Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability
Hao Zhang A B and William Davison AA Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
B Corresponding author: h.zhang@lancaster.ac.uk
Hao Zhang is Professor of Environmental Chemistry at Lancaster University where she has developed DGT and advanced understanding of biogeochemical processes affecting trace metals and other components in natural waters, sediments and soils. After gaining her B.Sc. in Marine Chemistry at the China Ocean University, Qingdao, in 1984 she worked for 3 years at the Institute of Oceanography, Chinese Academy of Sciences and then moved to the University of Brussels where she obtained her Ph.D. in Chemistry. She has published more than 150 peer reviewed papers. |
Bill Davison is Emeritus Professor of Environmental Chemistry at the University of Lancaster where his research has focussed on developing DGT and using it to understand dynamic aspects of biogeochemical processes, including chemical speciation in solution and solute-solid phase interactions in sediments and soils. Up to 1991 he was Head of Chemistry at the Institute for Freshwater Ecology where his research on biogeochemistry included redox-related processes in lakes. He is a graduate of the University of Newcastle upon Tyne (B.Sc. Chemistry and Ph.D. Electrochemistry) and has published more than 200 peer reviewed papers. |
Environmental Chemistry 12(2) 85-101 https://doi.org/10.1071/EN14105
Submitted: 31 May 2014 Accepted: 22 October 2014 Published: 25 March 2015
Environmental context. The health of aquatic organisms depends on the distribution of the dissolved forms of chemical components (speciation) and their rates of interaction (dynamics). This review documents and explains progress made using the dynamic technique of diffusive gradients in thin-films (DGT) to meet these challenges of measuring directly chemical speciation and associated dynamics in natural waters. The relevance of these measurements to uptake by biota of chemical forms in soils, sediments and water is discussed with reference to this expanding literature.
Abstract. This review assesses progress in studies of chemical speciation using diffusive gradients in thin-films (DGT) by examining the contributions made by key publications in the last 20 years. The theoretical appreciation of the dynamic solution components measured by DGT has provided an understanding of how DGT measures most metal complexes, but excludes most colloids. These findings strengthen the use of DGT as a monitoring tool and provide a framework for using DGT to obtain in situ kinetic information. Generally, the capabilities of DGT as an in situ perturbation and measurement tool have yet to be fully exploited. Studies that have used DGT to investigate processes relevant to bioavailability have blossomed in the last 10 years, especially for soils, as DGT mimics the diffusion limiting uptake conditions that, under some conditions, characterise uptake by plants. As relationships between element accumulated by DGT and in plants depend on the plant species, soils studied, and the element and its chemical form, DGT is not an infallible predictive tool. Rather its strength comes from providing information on the labile species in the system, whether water, soil or sediment. Recent studies have shown good relationships between measurements of metals in periphyton and by DGT, and unified dose response curves have been obtained for biota in sediments when they are based on DGT measurements. Both these cases suggest that alternative approaches to the established ‘free ion’ approach may be fruitful in these media and illustrate the growing use of DGT to investigate environmental chemical processes.
References
[1] S. A. Barber, Soil Nutrient Bioavailability: a Mechanistic Approach 1995 (Wiley: New York).[2] A. L. Nolan, E. Lombi, M. J. McLaughlin, Metal bioaccumulation and toxicity in soils – why bother with speciation? Aust. J. Chem. 2003, 56, 77.
| Metal bioaccumulation and toxicity in soils – why bother with speciation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslGnsLs%3D&md5=37ebbbd4ab794b98dd873497dc4fdb23CAS |
[3] W. Davison, H. Zhang, Insitu speciation measurements of trace components in natural waters using thin-film gels. Nature 1994, 367, 546.
| Insitu speciation measurements of trace components in natural waters using thin-film gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVemtrc%3D&md5=e34a75ce300be618761ec736d2792f90CAS |
[4] F. Degryse, E. Smolders, H. Zhang, W. Davison, Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. Environ. Chem. 2009, 6, 198.
| Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CjurfI&md5=d12b2d8a8627fec4f133bbad68767a05CAS |
[5] S. J. Hayward, T. Gouin, F. Wania, Comparison of four active and passive sampling techniques for pesticides in air. Environ. Sci. Technol. 2010, 44, 3410.
| Comparison of four active and passive sampling techniques for pesticides in air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1eqs7w%3D&md5=16efbc6464f8ea827f824ddd5e6180cbCAS | 20369874PubMed |
[6] R. Greenwood, G. Mills, B. Vrana (Eds), Passive Sampling Techniques in Environmental Modelling 2007 (Elsevier: Oxford, UK).
[7] O. A. Garmo, O. Røyset, E. Steinnes, T. P. Flaten, Performance study of diffusive gradients in thin-films for 55 elements. Anal. Chem. 2003, 75, 3573.
| Performance study of diffusive gradients in thin-films for 55 elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Krs7o%3D&md5=8f27d1b0fca0b9d1c4ca453dcf44d867CAS | 14570212PubMed |
[8] M. Schintu, B. Marras, L. Durante, P. Meloni, A. Contu, Macroalgae and DGT as indicators of available trace metals in marine coastal waters near a lead-zinc smelter. Environ. Monit. Assess. 2010, 167, 653.
| Macroalgae and DGT as indicators of available trace metals in marine coastal waters near a lead-zinc smelter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wqsbw%3D&md5=d254b0a7b7b661a247403470fbb988dbCAS | 19603278PubMed |
[9] J. E. Sherwood, D. Barnett, N. W. Barnett, K. Dover, J. Howitt, H. Li, P. Kew, J. Mondon, Deployment of DGT units in marine waters to assess the environmental risk from a deep sea tailings outfall. Anal. Chim. Acta 2009, 652, 215.
| Deployment of DGT units in marine waters to assess the environmental risk from a deep sea tailings outfall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2htbvM&md5=1d727dc87bf78bf1a923fc3f7f88e6f5CAS | 19786183PubMed |
[10] J. Puy, R. Uribe, S. Mongin, J. Galceran, J. Cecilia, J. Levy, H. Zhang, W. Davison, Lability criteria in diffusive gradients in thin films. J. Phys. Chem. A 2012, 116, 6564.
| Lability criteria in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFegsbc%3D&md5=b329c0204fd401e19045c193f6bf359aCAS | 22404162PubMed |
[11] H. Ernstberger, H. Zhang, A. Tye, S. Young, W. Davison, Desorption kinetics of Cd, Zn and Ni measured in intact soils by DGT. Environ. Sci. Technol. 2005, 39, 1591.
| Desorption kinetics of Cd, Zn and Ni measured in intact soils by DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yhu7Y%3D&md5=f792c86ff105cb6f3daab0e3b206bb39CAS | 15819214PubMed |
[12] O. Clarisse, B. Dimock, H. Hintelmann, E. P. H. Best, Predicting net mercury methylation in sediments using diffusive gradient in thin films measurements. Environ. Sci. Technol. 2011, 45, 1506.
| Predicting net mercury methylation in sediments using diffusive gradient in thin films measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFCntg%3D%3D&md5=4a9f11a9a2035e2134a920a7296e1a93CAS | 21222459PubMed |
[13] H. P. van Leeuwen, R. M. Town, J. Buffle, R. F. M. J. Cleven, W. Davison, J. Puy, L. Sigg, Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005, 39, 8545.
