Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Measurement of labile arsenic speciation in water and soil using diffusive gradients in thin films (DGT) and X-ray absorption near edge spectroscopy (XANES)

Trang Huynh A D , Hugh H. Harris B , Hao Zhang C and Barry N. Noller A
+ Author Affiliations
- Author Affiliations

A The University of Queensland, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, Building 47A, St Lucia Campus, Brisbane, Qld 4072, Australia.

B Department of Chemistry, The University of Adelaide, SA 5005, Australia.

C Lancaster Environment Centre, LEC Building, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.

D Corresponding author. Email: trang.huynh@uq.edu.au

Environmental Chemistry 12(2) 102-111 https://doi.org/10.1071/EN14047
Submitted: 3 March 2014  Accepted: 25 July 2014   Published: 17 February 2015

Environmental context. Both inorganic and organic arsenic species are toxic to the environment when labile. The Diffusive Gradients in Thin Films technique, equipped with ferrihydrite binding gel enables measurement of labile arsenic species from water and soil solutions. This study indicated that labile arsenic species are quantitatively adsorbed to the gel, and that they are stable for up to 2 weeks following deployment.

Abstract. Arsenic speciation was determined in the solution extracted from a ferrihydrite binding gel layer in a DGT unit (FB-DGT) deployed in water using coupled high-performance liquid chromatography and hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). However, the extent of change in arsenic speciation during the extraction process is unknown. By identifying the arsenic species in the FB-DGT gel directly, using X-ray absorption near edge spectroscopy (XANES) fitting with model arsenic compounds, we obtain a better understanding of the ability of FB-DGT to measure labile arsenic species in solution. The results presented herein confirm that FB-DGT accumulated labile inorganic and methylated arsenic species. Arsenic species bound to the FB-DGT gel were stable for up to 2 weeks following deployment. However, caution should be applied when interpreting the proportion of As species measured by HPLC-HG-AFS in solution extracted from FB-DGT because the distribution of arsenic species in extracted solutions was found to be modified by the extraction process. Some (~20 %) of arsenate was converted into arsenite, and a significant amount (~25 %) of dimethylarsinic acid (DMAsV) was converted into monomethylarsonic acid (MMAsV) or arsenate (AsV). Only inorganic arsenite (iAsIII) was stable during the extraction process. These findings suggested that, based on the XANES measurement, although As species were quantitatively accumulated in the FB-DGT gel, the FB-DGT technique was still unsuitable for studying As speciation. This is because changes in arsenic speciation were observed to occur during gel extraction, prior to HPLC-HG-AFS measurement, and because the XANES technique is available for routine measurements.


References

[1]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=36c2895b8fea47d7e3c145f44bf012daCAS |

[2]  W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713.
Arsenic speciation in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVaitbg%3D&md5=bd2feb00951215fcf8892f3d5064f063CAS |

[3]  J. Ng, Environmental contamination of arsenic and its toxicological impact on humans. Environ. Chem. 2005, 2, 146.
Environmental contamination of arsenic and its toxicological impact on humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrfL&md5=5348da83f6cb695730249cc1cbb1ca7fCAS |

[4]  H. Yamauchi, B. A. Fowler, Toxicity and metabolism of inorganic and methylated arsenicals, in Arsenic in the Environment. II. Human Health and Ecosystem Effects (Ed. J. O Nriagu) 1994, Chapt. 11 (Wiley: New York).

[5]  P. Pinel-Raffaitin, I. Le Hecho, D. Amouroux, M. Potin-Gautier, Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases. Environ. Sci. Technol. 2007, 41, 4536.
Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFSnsbg%3D&md5=97e467d45d8f412a5f5a5c1fc47f0719CAS | 17695893PubMed |

[6]  D. Sánchez-Rodas, J. L. Gómez-Ariza, I. Giráldez, A. Velasco, E. Morales, Arsenic speciation in river and estuarine waters from southwest Spain. Sci. Total Environ. 2005, 345, 207.
Arsenic speciation in river and estuarine waters from southwest Spain.Crossref | GoogleScholarGoogle Scholar | 15919540PubMed |

[7]  A. J. Bednar, J. R. Garbarino, J. F. Ranville, T. R. Wildeman, Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environ. Sci. Technol. 2002, 36, 2213.
Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGgtLs%3D&md5=bda2757693b19402e8e378db486436b8CAS | 12038832PubMed |

[8]  H. Zhang, F. J. Zhao, B. Sun, W. Davison, S. P. McGrath, A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Technol. 2001, 35, 2602.
A new method to measure effective soil solution concentration predicts copper availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFGksbw%3D&md5=b9a3262172486aa3bed3ce32902d5d41CAS | 11432571PubMed |

[9]  H. Zhang, W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=cffef51758f78e7bddf0703845f4ad15CAS |

