shelf). Groups comprising raised features had the highest reactive OM concentrations (e.g. low chlorin indices and C : N ratios, and high reaction rate coefficients) and benthic algal δ13C signatures. Surface area-normalised OM concentrations higher than continental shelf norms were observed in association with: (i) low δ15N, inferring Trichodesmium input; and (ii) pockmarks, which impart bottom–up controls on seabed chemistry and cause inconsistencies between bulk and pigment OM pools. Low Shannon–Wiener diversity occurred in association with low redox and porewater pH and published evidence for high energy. Highest β-diversity was observed at euphotic depths. Geochemical data and clustering methods used here provide insight into ecosystem processes that likely influence biodiversity patterns in the region.

Additional keywords: ANOSIM, backscatter, carbonate banks, Commonwealth Marine Reserve, conceptual model, epifauna, marine, rare earth elements, subsurface seepage.


References

[1]  B. S. Halpern, S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D’Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck, R. A. Watson, Global map of human impact on marine ecosystems. Science 2008, 319, 948.
Global map of human impact on marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslOmtrk%3D&md5=dadf2577909939c51ce577de598f1757CAS | 18276889PubMed |

[2]  D. P. Tittensor, C. Mora, W. Jetz, H. K. Lotze, D. Ricard, E. Vanden Berghe, B. Worm, Global patterns and predictors of marine biodiversity across taxa. Nature 2010, 466, 1098.
Global patterns and predictors of marine biodiversity across taxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptl2rsrY%3D&md5=dc85de593ec19eae225797aa25022a2fCAS | 20668450PubMed |

[3]  A. J. Richardson, A. J. Hobday, E. S. Poloczanska, Australia's Marine Life, in Report Card of Marine Climate Change for Australia 2009, NCCARF Publication 05/09 (Eds E. S. Poloczanska, A. J. Hobday and A. J. Richardson) 2009 (National Climate Change Adaptation Research Facility: Gold Coast, Qld).

[4]  S. L. Nichol, F. J. F. Howard, J. Kool, M. Stowar, P. Bouchet, L. Radke, J. Siwabessy, R. Przeslawski, K. Picard, B. Alvarez de Glasby, A. Heyward, Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 – Post-Survey Report, Record 2013/38 2013 (Geoscience Australia: Canberra, ACT).

[5]  D. Jablonski, K. Roy, J. W. Valentine, Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 2006, 314, 102.
Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCiurvO&md5=5c4c36bc376a6e6aab8d946ba0259906CAS | 17023653PubMed |

[6]  W. A. Nicholas, S. Nichol, F. J. F. Howard, K. Picard, H. Dulfer, L. C. Radke, A. G. Carroll, M. Tran, P. J. W. Siwabessy, Pockmark development in the Petrel Sub-basin, Timor Sea, northern Australia: seabed habitat mapping in support of CO2 storage assessments. Cont. Shelf Res. 2014, 83, 129.
Pockmark development in the Petrel Sub-basin, Timor Sea, northern Australia: seabed habitat mapping in support of CO2 storage assessments.Crossref | GoogleScholarGoogle Scholar |

[7]  T. H. Van Andel, J. J. Veevers, Morphology and Sediments of the Timor Sea. Bureau of Mineral Resources, Geology and Geophysics Bulletin 83 1967 (Bureau of Mineral Resources, Geology and Geophysics: Canberra, ACT).

[8]  R. Przeslawski, J. Daniell, T. Anderson, J. V. Barrie, C. Battershill, A. Heap, M. Hughes, J. Li, A. Potter, L. Radke, J. Siwabessy, M. Tran, T. Whiteway, S. Nichol, Seabed Habitats and Hazards of the Joseph Bonaparte Gulf and Timor Sea, Northern Australia, Record 2011/40 2011 (Geoscience Australia: Canberra, ACT).

[9]  G. W. O’Brien, G. M. Lawrence, A. K. Williams, M. Webster, J. Lee, R. Cowley, S. Burns, Hydrocarbon Migration and Seepage in the Timor Sea and Northern Browse Basin North West Shelf, Australia: An Integrated SAR, Geological and Geochemical Study, Record 2001/11 2001 (Australian Geological Survey Organisation: Canberra, ACT).

[10]  Marine Bioregional Plan for the North Marine Region 2012 (Department of Sustainability, Environment, Water, Population and Communities: Canberra, ACT).

[11]  P. T. Harris, E. K. Baker, Seafloor Geomorphology as Benthic Habitat: GEOHAB Atlas of Seafloor Geomorphic Features and Benthic Habitats 2012 (Elsevier: Amsterdam).