| Dynamic speciation analysis and bioavailability of metals in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73M&md5=474d97d2e2363540e2360e03b1f4a98fCAS | 16323747PubMed |
[14] L. Sigg, F. Black, J. Buffle, J. Cao, R. F. M. J. Cleven, W. Davison, J. Galceran, P. Gunkel, E. J. J. Kalis, D. Kistler, H. P. Van Leeuwen, S. Noel, Y. Nur, N. Odzak, J. Puy, W. H. Van Riemsdijk, E. J. M. Temminghoff, M.-L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. P. Weng, J. Wu, H. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
| Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=d5016d472512f001bdd15dec070ccd7aCAS | 16570618PubMed |
[15] Y. Tian, X. R. Wang, J. Luo, H. X. Yu, H. Zhang, Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice. Environ. Sci. Technol. 2008, 42, 7649.
| Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2lu7jE&md5=a52f592786db14963401f28edb215d2cCAS | 18983088PubMed |
[16] W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin-films – back to basics. Environ. Chem. 2012, 9, 1.
| Progress in understanding the use of diffusive gradients in thin-films – back to basics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbs%3D&md5=9a2cd144d20e8df121dca13aeb1b582fCAS |
[17] H. Zhang, W. Davison, Performance characteristics of the technique of diffusion gradients in thin-films (DGT) for the measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
| Performance characteristics of the technique of diffusion gradients in thin-films (DGT) for the measurement of trace metals in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=cffef51758f78e7bddf0703845f4ad15CAS |
[18] K. W. Warnken, H. Zhang, W. Davison, Accuracy of the diffusive gradients in thin-films technique: diffusive boundary layer and effective sampling area considerations. Anal. Chem. 2006, 78, 3780.
| Accuracy of the diffusive gradients in thin-films technique: diffusive boundary layer and effective sampling area considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVSktrg%3D&md5=7ff5c42a12503aad4fd343c532b06b36CAS | 16737237PubMed |
[19] H. Zhang, W. Davison, Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Anal. Chem. 2000, 72, 4447.
| Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Oku70%3D&md5=e77edb15b1615cbe89e792d4fff0f949CAS | 11008782PubMed |
[20] H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
| Diffusional characteristics of hydrogels used in DGT and DET techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFeqtLk%3D&md5=db0c313918a95573150668fd8b0a243fCAS |
[21] S. Scally, W. Davison, H. Zhang, Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta 2006, 558, 222.
| Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFygtw%3D%3D&md5=da6bcb9f4d2d9cb2410b138a8f6d4968CAS |
[22] E. R. Unsworth, K. W. Warnken, H. Zhang, W. Davison, F. Black, J. Buffle, J. Cao, R. Cleven, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, H. P. Van Leeuwen, M. Michel, S. Noel, Y. Nur, N. Odzak, J. Puy, W. Van Riemsdijk, L. Sigg, E. Temminghoff, M.-L. Tercier-Waeber, S. Toepperwien, R. M. Town, L. Weng, H. Xue, Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006, 40, 1942.
| Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSku7o%3D&md5=317db11fd744633a6ba8cae2f0cd8eaeCAS | 16570619PubMed |
[23] J. Gimpel, H. Zhang, W. Davison, In-situ trace metal speciation in lake surface waters using DGT, dialysis and filtration. Environ. Sci. Technol. 2003, 37, 138.
| In-situ trace metal speciation in lake surface waters using DGT, dialysis and filtration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFCht7g%3D&md5=266d6d13b2b18dd8a2c481dceb0ef921CAS | 12542302PubMed |
[24] L. S. Balistrieri, R. R. Sear, N. M. Piatak, B. Paul, Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Appl. Geochem. 2007, 22, 930.
| Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFGmtrw%3D&md5=41e476d4fa0e6d111b936d6e37970dbcCAS |
[25] K. W. Warnken, A. J. Lawlor, S. Lofts, E. Tipping, W. Davison, H. Zhang, In situ speciation measurements of trace metals in headwater streams. Environ. Sci. Technol. 2009, 43, 7230.
| In situ speciation measurements of trace metals in headwater streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFGlsbw%3D&md5=1346e153b3b979f13ab3ebe5aff32c56CAS | 19848127PubMed |
[26] L. R. van der Veeken, H. P. van Leeuwen, DGT/DET gel partition features of humic acid/metal species. Environ. Sci. Technol. 2010, 44, 5523.
| DGT/DET gel partition features of humic acid/metal species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGitbw%3D&md5=5d20baa4ef517ac02a0c2c44113695d0CAS |
[27] W. Davison, C. Lin, Y. Gao, H. Zhang, Effect of gel interactions with dissolved organic matter on DGT measurements of trace metals. Aquat. Geochem. 2014, [Published online early 7 November 2014]
| Effect of gel interactions with dissolved organic matter on DGT measurements of trace metals.Crossref | GoogleScholarGoogle Scholar |
[28] H. Pouran, F. L. Martin, H. Zhang, Measurement of ZnO nanoparticles using diffusive gradients in thin-films (DGT): binding and diffusional characteristics. Anal. Chem. 2014, 86, 5906.
| Measurement of ZnO nanoparticles using diffusive gradients in thin-films (DGT): binding and diffusional characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVers7g%3D&md5=6effe5a8c3ece16cf4943be29d4806c7CAS | 24831848PubMed |
[29] H. P. van Leeuwen, Dynamic aspects of in situ speciation processes and techniques, in In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 253–277 (Wiley: New York).
[30] S. Scally, W. Davison, H. Zhang, In situ measurements of dissociation kinetics and labilities of metal complexes in synthetic solutions using DGT. Environ. Sci. Technol. 2003, 37, 1379.
| In situ measurements of dissociation kinetics and labilities of metal complexes in synthetic solutions using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWjt7s%3D&md5=33780bb4ba69c345b819e586bb5d9f9dCAS |
[31] K. W. Warnken, W. Davison, H. Zhang, J. Galceran, J. Puy, In situ measurements of metal complex exchange kinetics in freshwater. Environ. Sci. Technol. 2007, 41, 3179.
| In situ measurements of metal complex exchange kinetics in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2mur0%3D&md5=048599173679cc6c2a6af860481d4091CAS | 17539523PubMed |
[32] M. H. Tusseau-Vuillemin, R. Gilbin, M. A. Taillefert, A dynamic numerical model to characterise labile metal complexes collected with diffusive gradients in thin-films devices. Environ. Sci. Technol. 2003, 37, 1645.
| A dynamic numerical model to characterise labile metal complexes collected with diffusive gradients in thin-films devices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGnu7o%3D&md5=a219c3b199e1da97d9361fa5f775722fCAS | 12731849PubMed |
[33] O. A. Garmo, N. J. Lehto, H. Zhang, W. Davison, O. Røyset, E. Steinnes, Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand. Environ. Sci. Technol. 2006, 40, 4754.
| Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaisrs%3D&md5=860d48f0d5d88f05cb627a5eb0c4e715CAS | 16913134PubMed |
[34] N. J. Lehto, W. Davison, H. Zhang, W. Tych, An evaluation of DGT performance using a dynamic numerical model. Environ. Sci. Technol. 2006, 40, 6368.
| An evaluation of DGT performance using a dynamic numerical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFahurg%3D&md5=bc2f563824d2924e05f08b00e9c77973CAS | 17120567PubMed |
[35] M. R. Shafaei Arvajeh, N. Lehto, O. A. Garmo, H. Zhang, Kinetic studies of Ni organic complexes using diffusive gradients in thin films (DGT) with double binding layers and a dynamic numerical model. Environ. Sci. Technol. 2013, 47, 463.