[10]  J. R. Lead, W. Davison, J. Hamilton-Taylor, Characterizing colloidal material in natural waters. Aquat. Geochem. 1997, 3, 213.
Characterizing colloidal material in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Kisr4%3D&md5=a20b5e683627f90b4bb6c43c622ece7fCAS |

[11]  G. J. Panther, P. S. Kathryn, J. P. Kipton, J. D. Alison, Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters. Anal. Chim. Acta 2008, 622, 133.
Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFamsLs%3D&md5=7fe9e50496cb2dc35fb572dd807d47eaCAS |

[12]  J. Luo, H. Zhang, J. Santner, W. Davison, Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V), and antimony(V). Anal. Chem. 2010, 82, 8903.
Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V), and antimony(V).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrvF&md5=d91f6ce10e2dd5c4cceb2b88ba2fee6fCAS | 20936784PubMed |

[13]  E. Moreno-Jiménez, S. Laetitia, P. N. William, E. Smolders, Inorganic species of arsenic in soil solution determined by microcartridges and ferrihydrite-based diffusive gradient in thin films (DGT). Talanta 2013, 104, 83.
Inorganic species of arsenic in soil solution determined by microcartridges and ferrihydrite-based diffusive gradient in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 23597892PubMed |

[14]  G. J. Panther, P. K. Stillwell, J. K. Powell, J. A. Downard, New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent. Anal. Chem. 2008, 80, 9806.
New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCqtbvE&md5=596815639aeba388ce20e466e5d9b39aCAS |

[15]  W. W. Bennett, R. P. Teasdale, G. J. Panther, T. D. Welsh, F. D. Jolley, Speciation of dissolved inorganic arsenic by diffusive gradients in thin films: selective binding of AsIII by 3-mercaptopropyl-functionalized silica gel. Anal. Chem. 2011, 83, 8293.
Speciation of dissolved inorganic arsenic by diffusive gradients in thin films: selective binding of AsIII by 3-mercaptopropyl-functionalized silica gel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSlurnL&md5=819195a8b0cf541540c246e4ecd63095CAS | 21967720PubMed |

[16]  H. Österlund, M. Faarinen, J. Ingri, D. C. Baxter, Contribution of organic arsenic species to total arsenic measurements using ferrihydrite-backed diffusive gradients in thin films (DGT). Environ. Chem. 2012, 9, 55.
Contribution of organic arsenic species to total arsenic measurements using ferrihydrite-backed diffusive gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar |

[17]  S. Londesborough, J. Mattusch, R. Wennrich, J. Fresse, Separation of organic and inorganic arsenic species by HPLC-ICP-MS. Anal. Chem. 1999, 363, 577.
Separation of organic and inorganic arsenic species by HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFGmtrk%3D&md5=773330c6199fd6369ca8f1c3c25b3338CAS |

[18]  H. J. Huang, P. Fecher, G. Ilgen, K. N. Hu, J. Yang, Speciation of arsenite and arsenate in rice grain – verification of nitric acid based extraction method and mass sample survey. Food Chem. 2012, 130, 453.
Speciation of arsenite and arsenate in rice grain – verification of nitric acid based extraction method and mass sample survey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVygs7%2FP&md5=75d177721f64d4c4b8c3ff2d9f622bb5CAS |

[19]  I. J. Pickering, L. Gumaelius, H. H. Harris, C. R. Prince, H. Gregory, J. A. Bank, D. E. Salt, G. N. Gregory, Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ. Sci. Technol. 2006, 40, 5010.
Localizing the biochemical transformations of arsenate in a hyperaccumulating fern.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms12jsLs%3D&md5=006e1a2d6c52710b5d729db8ca1f2465CAS | 16955900PubMed |

[20]  W. Maher, S. Foster, F. Krikowa, E. Donner, E. Lombi, Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES. Environ. Sci. Technol. 2013, 47, 5821.
Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1eitro%3D&md5=ac195567961141df26b30d8fefad47efCAS | 23621828PubMed |

[21]  R. De Vitre, N. Belzile, A. Tessier, Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnol. Oceanogr. 1991, 36, 1480.
Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVSmu74%3D&md5=1e526f10a30cddad1747ca0d2ca95007CAS |

[22]  D. Paktunc, A. Foster, J. Laflamme, Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy. Environ. Sci. Technol. 2003, 37, 2067.
Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1KgtLw%3D&md5=146c638098ce0e80082d64cf20f1aa49CAS | 12785509PubMed |

[23]  S. K. Savage, N. T. Tingle, A. P. O’Day, A. G. Waychunas, K. D. Bird, Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl. Geochem. 2000, 15, 1219.
Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFaksrs%3D&md5=a431c4195daf0613894e4f7d6b3dc32cCAS |

[24]  ANZECC/ARMCANZ, Australian Water Quality Guidelines for Fresh and Marine Water Quality 2000, Chapt. 2 (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand: Canberra, Australia).