[12]  A. D. Heap, P. T. Harris, Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 2008, 55, 555.
Geomorphology of the Australian margin and adjacent seafloor.Crossref | GoogleScholarGoogle Scholar |

[13]  M. A. McArthur, B. P. Brooke, R. Przeslawski, D. A. Ryan, V. L. Lucieer, S. Nichol, A. W. McCallum, C. Mellin, I. D. Cresswell, L. C. Radke, On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 2010, 88, 21.
On the use of abiotic surrogates to describe marine benthic biodiversity.Crossref | GoogleScholarGoogle Scholar |

[14]  T. Ysebaert, P. Meire, P. M. J. Herman, H. Verbeek, Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser. 2002, 225, 79.
Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression.Crossref | GoogleScholarGoogle Scholar |

[15]  Z. Huang, M. McArthur, L. Radke, T. Anderson, S. Nichol, J. Siwabessy, B. Brooke, Developing physical surrogates for benthic biodiversity using colocated samples and regression tree models: a conceptual synthesis for a sandy temperature embayment. Int. J. Geogr. Inf. Sci. 2012, 26, 2141.
Developing physical surrogates for benthic biodiversity using colocated samples and regression tree models: a conceptual synthesis for a sandy temperature embayment.Crossref | GoogleScholarGoogle Scholar |

[16]  J. W. M. Wijsman, P. M. J. Herman, M.-T. Gomoiu, Spatial distribution in sediment characteristics and benthic activity on the north-western Black Sea shelf. Mar. Ecol. Prog. Ser. 1999, 181, 25.
Spatial distribution in sediment characteristics and benthic activity on the north-western Black Sea shelf.Crossref | GoogleScholarGoogle Scholar |

[17]  R. Kenchington, P. Hutchings, Science, biodiversity and Australian management of marine ecosystems. Ocean Coast. Manage. 2012, 69, 194.
Science, biodiversity and Australian management of marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

[18]  E. Kristensen, Organic matter diagensis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 2000, 426, 1.
Organic matter diagensis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVartrk%3D&md5=116a9feed8fd3822c2236e1098b82a8aCAS |

[19]  P. T. Harris, M. G. Hughes, Predicted benthic disturbance regimes on the Australian continental shelf: a modelling approach. Mar. Ecol. Prog. Ser. 2012, 449, 13.
Predicted benthic disturbance regimes on the Australian continental shelf: a modelling approach.Crossref | GoogleScholarGoogle Scholar |

[20]  G. B. Douglas, M. Kuhnen, L. C. Radke, G. Hancock, B. Brooke, M. Palmer, T. Piestch, P. Ford, M. G. Trefy, R. Packett, Delineation of sediment sources to a coastal wetland in the Great Barrier Reef catchment: influence of climate variability and land clearing since European arrival. Environ. Chem. 2010, 7, 190.
Delineation of sediment sources to a coastal wetland in the Great Barrier Reef catchment: influence of climate variability and land clearing since European arrival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFeltbY%3D&md5=428563ecc9a7e777770752c16df5b59aCAS |

[21]  N. Tribovillard, T. J. Alegeo, T. Lyons, A. Riboulleau, Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 2006, 232, 12.
Trace metals as paleoredox and paleoproductivity proxies: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFGjurc%3D&md5=2d977e6a4e366e234d5ffce6f05b7bd3CAS |

[22]  P. J. W. Siwabessy, J. Daniell, J. Li, Z. Huang, A. D. Heap, S. Nichol, T. J. Anderson, M. Tran, Methodologies for Seabed Substrate Characterisation Using Multibeam Bathymetry, Backscatter and Video Data: A Case Study From the Carbonate Banks of the Timor Sea, Northern Australia, Record 2013/11 2012 (Geoscience Australia: Canberra, ACT).