| Kinetic studies of Ni organic complexes using diffusive gradients in thin films (DGT) with double binding layers and a dynamic numerical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1OnsrzN&md5=3ea9c191adea91bc08f25cb2e25cc9abCAS | 23153338PubMed |
[36] R. Uribe, S. Mongin, J. Puy, J. Cecilia, J. Galceran, H. Zhang, W. Davison, Contribution of partially labile complexes to the DGT metal flux. Environ. Sci. Technol. 2011, 45, 5317.
| Contribution of partially labile complexes to the DGT metal flux.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWlsLs%3D&md5=d6a06575a90533db185f3dd8902601c3CAS | 21608530PubMed |
[37] S. Mongin, R. Uribe, J. Puy, J. Cecilia, J. Galceran, H. Zhang, W. Davison, Key role of the resin layer thickness in the lability of complexes measured by DGT. Environ. Sci. Technol. 2011, 45, 4869.
| Key role of the resin layer thickness in the lability of complexes measured by DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVCmsL0%3D&md5=486d03409e1c496f17ec496acf5c93c9CAS | 21561131PubMed |
[38] J. Puy, J. Galceran, S. Cruz-Gonzalez, C. A. David, R. Uribe, C. Lin, H. Zhang, W. Davison, measurements of metals using DGT: impact of ionic strength and kinetics of dissociation of complexes in the resin domain. Anal. Chem. 2014, 86, 7740.
| measurements of metals using DGT: impact of ionic strength and kinetics of dissociation of complexes in the resin domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFChur3O&md5=47f8749d7750c061a3ee789744f89ca5CAS | 25012951PubMed |
[39] J. Galceran, J. Puy, J. Salvador, J. Cecelia, H. P. van Leeuwen, Voltammetric lability of metal complexes at spherical microelectrodes with various radii. J. Electroanal. Chem. 2001, 505, 85.
| Voltammetric lability of metal complexes at spherical microelectrodes with various radii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGkt78%3D&md5=3c089922aa22664537db179ba5349d09CAS |
[40] J. L. Levy, H. Zhang, W. Davison, J. Puy, J. Galceran, Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films. Anal. Chim. Acta 2012, 717, 143.
| Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCitLc%3D&md5=a802b6b1ec9b6bc59f0d13c0081eb111CAS | 22304826PubMed |
[41] J. Koutecký, J. Koryta, The general theory of polarographic kinetic currents. Electrochim. Acta 1961, 3, 318.
| The general theory of polarographic kinetic currents.Crossref | GoogleScholarGoogle Scholar |
[42] N. Odzak, D. Kistler, H. Xue, L. Sigg, In situ trace metal speciation in a eutrophic lake using the technique of diffusive gradients in thin-films. Aquat. Sci. 2002, 64, 292.
| In situ trace metal speciation in a eutrophic lake using the technique of diffusive gradients in thin-films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSrt7c%3D&md5=032d53f10c3cb8aa186ed6a9202a3a81CAS |
[43] K. W. Warnken, W. Davison, H. Zhang, Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT. Environ. Sci. Technol. 2008, 42, 6903.
| Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFSmurk%3D&md5=bb84ce9a6b09e42af21978788ccf6b67CAS | 18853807PubMed |
[44] R. M. Town, P. Chakraborty, H. P. van Leeuwen, Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes’. Environ. Chem. 2009, 6, 170.
| Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtrY%3D&md5=008923a337da71eff1e9f3f588cbae99CAS |
[45] O. A. Garmo, W. Davison, H. Zhang, Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique. Anal. Chem. 2008, 80, 9220.
| Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqu73E&md5=44129e816ab8dd977e218438aff2cc5aCAS | 19551987PubMed |
[46] H. P. van Leeuwen, Steady-state DGT fluxes of nanoparticulate metal complexes. Environ. Chem. 2011, 8, 525.
| Steady-state DGT fluxes of nanoparticulate metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt73F&md5=b13653489af1f364daf08523e0862ad2CAS |
[47] C. Murdock, M. Kelly, L. Y. Chang, W. Davison, H. Zhang, DGT as an in situ tool for measuring radiocesium in natural waters. Environ. Sci. Technol. 2001, 35, 4530.
| DGT as an in situ tool for measuring radiocesium in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntleisL0%3D&md5=511df5da6d2a7ab3111bf88b9cdeb9c7CAS | 11757612PubMed |
[48] R. Cleven, Y. Nur, P. Krystek, G. van den Berg, Modelling metal speciation in the rivers Meuse and Rhine using DGT. Water Air Soil Pollut. 2005, 165, 249.
| Modelling metal speciation in the rivers Meuse and Rhine using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntleitL4%3D&md5=e6966ac904be507e27443fa17f1230ccCAS |
[49] C. Pichette, H. Zhang, W. Davison, S. Sauve, Preventing biofilm development on DGT devices using metals and antibiotics. Talanta 2007, 72, 716.
| Preventing biofilm development on DGT devices using metals and antibiotics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktF2iurw%3D&md5=38b6a1453b9a6add4391cadddb71ac5fCAS | 19071677PubMed |
[50] P. R. Teasdale, S. Hayward, W. Davison, In situ high resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer imaging densitometry. Anal. Chem. 1999, 71, 2186.
| In situ high resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer imaging densitometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGls7w%3D&md5=6f3702682a060b655ff78f3710bf89f3CAS | 21662756PubMed |
[51] A. French, H. Zhang, J. M. Pates, S. E. Bryan, R. C. Wilson, Development and performance of the diffusive gradients in thin-films technique for the measurement of technetium-99 in seawater. Anal. Chem. 2005, 77, 135.
| Development and performance of the diffusive gradients in thin-films technique for the measurement of technetium-99 in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtValsLfI&md5=6204d47f7cfdb5009a7defdca6a43ea3CAS |
[52] W. W. Bennett, P. R. Teasdale, J. G. Panther, D. T. Welsh, D. F. Jolley, Speciation of dissolved inorganic arsenic by diffusive gradients in thin-films: selective binding of AsIII by 3-mercaptopropyl-functionalized silica gel. Anal. Chem. 2011, 83, 8293.
| Speciation of dissolved inorganic arsenic by diffusive gradients in thin-films: selective binding of AsIII by 3-mercaptopropyl-functionalized silica gel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSlurnL&md5=819195a8b0cf541540c246e4ecd63095CAS | 21967720PubMed |
[53] W. W. Bennett, P. R. Teasdale, J. G. Panther, D. T. Welsh, H. J. Zhao, D. F. Jolley, Investigation of arsenic speciation in sediments with DGT and DET: a mesocosm evaluation of oxic-anoxic transitions. Environ. Sci. Technol. 2012, 46, 3981.
| Investigation of arsenic speciation in sediments with DGT and DET: a mesocosm evaluation of oxic-anoxic transitions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFeiurc%3D&md5=cfd52f950d5a3afcb242e794c8e69da7CAS | 22397626PubMed |
[54] H. Österlund, M. Faarinen, J. Ingri, D. C. Baxter, Contribution of organic arsenic species to total arsenic measurements using ferrihydrite-backed diffusive gradients in thin films (DGT). Environ. Chem. 2012, 9, 55.
| Contribution of organic arsenic species to total arsenic measurements using ferrihydrite-backed diffusive gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar |
[55] C. van Moorlegham, L. Six, F. Degryse, E. Smolders, R. Merckz, Effect of P forms and P present in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography and colorimetry. Anal. Chem. 2011, 83, 5317.