[25]  Y. Arslan, E. Yildirim, M. Gholami, S. Bakirdere, Lower limits of detection in speciation analysis by coupling high-performance liquid chromatography and chemical-vapor generation. Trends Analyt. Chem. 2011, 30, 569.
Lower limits of detection in speciation analysis by coupling high-performance liquid chromatography and chemical-vapor generation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2nt7c%3D&md5=5eb7b3d8df1f9af2abfc54bc5efe7953CAS |

[26]  G. N. George, I. J. Pickering, EXAFSPAK. A suite of computer programs for Analysis of X-ray absorption spectra 2000. Available at http://ssrl.slac.stanford.edu/~george/exafspak/manual.pdf [Verified 10 November 2014].

[27]  G. Ona-Nguema, G. Morin, Y. Wang, A. Foster, F. Juillot, G. Calas, E. G. Brown, XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ. Sci. Technol. 2010, 44, 5416.
XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVSru74%3D&md5=01714532ab7f74c702b797270cdcb404CAS | 20666402PubMed |

[28]  J. M. D. Abedin, M. S. Cresser, A. A. Meharg, J. Felamann, J. Cotter-Howells, Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Technol. 2002, 36, 962.
Arsenic accumulation and metabolism in rice (Oryza sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVGmtQ%3D%3D&md5=8839460459d3763caa1b902f6cd0bac5CAS |

[29]  E. A. Crecelius, N. S. Bloom, C. E. Cowan, E. A. Jenne, Speciation of Selenium and Arsenic in Natural Waters and Sediments, Volume 2: Arsenic Speciation; Research Project 2020-2, Report EA-4641 1986 (Electric Power Research Institute; Palo Alto, CA)

[30]  M. A. Palacios, M. Gomez, C. Camara, M. A. Lopez, Stability studies of arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine and arsenocholine in deionized water, urine and clean-up dry residue from urine samples and determination by liquid chromatography with microwave-assisted oxidation-hydride generation atomic absorption spectrometric detection. Anal. Chim. Acta 1997, 340, 209.
Stability studies of arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine and arsenocholine in deionized water, urine and clean-up dry residue from urine samples and determination by liquid chromatography with microwave-assisted oxidation-hydride generation atomic absorption spectrometric detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1ehs7k%3D&md5=87dbc6a8fefa6b5c96e8ced89ff7b98eCAS |

[31]  G. E. M. Hall, J. C. Pelchat, G. Gauthier, Stability of inorganic arsenic(III) and arsenic(V) in water samples. J. Anal. At. Spectrom. 1999, 14, 205.
Stability of inorganic arsenic(III) and arsenic(V) in water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXos1Ghtg%3D%3D&md5=831618e64db2d16ce5f1cdacf7a1420cCAS |

[32]  S. Foster, W. Maher, F. Krikowa, S. Apte, A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71, 537.
A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFSltA%3D%3D&md5=acf0313773ad4c62de1cb35ec56069dfCAS | 19071338PubMed |

[33]  T. Narukawa, T. Kuroiwa, K. Inagaki, A. Takatsu, K. Chiba, Decomposition of organoarsenic compounds for total arsenic determination in marine organisms by hydride generation technique. Appl. Organomet. Chem. 2005, 19, 239.
Decomposition of organoarsenic compounds for total arsenic determination in marine organisms by hydride generation technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWgtbY%3D&md5=57a0b058ac9de35917614ac90a5e4226CAS |

[34]  P. Smith, I. Koch, R. Gordon, D. Mandoli, B. Chapman, K. Reimer, . Environ. Sci. Technol. 2005, 39, 248.
.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVGgsrk%3D&md5=56b0b8e320c41cdf398e1881c017867fCAS | 15667101PubMed |

[35]  C. D. Cox, M. M. Ghosh, Surface complexation of methylated arsenates by hydrous oxides. Water Res. 1994, 28, 1181.
Surface complexation of methylated arsenates by hydrous oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFakur8%3D&md5=c8d68e3f1bc85cbd67b75943567f48f0CAS |

[36]  H. Xu, B. Allard, A. Grimvall, Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut. 1991, 57–58, 269.
Effects of acidification and natural organic materials on the mobility of arsenic in the environment.Crossref | GoogleScholarGoogle Scholar |

[37]  R. J. Bowell, Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl. Geochem. 1994, 9, 279.
Sorption of arsenic by iron oxides and oxyhydroxides in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvVWqt74%3D&md5=c3d68ad5775f1d64292011e9664997caCAS |

[38]  B. J. Lafferty, R. H. L. Loeppert, Methyl arsenic adsorption and desorption behaviour on iron oxides. Environ. Sci. Technol. 2005, 39, 2120.
Methyl arsenic adsorption and desorption behaviour on iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2nsL8%3D&md5=0d4eaeff2b2fa1fdad94d421620e5ecfCAS | 15871246PubMed |