[23]  J. Niggemann, T. G. Ferdelman, B. A. Lomstein, J. Kallmeyer, C. J. Schubert, How depositional conditions control input, composition and degradation or organic matter in sediments from the Chilean coastal upwelling region. Geochim. Cosmochim. Acta 2007, 71, 1513.
How depositional conditions control input, composition and degradation or organic matter in sediments from the Chilean coastal upwelling region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Gjs70%3D&md5=b84259ff30cd10c170f8a7735e6b4f57CAS |

[24]  C. J. Schubert, J. Niggemann, G. Klockgether, G. Ferdelman, Chlorin Index: a new parameter for organic matter freshness in sediment. Geochem. Geophys. Geosyst. 2005, 6, Q03005.
Chlorin Index: a new parameter for organic matter freshness in sediment.Crossref | GoogleScholarGoogle Scholar |

[25]  P. M. J. Herman, J. Middelburg, J. Van de Koppel, C. H. R. Heip, Ecology of estuarine macrobenthos. Adv. Ecol. Res 1999, 29, 195.
Ecology of estuarine macrobenthos.Crossref | GoogleScholarGoogle Scholar |

[26]  J. I. Hedges, W. A. Clark, G. L. Cowie, Fluxes and reactivities of organic matter in a coastal marine bay. Limnol. Oceanogr. 1988, 33, 1137.
Fluxes and reactivities of organic matter in a coastal marine bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVCksA%3D%3D&md5=3bb780f8cee0ad053bd1bb132bd0f37dCAS |

[27]  T. Schroeder, A. G. Dekker, C. Rathbone, Remote Sensing for Light Attenuation Mapping in the North Marine Region. Report to the Department of the Environment, Water, Heritage and the Arts 2009 (CSIRO Land and Water: Canberra, ACT).

[28]  A. D. Heap, R. Przeslawski, L. Radke, J. Trafford, C. Battershill, Shipboard Party. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post-Survey Report, Record 2010/09 2010 (Geoscience Australia: Canberra, ACT).

[29]  T. J. Anderson, S. Nichol, L. Radke, A. D. Heap, C. Battershill, M. Hughes, P. J. Siwabessy, V. Barrie, B. Alvarez de Glasby, M. Tran, J. Daniell, Shipboard Party. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/SOL5117 – Post-Survey Report, Record 2011/08 2011 (Geoscience Australia: Canberra, ACT).

[30]  S. J. Blott, K. Pye, Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237.
Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments.Crossref | GoogleScholarGoogle Scholar |

[31]  L. D. Anderson, M. L. Delaney, Sequential extraction and analysis of phosphorus in marine sediments: streamlining of the SEDEX procedure. Limnol. Oceanogr. 2000, 45, 509.
Sequential extraction and analysis of phosphorus in marine sediments: streamlining of the SEDEX procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVKrtb8%3D&md5=0a6064bf91e481b8b7468cbd5206a550CAS |

[32]  E. Lewis, D. W. R. Wallace, Program Developed for CO2 System Calculations. ORNL/CDIAC-105 1998 (Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, US Department of Energy: Oak Ridge, TN). Available at http://cdiac.ornl.gov/oceans/co2rprt.html [Verified 5 January 2014].

[33]  C. Mehrbach, C. H. Culberson, J. E. Hawley, R. M. Pytkowicz, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18, 897.
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtFansLk%3D&md5=dd0eb498ae31a2dcaaec940e2da5c5e9CAS |

[34]  A. G. Dickson, F. J. Millero, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 1987, 34, 1733.
A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXotFGjsg%3D%3D&md5=13d3cc820e4083e817c69d26a9f1d683CAS |

[35]  G. Müller, M. Gastner, The ‘karbonat-bombe’, a simple device for the determination of the carbonate content in sediments, soils and other materials. Neues Jahrb. Miner. Monatsh. 1971, 10, 466.

[36]  K. Norrish, I. T. Hutton, An accurate X-Ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 1969, 33, 431.
An accurate X-Ray spectrographic method for the analysis of a wide range of geological samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktV2gsbo%3D&md5=217911764dddcf4237d2f291a20b88f3CAS |

[37]  S. McLennon, Relationships between the trace elements composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 1021.
Relationships between the trace elements composition of sedimentary rocks and upper continental crust.Crossref | GoogleScholarGoogle Scholar |

[38]  A. J. P. Ferguson, B. D. Eyre, J. M. Gay, Organic matter and benthic metabolism in euphotic sediments along shallow subtropical estuaries, northern New South Wales, Australia. Aquat. Microb. Ecol. 2003, 33, 137.
Organic matter and benthic metabolism in euphotic sediments along shallow subtropical estuaries, northern New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

[39]  T. B. Coplen, W. A. Brand, M. Gehre, M. Groning, H. A. J. Meijer, B. Toman, B. R. M. Verkouteren, New guidelines for δ13C measurements. Anal. Chem. 2006, 78, 2439.
| 1:CAS:528:DC%2BD28XhsVSqs7c%3D&md5=ef4606a9df614401bc207f81eaee906aCAS |

[40]  C. J. Lorenzen, Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 1967, 12, 343.
Determination of chlorophyll and pheopigments: spectrophotometric equations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXovFOqsQ%3D%3D&md5=762c228fd84d8dff7d2c774cf741c7cbCAS |

[41]  S. W. Jeffrey, N. A. Welschmeyer, Spectrophotometric and fluorometric equations in common use in oceanography, in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (Eds S. W. Jeffrey, R. F. C. Mantoura and S. W. Wright) 2003, pp. 597–615 (UNESCO: Paris).