| Effect of P forms and P present in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography and colorimetry.Crossref | GoogleScholarGoogle Scholar |
[56] Y. S. Hong, E. Rifkin, E. J. Bouwer, Combination of diffusive gradient in thin film probe and IC–ICP-MS for the simultaneous determination of CH3Hg+ and Hg2+ in oxic water. Environ. Sci. Technol. 2011, 45, 6429.
| Combination of diffusive gradient in thin film probe and IC–ICP-MS for the simultaneous determination of CH3Hg+ and Hg2+ in oxic water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1agtb4%3D&md5=bfb5a1a586b2e72d06ec3ce19622a269CAS | 21675790PubMed |
[57] M. P. Harper, W. Davison, H. Zhang, W. Tych, Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochim. Cosmochim. Acta 1998, 62, 2757.
| Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslOjs7k%3D&md5=aac8738a84bd839554a0647c4c2f5a60CAS |
[58] Ł. Sochaczewski, W. Tych, W. Davison, H. Zhang, 2D DGT induced fluxes in sediments and soils (2D DIFS). Environ. Model. Softw. 2007, 22, 14.
| 2D DGT induced fluxes in sediments and soils (2D DIFS).Crossref | GoogleScholarGoogle Scholar |
[59] P. Ciffroy, Y. Nia, J. M. Garnier, Probabilistic multicompartmental model for interpreting DGT kinetics in sediments. Environ. Sci. Technol. 2011, 45, 9558.
| Probabilistic multicompartmental model for interpreting DGT kinetics in sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOjsbjP&md5=ac5db9f0431d164fbd3a92bbd009dd24CAS | 21707053PubMed |
[60] H. Ernstberger, W. Davison, H. Zhang, A. Tye, S. Young, Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS. Environ. Sci. Technol. 2002, 36, 349.
| Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWitA%3D%3D&md5=2e964cf10827ae458174da7649ef9e49CAS | 11871548PubMed |
[61] N. J. Lehto, W. Davison, H. Zhang, The use of ultra-thin diffusive gradients in thin-films (DGT) devices for the analysis of trace metal dynamics in soils and sediments: a measurement and modelling approach. Environ. Chem. 2012, 9, 415.
| The use of ultra-thin diffusive gradients in thin-films (DGT) devices for the analysis of trace metal dynamics in soils and sediments: a measurement and modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajsb7O&md5=9b5e067d9f71dbe7b1f9a24ba6fc4d8cCAS |
[62] J. D. Villanueva, P. L. Coustumer, F. Huneau, M. Motelica-Heino, T. R. Perez, R. Materum, M. V. O. Espaldon, S. Stoll, Assessment of trace metals during episodic events using DGT passive sampler: a proposal for water management enhancement. Water Resour. Manage. 2013, 27, 4163.
| Assessment of trace metals during episodic events using DGT passive sampler: a proposal for water management enhancement.Crossref | GoogleScholarGoogle Scholar |
[63] I. Dakova, P. Vasileva, I. Karadjova, M. Karadjov, V. Slaveykova, Solid phase extraction and diffusive gradients in thin-films techniques for determination of total and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) in Black Sea water. Int. J. Environ. Anal. Chem. 2011, 91, 62.
| Solid phase extraction and diffusive gradients in thin-films techniques for determination of total and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) in Black Sea water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12ruw%3D%3D&md5=b1b8e8f65533874aebfa96fa5a1e1306CAS |
[64] R. Buzier, M. H. Tusseau-Vuillemin, M. Keirsbulck, J. M. Mouchel, Inputs of total and labile trace metals from wastewater treatment plant effluents to the river Seine. Phys. Chem. Earth 2011, 36, 500.
| Inputs of total and labile trace metals from wastewater treatment plant effluents to the river Seine.Crossref | GoogleScholarGoogle Scholar |
[65] C. Gourlay-Francé, A. Bressy, E. Uher, C. Lorgeoux, Labile, dissolved and particulate PAHs and trace metals in wastewater: passive sampling, occurrence, partitioning in treatment plants. Water Sci. Technol. 2011, 63, 1327.
| Labile, dissolved and particulate PAHs and trace metals in wastewater: passive sampling, occurrence, partitioning in treatment plants.Crossref | GoogleScholarGoogle Scholar | 21508533PubMed |
[66] N. C. Munksgaard, B. G. Lottermoser, Mobility and potential bioavailability of traffic-derived trace metals in a ‘wet–dry’ tropical region, Northern Australia. Environ. Earth Sci. 2010, 60, 1447.
| Mobility and potential bioavailability of traffic-derived trace metals in a ‘wet–dry’ tropical region, Northern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1WhsrY%3D&md5=46b47f4778a55731960623123eeb481fCAS |
[67] C. Casiot, M. Egal, F. Elbaz-Poulichet, O. Bruneel, C. Bancon-Montigny, M. A. Cordier, E. Gomez, C. Aliaume, Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France): preliminary assessment of impacts on fish (Leuciscus cephalus). Appl. Geochem. 2009, 24, 787.
| Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France): preliminary assessment of impacts on fish (Leuciscus cephalus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVWgu7k%3D&md5=aaba0243b248757a5fea53ea853341fbCAS |
[68] C. Fernández-Gómez, J. M. Bayona, S. Díez, Laboratory and field evaluation of diffusive gradient in thin films (DGT) for monitoring levels of dissolved mercury in natural river water. Int. J. Environ. Anal. Chem. 2012, 92, 1689.
| Laboratory and field evaluation of diffusive gradient in thin films (DGT) for monitoring levels of dissolved mercury in natural river water.Crossref | GoogleScholarGoogle Scholar |
[69] S. Denney, J. Sherwood, J. Leyden, In situ measurements of labile Cu, Cd and Mn in river waters using DGT. Sci. Total Environ. 1999, 239, 71.
| In situ measurements of labile Cu, Cd and Mn in river waters using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtleiu74%3D&md5=ef910526edaf6a2217eb2b1cb2637467CAS | 10570834PubMed |
[70] J. Søndergaard, In situ measurements of labile Al and Mn in acid mine drainage using diffusive gradients in thin films. Anal. Chem. 2007, 79, 6419.
| In situ measurements of labile Al and Mn in acid mine drainage using diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 17620010PubMed |
[71] R. X. Liu, J. R. Lead, H. Zhang, Combining crossflow ultrfiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters. Geochim. Cosmochim. Acta 2013, 109, 14.
| Combining crossflow ultrfiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFOrsr4%3D&md5=c0cb25b801d8b3e1f10778a142aef3efCAS |
[72] J. Forsberg, R. Dahlqvist, J. Gelting-Nystrom, J. Ingri, Trace metal speciation in brackish water using diffusive gradients in thin films and ultrafiltration: comparison of techniques. Environ. Sci. Technol. 2006, 40, 3901.
| Trace metal speciation in brackish water using diffusive gradients in thin films and ultrafiltration: comparison of techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKku7s%3D&md5=0848e7380a92187ff854170940db2dc8CAS | 16830559PubMed |
[73] H. Österlund, J. Gelting, F. Nordblad, D. C. Baxter, J. Ingri, Copper and nickel in ultrafiltered brackish water: labile or non-labile? Mar. Chem. 2012, 132–133, 34.
| Copper and nickel in ultrafiltered brackish water: labile or non-labile?Crossref | GoogleScholarGoogle Scholar |
[74] B. Ohlander, J. Fosberg, H. Österlund, J. Ingri, F. Ecke, L. Alakangas, Fractionation of trace metals in a contaminated freshwater stream using membrane filtration, ultrafiltration, DGT and transplanted aquatic moss. Geochem. Explor. Environ. Anal. 2012, 12, 303.
| Fractionation of trace metals in a contaminated freshwater stream using membrane filtration, ultrafiltration, DGT and transplanted aquatic moss.Crossref | GoogleScholarGoogle Scholar |
[75] V. I. Slaveykova, I. B. Karadjova, M. Karajov, D. L. Tsalev, Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT. Environ. Sci. Technol. 2009, 43, 1798.
| Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVylurk%3D&md5=5385930c73df66bdd8d5939dca241e47CAS | 19368174PubMed |
[76] C. L. Chakrabarti, Y. Lu, Kinetic studies of metal speciation using chelex cation exchange resin: application to cadmium, copper, and lead speciation in river water and snow. Environ. Sci. Technol. 1994, 28, 1957.
| Kinetic studies of metal speciation using chelex cation exchange resin: application to cadmium, copper, and lead speciation in river water and snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1ens7g%3D&md5=2fceb9a72756f0b2e77955c8f2b29ac8CAS | 22175939PubMed |
[77] F. Amery, F. Degryse, C. van Moorleghem, M. Duyck, E. Smolders, The dissociation kinetics of Cu-dissolved organic matter complexes from soil and soil amendments. Anal. Chim. Acta 2010, 670, 24.
| The dissociation kinetics of Cu-dissolved organic matter complexes from soil and soil amendments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVOnurc%3D&md5=088a8bccf000293ced0072887aa263f9CAS | 20685412PubMed |
[78] I. Gaabass, J. D. Murimboh, N. M. Hassan, A study of diffusive gradients in thin films for the chemical speciation of Zn(II), Cd(II), Pb(II), and Cu(II): the role of kinetics. Water Air Soil Pollut. 2009, 202, 131.
| A study of diffusive gradients in thin films for the chemical speciation of Zn(II), Cd(II), Pb(II), and Cu(II): the role of kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFKhtr0%3D&md5=8f6ddc2de2f194781f348c7b31cdb063CAS |
[79] P. Chakraborty, J. J. Zhao, C. L. Chakrabarti, Copper and nickel speciation in mine effluents by combination of two independent techniques. Anal. Chim. Acta 2009, 636, 70.
| Copper and nickel speciation in mine effluents by combination of two independent techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlGgsLw%3D&md5=69092dd4fb1abe8d22109e1fa6c83966CAS | 19231358PubMed |
[80] C. Guéguen, O. Clarisse, A. Perroud, A. McDonald, Chemical speciation nd partitioning of trace metals (Cd, Co, Cu, Ni, Pb) in the lower Athabasca River and its tributaries (Alberta, Canada). J. Environ. Monit. 2011, 13, 2865.
| Chemical speciation nd partitioning of trace metals (Cd, Co, Cu, Ni, Pb) in the lower Athabasca River and its tributaries (Alberta, Canada).Crossref | GoogleScholarGoogle Scholar | 21842066PubMed |
[81] F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York).
[82] N. W. Menzies, M. J. Donn, P. M. Kopittke, Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121.
| Evaluation of extractants for estimation of the phytoavailable trace metals in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWhsr7E&md5=dc3372e6a741db41e8af82ad6d7fe51fCAS | 16777287PubMed |
[83] H. P. van Leeuwen, W. Koster (Eds), Physicochemical Kinetics and Transport at Biointerfaces, IUPAC Series on Analytical and Physical Environmental Systems, Vol. 9 2004 (Wiley: Chichester, UK).
[84] P. Hinsinger, Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 2001, 237, 173.
| Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVWlsQ%3D%3D&md5=3435dff3d58dab967f256c6c83885f74CAS |
[85] P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 45–102 (IUPAC, Wiley: New York).
[86] D. N. Di Toro, H. E. Allen, H. L. Bergman, L. S. Meyer, P. R. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
| Biotic ligand model of the acute toxicity of metals. 1. Technical basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=02d285fb35a27f5998c63cf1ee0dbdb3CAS |
[87] J. C. McGeer, R. C. Playle, C. M. Wood, F. Galvez, A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwater. Environ. Sci. Technol. 2000, 34, 4199.
| A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVOluro%3D&md5=7461216fb5a15769ee7486623462c970CAS |
[88] K. A. C. de Schamphelaere, C. R. Janssen, A biotic ligand model predicting acute copper toxicity for daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ. Sci. Technol. 2002, 36, 48.
| A biotic ligand model predicting acute copper toxicity for daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslSgtbY%3D&md5=b67781f0a03709537485c89a9c57b09cCAS |
[89] V. I. Slaveykova, K. J. Wilkinson, Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ. Chem. 2005, 2, 9.
| Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisV2it7Y%3D&md5=13ef4f10a5e475a56e47611d19c4ed52CAS |
[90] E. Smolders, M. J. McLaughlin, Chloride increases cadmium uptake in Swiss Chard in a resin-buffered nutrient solution. Soil Sci. Soc. Am. J. 1996, 60, 1443.
| Chloride increases cadmium uptake in Swiss Chard in a resin-buffered nutrient solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFCiu74%3D&md5=142c17d3c1d9a4e3ee57351a520d8fe2CAS |
[91] E. J. Berkelaar, B. A. Hale, Cadmium accumulation by duram wheat roots in ligand-buffered hydroponic culture: uptake of Cd-ligand complexes or enhanced diffusion? Can. J. Bot. 2003, 81, 755.
| Cadmium accumulation by duram wheat roots in ligand-buffered hydroponic culture: uptake of Cd-ligand complexes or enhanced diffusion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVCisLw%3D&md5=50d7b194bdae146478e133a000b8f101CAS |
[92] F. Degryse, E. Smolders, D. R. Parker, Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 2006, 289, 171.
| Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WnsrrJ&md5=6467dc7d5369d1a524e62c0afea0921cCAS |
[93] F. Degryse, E. Smolders, R. Merckx, Labile Cd complexes increase Cd availability to plants. Environ. Sci. Technol. 2006, 40, 830.
| Labile Cd complexes increase Cd availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlarsrfK&md5=1ef0827942b0968b5bd19021ed2cfa1aCAS | 16509325PubMed |
[94] C. Oporto, E. Smolders, F. Degryse, L. Verheyen, C. Vandecasteele, DGT-measured fluxes explain the chloride-enhanced cadmium uptake by plants at low but not at high Cd supply. Plant Soil 2009, 318, 127.
| DGT-measured fluxes explain the chloride-enhanced cadmium uptake by plants at low but not at high Cd supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVWrs7k%3D&md5=99085bede4221a60e2b7fad9871bf247CAS |
[95] F. Degryse, E. Smolders, Cadmium and nickel uptake by tomato and spinach seedlings: plant or transport control? Environ. Chem. 2012, 9, 48.
| Cadmium and nickel uptake by tomato and spinach seedlings: plant or transport control?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amu7w%3D&md5=cafe208a52d901136d1f55ca29c73233CAS |
[96] P. Wang, D. M. Zhou, X. S. Luo, Z. I. Li, Effects of Zn-complexes on Zn uptake by wheat (Triticum aestivum) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake. Plant Soil 2009, 316, 177.
| Effects of Zn-complexes on Zn uptake by wheat (Triticum aestivum) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOksb0%3D&md5=7d4627d465cb6390310a43a234d5838eCAS |
[97] N. J. Lehto, W. Davison, H. Zhang, W. Tych, Analysis of micro-nutrient behaviour in the rhizosphere using a DGT parameterised plant uptake model. Plant Soil 2006, 282, 227.