[42]  D. Borcard, F. Gillet, P. Legendre, Numerical Ecology with R 2011 (Springer: New York.).

[43]  R Development Core Team, R: a language and environment for statistical computing 2011 (R Foundation for Statistical Computing: Vienna, Austria).

[44]  K. R. Clarke, R. M. Warwick, Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn 2001 (Primer-E: Plymouth, UK).

[45]  R. G. Keil, L. M. Mayer, P. D. Quay, J. E. Richey, J. I. Hedges, Loss of organic matter from riverine particles in deltas. Geochim. Cosmochim. Acta 1997, 61, 1507.
Loss of organic matter from riverine particles in deltas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVShtb8%3D&md5=9bcedcf1008bc17dc895fd865caf8f2eCAS |

[46]  D. J. Burdige, Geochemistry of Marine Sediments 2006 (Princeton University Press: Princeton, NJ).

[47]  M. McCulloch, C. Pailles, P. Moody, C. E. Martin, Tracing the source of sediment and phosphorus into the Great Barrier Reef lagoon. Earth Planet. Sci. Lett. 2003, 210, 249.
Tracing the source of sediment and phosphorus into the Great Barrier Reef lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Wqur0%3D&md5=b63f7eea09f85c6ddd1f28e7ce67a1b6CAS |

[48]  M. G. Chapman, A. J. Underwood, Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Mar. Ecol. Prog. Ser. 1999, 180, 257.
Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests.Crossref | GoogleScholarGoogle Scholar |

[49]  H. E. Hartnett, R. G. Keil, J. I. Hedges, A. Devol, Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 1998, 391, 572.
Influence of oxygen exposure time on organic carbon preservation in continental margin sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVSntrg%3D&md5=23425e3a55c2563ea6a869a1959f4714CAS |

[50]  A. Mucci, L.-F. Richard, M. Lucotte, C. Guignard, The differential geochemical behaviour of arsenic and phosphorus in the water column and sediments of the Saguenay Fjord Estuary, Canada. Aquat. Geochem. 2000, 6, 293.
The differential geochemical behaviour of arsenic and phosphorus in the water column and sediments of the Saguenay Fjord Estuary, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFCis70%3D&md5=683e253da73f590cb59372011d012f15CAS |

[51]  M. Caetano, R. Prego, C. Vale, H. de Pablo, J. Marmolejo-Rodríguez, Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Mar. Chem. 2009, 116, 36.
Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWhurnI&md5=381b6fd95843f82e97f62d22cd5ee619CAS |

[52]  W. Maher, E. Butler, Arsenic in the marine environment. Appl. Organomet. Chem. 1988, 2, 191.
Arsenic in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFWr&md5=2d53ffc067a301b40a16ec62d6ca1bacCAS |

[53]  G. Chaillou, J. Schäfer, P. Anschultz, G. Lavaux, G. Blanc, The behaviour of arsenic in muddy sediments of The Bay of Biscay (France). Geochim. Cosmochim. Acta 2003, 67, 2993.
The behaviour of arsenic in muddy sediments of The Bay of Biscay (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFaqurs%3D&md5=b7c98553e0512ca91bd5f32bc4d72ee3CAS |

[54]  Australia and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, The Guidelines 2000 (Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand: Canberra, ACT).

[55]  N. Mirlean, P. Baisch, M. P. Travassos, C. Nassar, Calcareous algae bioclast contribution to sediment enrichment by arsenic on the Brazilian subtropical coast. Geo-Mar. Lett. 2011, 31, 65.
Calcareous algae bioclast contribution to sediment enrichment by arsenic on the Brazilian subtropical coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVymsA%3D%3D&md5=cd81600db1c50f97336a51c7a32fd971CAS |

[56]  B. Gaye-Haake, N. Lahajnar, K.-Ch. Emeris, D. Unger, T. Rixen, A. Suthhof, V. Ramaswamy, H. Schulz, A. L. Paropkari, M. V. S. Guptha, V. Ittekkot, Stable nitrogen isotopic ratios of sinking particles and sediments from the northern Indian Ocean. Mar. Chem. 2005, 96, 243.
Stable nitrogen isotopic ratios of sinking particles and sediments from the northern Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFGjtL4%3D&md5=98ec46a089c8736a8df85b5b3b75ccfeCAS |

[57]  J. P. Drexel, Contribution of Nitrogen Fixation to Planktonic Food Webs North of Australia 2007, M.Sc. Thesis, Georgia Institute of Technology, Atlanta, GA, USA.