| Analysis of micro-nutrient behaviour in the rhizosphere using a DGT parameterised plant uptake model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVOqu78%3D&md5=d94132a58257d52f6422f0878563d572CAS |
[98] N. J. Lehto, W. Davison, H. Zhang, W. Tych, Theoretical comparison of how soil processes affect uptake of metals by DGT and plants. J. Environ. Qual. 2006, 35, 1903.
| Theoretical comparison of how soil processes affect uptake of metals by DGT and plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCktrzL&md5=9c6888a5102ed59f235467d960713dfcCAS | 16973632PubMed |
[99] H. Zhang, F.-J. Zhao, B. Sun, W. Davison, S. P. McGrath, A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Technol. 2001, 35, 2602.
| A new method to measure effective soil solution concentration predicts copper availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFGksbw%3D&md5=b9a3262172486aa3bed3ce32902d5d41CAS | 11432571PubMed |
[100] A. L. Pérez, K. A. Anderson, DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications. Sci. Total Environ. 2009, 407, 5096.
| DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications.Crossref | GoogleScholarGoogle Scholar | 19552942PubMed |
[101] J. Luo, H. Cheng, J. Ren, H. Zhang, W. Davison, Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish. Environ. Sci. Technol. 2014, 48, 7305.
| Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosVWjtrw%3D&md5=0fe127bc6c8dd38b5521765d9d286ab7CAS | 24853263PubMed |
[102] M. N. Bravin, A. M. Michaud, B. Larabi, P. Hinsinger, RHIZOtest: a plant-based biotest to account for rhizoshere processes when assessing copper bioavailability. Environ. Pollut. 2010, 158, 3330.
| RHIZOtest: a plant-based biotest to account for rhizoshere processes when assessing copper bioavailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFalsr7F&md5=94ed2b3bd247ff2671ca25d60b373eadCAS | 20719419PubMed |
[103] M. N. Bravin, P. Tentscher, J. Rose, P. Hinsinger, Rhizosphere pH gradient controls copper availability in a strongly acidic soil. Environ. Sci. Technol. 2009, 43, 5686.
| Rhizosphere pH gradient controls copper availability in a strongly acidic soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot12lsLw%3D&md5=ca36ef4e81f94ecbf4b824bbb992f9c1CAS | 19731663PubMed |
[104] M. Puschenreiter, F. Wittstock, W. Friesl-Hanl, W. W. Wenzel, Predictability of the Zn and Cd phytoextraction efficiency of a Salix smithiana clone by DGT and conventional bioavailability assays. Plant Soil 2013, 369, 531.
| Predictability of the Zn and Cd phytoextraction efficiency of a Salix smithiana clone by DGT and conventional bioavailability assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyqtLvE&md5=4ec08d46642ffb7a9eb7a2d6afd31b5cCAS |
[105] T. T. Huynh, H. Zhang, W. S. Laidlaw, B. Singh, A. J. M. Baker, Plant-induced changes in the bioavailability of heavy metals in soil and biosolids assessed by DGT measurements. J. Soil Sed. 2010, 10, 1131.
| Plant-induced changes in the bioavailability of heavy metals in soil and biosolids assessed by DGT measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSis7%2FF&md5=7f3f57b937f2e799657344832659aac9CAS |
[106] T. T. Huynh, W. S. Laidlaw, B. Singh, H. Zhang, A. J. M. Baker, Effect of plants on the bioavailability of metals and other chemical properties of biosolids in a column study. Int. J. Phytoremediation 2012, 14, 878.
| Effect of plants on the bioavailability of metals and other chemical properties of biosolids in a column study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Kjs74%3D&md5=4eff324fbec4c3952491fdcc2ef0a61bCAS | 22908652PubMed |
[107] P. N. Williams, H. Zhang, W. Davison, A. A. Meharg, M. Hossain, G. J. Norton, H. Brammer, M. R. Islam, Organic matter – solid phase interactions are critical for predicting As release and plant uptake in Bangladesh paddy soils. Environ. Sci. Technol. 2011, 45, 6080.
| Organic matter – solid phase interactions are critical for predicting As release and plant uptake in Bangladesh paddy soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVKitLY%3D&md5=959eb75b8b8a29a119cf14ab6c603384CAS | 21692537PubMed |
[108] A. L. Pérez, K. A. Anderson, Soil-diffusive gradients in thin films partition coefficients estimate metal bioavailability to crops at fertilized field sites. Environ. Toxicol. Chem. 2009, 28, 2030.
| Soil-diffusive gradients in thin films partition coefficients estimate metal bioavailability to crops at fertilized field sites.Crossref | GoogleScholarGoogle Scholar | 19432507PubMed |
[109] P. N. Williams, H. Zhang, W. Davison, S. Zhao, Y. Lu, F. Dong, L. Zhang, Evaluation of in situ DGT measurements for predicting the concentration of Cd in Chinese field-cultivated rice: impact of soil Cd:Zn ratios. Environ. Sci. Technol. 2012, 46, 8009.
| Evaluation of in situ DGT measurements for predicting the concentration of Cd in Chinese field-cultivated rice: impact of soil Cd:Zn ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVyht7Y%3D&md5=7d86e744c9ee58586e8b50cd3ecd3fbeCAS | 22715943PubMed |
[110] J. O. Agbenin, G. Welp, Bioavailability of copper, cadmium, zinc, and lead in tropical savanna soils assessed by diffusive gradients in thin films (DGT) and ion exchange resin membranes. Environ. Monit. Assess. 2012, 184, 2275.
| Bioavailability of copper, cadmium, zinc, and lead in tropical savanna soils assessed by diffusive gradients in thin films (DGT) and ion exchange resin membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOjt78%3D&md5=d3b7ee6c2159dcd4e00b78e54609eda6CAS | 21590301PubMed |
[111] O. Popovic, A. R. Almas, M. Manojlovic, S. Muratovic, B. R. Singh, Chemical speciation and bioavailability of Cd, Cu, Pb and Zn in western Balkan soils. Acta Agricult. Scand. – B. Soil Plant Sci. 2011, 61, 730.
| 1:CAS:528:DC%2BC3MXhtlygtr3E&md5=18b9c562f76cd991a584a4539fbb8ac1CAS |
[112] M. Senila, C. Tanaselia, E. Rimba, investigations on arsenic mobility changes in rhizosphere of two fern species using DGT technique. Carpath. J. Earth Env. 2013, 8, 145.
[113] W. J. Fitz, W. W. Wenzel, H. Zhang, J. Nurmi, G. Köllensperger, K. Štipek, Z. Fischerova, P. Schweiger, L. O. Ma, G. J. Stingeder, Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring techniques for its use in phytoextraction. Environ. Sci. Technol. 2003, 37, 5008.
| Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring techniques for its use in phytoextraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVakurs%3D&md5=42bbfdaee3bdfeaecf648bd128504e66CAS | 14620831PubMed |
[114] J. Luo, H. Zhang, F. Zhao, W. Davison, Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants. Environ. Sci. Technol. 2010, 44, 6636.
| Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Wht7s%3D&md5=4f06c20d7829f35e34a9c7f908da7f1cCAS | 20681510PubMed |
[115] W. Davison, P. S. Hooda, H. Zhang, A. C. Edwards, DGT measured fluxes as surrogates for uptake of metals by plants. Adv. Environ. Res. 2000, 3, 550.
[116] N. W. Menzies, B. Kusomo, P. W. Moody, Assessment of P availability in heavily fertilized soils using the diffusive gradients in thin films (DGT) technique. Plant Soil 2005, 269, 1.
| Assessment of P availability in heavily fertilized soils using the diffusive gradients in thin films (DGT) technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Oisro%3D&md5=58f4fcbbfac68bcf309be1ff7c430266CAS |
[117] T. M. McBeath, M. J. McLaughlin, R. D. Armstrong, M. Bell, M. D. A. Bolland, M. K. Conyers, R. E. Holloway, S. D. Mason, Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Aust. J. Soil Res. 2007, 45, 448.
| Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOitLrP&md5=dea746538ee2803e59f2427d24752fd0CAS |
[118] S. Mason, A. McNeil, M. J. McLaughlin, H. Zhang, Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil 2010, 337, 243.
| Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmtb3I&md5=6e50a7700d2923eed497ce69e1bf9e5bCAS |
[119] L. Six, E. Smolders, R. Merckz, The performance of DGT versus conventional soil phosphorus tests in tropical soils – maize and rice responses to P application. Plant Soil 2013, 366, 49.
| The performance of DGT versus conventional soil phosphorus tests in tropical soils – maize and rice responses to P application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlCms78%3D&md5=4c391501797b8189e148c5b15c8e88f1CAS |
[120] L. Six, E. Smolders, R. Merckz, Testing phosphorus availability for maize with DGT in weathered soils amended with organic materials. Plant Soil 2014, 376, 177.
| Testing phosphorus availability for maize with DGT in weathered soils amended with organic materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSls7%2FL&md5=34bac4259dbaf0af6434549371e3d08aCAS |
[121] L. Six, P. Pypers, F. Degryse, E. Smolders, R. Merckz, The performance of DGT versus conventional soil phosphorus tests in tropical soils – an isotope dilution study. Plant Soil 2012, 359, 267.
| The performance of DGT versus conventional soil phosphorus tests in tropical soils – an isotope dilution study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGmsr3P&md5=020d3e492d4f37666930742790b402b2CAS |
[122] V. I. Slaveykova, I. B. Karadjova, M. Karadjov, D. L. Tsalev, Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT. Environ. Sci. Technol. 2009, 43, 1798.
| Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVylurk%3D&md5=5385930c73df66bdd8d5939dca241e47CAS | 19368174PubMed |
[123] P. Bradac, R. Behra, L. Sigg, Accumulation of cadmium in periphyton under various freshwater speciation conditions. Environ. Sci. Technol. 2009, 43, 7291.
| Accumulation of cadmium in periphyton under various freshwater speciation conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslClt74%3D&md5=90dfb95282355b6624bd3c8b1299a5e1CAS | 19848136PubMed |
[124] P. Bradac, B. Wagner, D. Kistler, J. Traber, R. Behra, L. Sigg, Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations. Environ. Pollut. 2010, 158, 641.
| Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Onsg%3D%3D&md5=411e1067dcce7bb24359abf90461f9ecCAS | 19913341PubMed |
[125] A. Bourgeault, P. Ciffroy, C. Garnier, C. Cossu-Leguille, J. F. Masfaraud, R. Charlatchka, J. M. Garnier, Speciation and bioavailability of dissolved copper in different freshwaters: comparison of modelling, biological and chemical responses in aquatic mosses and gammarids. Sci. Total Environ. 2013, 452–453, 68.
| Speciation and bioavailability of dissolved copper in different freshwaters: comparison of modelling, biological and chemical responses in aquatic mosses and gammarids.Crossref | GoogleScholarGoogle Scholar | 23500400PubMed |
[126] D. Ferreira, P. Ciffroy, M. H. Tusseau-Vuillemin, A. Bourgeault, J. M. Garnier, DGT as surrogate biomonitors for predicting the bioavailability of copper in freshwaters: an ex situ validation study. Chemosphere 2013, 91, 241.
| DGT as surrogate biomonitors for predicting the bioavailability of copper in freshwaters: an ex situ validation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ekur4%3D&md5=7ce08ee1e1edfc5fe33305f66ff75ca9CAS | 23374294PubMed |
[127] B. Ohlander, J. Fosberg, H. Österlund, J. Ingri, F. Ecke, L. Alakangas, Fractionation of trace metals in a contaminated stream using membrane filtration, ultrafiltration, DGT and transplanted aquatic moss. Geochem. Explor. Environ. Anal. 2012, 12, 303.
| Fractionation of trace metals in a contaminated stream using membrane filtration, ultrafiltration, DGT and transplanted aquatic moss.Crossref | GoogleScholarGoogle Scholar |
[128] L. S. Balistrieri, D. A. Nimick, C. A. Mebane, A. Christopher, Assessing time-integrated dissolved concentrations and predicting toxicity of metals during diel cycling in streams. Sci. Total Environ. 2012, 425, 155.
| Assessing time-integrated dissolved concentrations and predicting toxicity of metals during diel cycling in streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFejt74%3D&md5=a24ae513fcab4fe2eff559cc9442c321CAS | 22481055PubMed |
[129] B. Pellet, O. Geffard, C. Lacour, T. Kermoal, C. Gourlay-Francé, M. H. Tusseau-Vuillemin, A model predicting waterbourne cadmium bioaccumulation in Gammarus pulex: the effects of dissolved organic ligands, calcium and temperature. Environ. Toxicol. Chem. 2009, 28, 2434.
| A model predicting waterbourne cadmium bioaccumulation in Gammarus pulex: the effects of dissolved organic ligands, calcium and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOqurfJ&md5=6a782d1ec2676849695ee9e9e44627c4CAS | 19606912PubMed |
[130] W. J. G. M. Peijnenburg, P. R. Teasdale, D. Reible, J. Mondon, W. W. Bennett, Passive sampling methods for contaminated sediments: state of the science for metals. Integr. Environ. Assess. Manag. 2013, 9999, 1.
[131] A. J. Webb, M. J. Keough, Measurement of environmental trace-metal levels with transplanted mussels and diffusive gradients in thin films (DGT): a comparison of techniques. Mar. Pollut. Bull. 2002, 44, 222.
| Measurement of environmental trace-metal levels with transplanted mussels and diffusive gradients in thin films (DGT): a comparison of techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFWisLs%3D&md5=46b5b65775aa314c81b1afa51ebaa36dCAS |
[132] A. Sakellari, S. Karavoltsos, D. Theodoru, M. Dassenakis, M. Scoulos, Biaccumulation of metals (Cd, Cu, Zn) by marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal micrenvironments: association with metal biovailability. Environ. Monit. Assess. 2013, 185, 3383.
| Biaccumulation of metals (Cd, Cu, Zn) by marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal micrenvironments: association with metal biovailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsleiurw%3D&md5=fdcf20da5e0ad702d34f368d8be11bedCAS | 22875465PubMed |
[133] J. H. Ren, J. Luo, H. R. Ma, X. R. Wang, L. N. Q. Ma, Boavailability and oxidative stress of cadmium to Corbicula fluminea. Environ. Sci. Processes Impacts 2013, 15, 860.
| Boavailability and oxidative stress of cadmium to Corbicula fluminea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslagsb8%3D&md5=f16bbef085992ac8fb6c3a37cc695c61CAS |
[134] S. L. Simpson, H. Yverneau, A. Cremazy, C. V. Jarolimek, H. L. Price, D. F. Jolley, DGT-induced copper flux predicts bioaccumulation and toxicity to bivalves in sediments with varying properties. Environ. Sci. Technol. 2012, 46, 9038.