[58]  M. A. Burford, P. Rothlisberg, A. T. Revill, Sources of nutrients driving production in the Gulf of Carpentaria, Australia: a shallow tropical shelf system. Mar. Freshwater Res. 2009, 60, 1044.
Sources of nutrients driving production in the Gulf of Carpentaria, Australia: a shallow tropical shelf system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymtLnI&md5=906a74b596ef143e3889975d2a9e0699CAS |

[59]  C. Guo, P. A. Tester, Toxic effect of the bloom-forming Trichodesmium sp. (cyanophyta) to the copepod Acartia tonsa. Nat. Toxins 1994, 2, 222.
Toxic effect of the bloom-forming Trichodesmium sp. (cyanophyta) to the copepod Acartia tonsa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FktVOhtw%3D%3D&md5=bd08c2ec25d27d5612430427421dab86CAS | 7952947PubMed |

[60]  R. L. France, Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser. 1995, 124, 307.
Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications.Crossref | GoogleScholarGoogle Scholar |

[61]  D. M. Alongi, L. A. Trott, M. Møhl, Strong tidal currents and labile organic matter stimulate benthic decomposition and carbonate fluxes on the southern Great Barrier Reef shelf. Cont. Shelf Res. 2011, 31, 1384.
Strong tidal currents and labile organic matter stimulate benthic decomposition and carbonate fluxes on the southern Great Barrier Reef shelf.Crossref | GoogleScholarGoogle Scholar |

[62]  R. Raiswell, F. Buckley, R. A. Berner, T. F. Anderson, Degree of pyritization of iron as a palaeoenvironmental indicator of bottom-water oxygenation. J. Sediment. Petrol. 1987, 58, 812.

[63]  R. J. Diaz, R. Rosenberg, Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 1995, 33, 245.

[64]  M. G. Hughes, P. T. Harris, B. P. Brooke, Seabed Exposure and Ecological Disturbance on Australia's Continental Shelf: Potential Surrogates for Marine Biodiversity, Record 2010/43 2010 (Geoscience Australia: Canberra, ACT).

[65]  K. C. Ruttenberg, The global phosphorus cycle, in Biogeochemistry (Ed. W. H. Schlesinger) 2005, pp. 585–643 (Elsevier Ltd: Amsterdam).

[66]  T. J. Algeo, N. E. Tribovillard, Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol. 2009, 268, 211.
Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlersr7O&md5=42123e88466aec15a55d1820192a9f6bCAS |

[67]  P. W. Choquette, L. C. Pray, Geologic nomenclature and classification of porosity in sedimentary carbonates. Am. Assoc. Pet. Geol. Bull. 1970, 54, 207.

[68]  S. R. Taylor, S. M. McLennon, The Continental Crust: Its Composition and Evolution 1985 (Blackwell: London).

[69]  J. I. Hedges, J. M. Oades, Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 1997, 27, 319.
Comparative organic geochemistries of soils and marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVWrsA%3D%3D&md5=f6ef4bdda20674945d9ef0d5238a1f67CAS |

[70]  C. J. Brown, S. J. Smith, P. Lawton, J. T. Anderson, Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 2011, 92, 502.
Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques.Crossref | GoogleScholarGoogle Scholar |

[71]  P. de Caritat, M. Cooper, National Geochemical Survey of Australia: The Geochemical Atlas of Australia, Record 2011/20 2011 (Geoscience Australia: Canberra, ACT).

[72]  A. Serna, J. Pätsch, K. Dähnke, M. G. Wiesner, H. C. Hass, M. Zeiler, D. Hebbeln, K.-C. Emeis, History of anthropogenic nitrogen input to the German Bight/SE North Sea as reflected by nitrogen in surface sediments, sediment cores and hindcast models. Cont. Shelf Res. 2010, 30, 1626.
History of anthropogenic nitrogen input to the German Bight/SE North Sea as reflected by nitrogen in surface sediments, sediment cores and hindcast models.Crossref | GoogleScholarGoogle Scholar |