| DGT-induced copper flux predicts bioaccumulation and toxicity to bivalves in sediments with varying properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOnu7rM&md5=baaf7fe2f9e85931befd989808974e77CAS | 22827499PubMed |
[135] O. Clarisse, G. R. Lotufo, H. Hintelmann, E. P. H. Best, Biomonitoring and assessment of monomethylmercury exposure in aqueous systems using the DGT technique. Sci. Total Environ. 2012, 416, 449.
| Biomonitoring and assessment of monomethylmercury exposure in aqueous systems using the DGT technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2jtrg%3D&md5=c9eabb241d136c0ea036e9fdc0ca8b55CAS | 22221872PubMed |
[136] A. Amirbahman, D. I. Massey, G. Lotufo, N. Steenhaut, L. E. Brown, J. M. Biedenbach, V. S. Magar, Assessment of mercury bioavailability to benthic macroinvertebates using diffusive gradients in thin films (DGT). Environ. Sci. Processes Impacts 2013, 15, 2104.
| Assessment of mercury bioavailability to benthic macroinvertebates using diffusive gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KqtLjL&md5=d2a629224ae892c9173fdb46c3e4415fCAS |
[137] A. Dabrin, C. L. Durand, J. Garric, O. Geffard, B. J. D. Ferrari, M. Coquery, Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment. Sci. Total Environ. 2012, 424, 308.
| Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFyjs74%3D&md5=f6a9fd47a3ac01d98aa317aad8cd8a67CAS | 22446110PubMed |
[138] D. M. Costello, G. A. Burton, C. R. Hammerschimdt, W. K. Taulbee, Evaluating the performance of diffusive gradients in thin films for predicting Ni sediment toxicity. Environ. Sci. Technol. 2012, 46, 10239.
| 1:CAS:528:DC%2BC38XhtFOru7jP&md5=19e5c86b61fdad4faeccbd2b8ffef850CAS | 22891754PubMed |
[139] O. Røyset, B. Rosseland, T. Kristensen, F. Kroglund, Ø. A. Garmo, E. Steines, Diffusive gradients in thin films sampler predicts stress in brown trout (Salmo trutta L.) exposed to aluminium in acid fresh water. Environ. Sci. Technol. 2005, 39, 1167.
| Diffusive gradients in thin films sampler predicts stress in brown trout (Salmo trutta L.) exposed to aluminium in acid fresh water.Crossref | GoogleScholarGoogle Scholar | 15773491PubMed |
[140] J. Song, F. J. Zhao, Y. M. Luo, S. P. McGrath, H. Zhang, Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ. Pollut. 2004, 128, 307.
| Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFaktQ%3D%3D&md5=840029f0f9a6fdd10c5945218eb9185eCAS | 14720473PubMed |
[141] H. Zhang, E. Lombi, E. Smolders, S. McGrath, Kinetics of Zn release in soils and prediction of Zn concentration in plants using Diffusive Gradients in Thin Films. Environ. Sci. Technol. 2004, 38, 3608.
| Kinetics of Zn release in soils and prediction of Zn concentration in plants using Diffusive Gradients in Thin Films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlWltrY%3D&md5=b1aa25e456669b519a3257e4ffb9dcbdCAS | 15296312PubMed |
[142] M. Koster, L. Reijnders, N. R. van Oost, W. G. J. M. Peijnenburg, Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods. Environ. Pollut. 2005, 133, 103.
| Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFylu7w%3D&md5=db60b214cfecaad3a1c2d211d2d9c99cCAS | 15327861PubMed |
[143] O. Sonmez, C. Kaya, S. Aydemir, Determination of zinc phytoavailability in soil by diffusive gradients in thin-films. Commun. Soil Sci. Plant Anal. 2009, 40, 3435.
| Determination of zinc phytoavailability in soil by diffusive gradients in thin-films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVynuw%3D%3D&md5=7f410d32bac5409c0ccd8f60435ed412CAS |
[144] A. L. Nolan, H. Zhang, M. J. McLaughlin, Prediction of zinc, cadmium, lead and copper bioavailability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotope dilution techniques. J. Environ. Qual. 2005, 34, 496.
| Prediction of zinc, cadmium, lead and copper bioavailability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotope dilution techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislOlt7k%3D&md5=9da94afb0486d1bcc13cfe93f85bdefaCAS | 15758102PubMed |
[145] E. E. V. Chapman, G. Dave, J. D. Murimboh, Bioavailability as a factor in risk assessment of metal-contaminated soil. Water Air Soil Pollut. 2012, 223, 2907.
| Bioavailability as a factor in risk assessment of metal-contaminated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvF2rur0%3D&md5=8eb0186ed3c4ff6d81e070cc65ceeca0CAS |
[146] J. M. Soriano-Disla, T. W. Speir, I. Gomez, L. M. Clucas, R. G. McLaren, J. Navarro-Pedreno, Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils. Water Air Soil Pollut. 2010, 213, 471.
| Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ks77N&md5=af9b135e1e78dc4c2bcaaafbc46bff98CAS |
[147] J. Y. Cornu, L. Denaix, Prediction of zinc and cadmium phytoavailability within a contaminated agricultural site using DGT. Environ. Chem. 2006, 3, 61.
| Prediction of zinc and cadmium phytoavailability within a contaminated agricultural site using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVSlu7k%3D&md5=96dc7c902bae66b3dae95e99e0c374a1CAS |
[148] I. Muhammad, M. Puschenreiter, W. W. Wenzel, Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Sci. Total Environ. 2012, 416, 490.
| Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2jtLs%3D&md5=ce00d4e51472fbe8002a7fd0f3df68c1CAS | 22177029PubMed |
[149] B. Nowack, R. Sandra Koehler, Schulin, Use of diffusive gradients in thin films (DGT) in undisturbed field soils. Environ. Sci. Technol. 2004, 38, 1133.
| Schulin, Use of diffusive gradients in thin films (DGT) in undisturbed field soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFOisg%3D%3D&md5=99c2adbee0b9e71134d107a0758a465aCAS | 14998028PubMed |
[150] I. Ahumada, L. Ascar, C. Pedraza, V. Vasquez, A. Carrasco, P. Richter, S. Brown, determination of the bioavailable fraction of Cu and Zn in soils amended with biosolids as determined by diffusive gradients in thin films (DGT), BCR sequential extraction, and rygrass plant. Water Air Soil Pollut. 2011, 219, 225.
| determination of the bioavailable fraction of Cu and Zn in soils amended with biosolids as determined by diffusive gradients in thin films (DGT), BCR sequential extraction, and rygrass plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVSksbw%3D&md5=f35c8a66f8a76e85bf9e78a4bb98c541CAS |
[151] A. Black, R. G. McLaren, S. M. Reichman, T. W. Speir, L. M. Condron, Evaluation of soil metal bioavailability estimates using two plant specoes (L. perrenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts. Environ. Pollut. 2011, 159, 1523.
| Evaluation of soil metal bioavailability estimates using two plant specoes (L. perrenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFOqsbY%3D&md5=72c7a28d1897567081a85a2faac71d32CAS | 21444134PubMed |
[152] S. Tandy, S. Mundus, J. Yngvesson, T. C. de Bang, E. Lombi, J. K. Schjoerring, S. Husted, The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant Soil 2011, 346, 167.
| The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtValtb7P&md5=72750bfbdb8da6095f4ec8a76317a376CAS |
[153] L. Duquène, H. Vandehove, F. Tack, M. van Hees, J. Wannijn, Diffusive gradient in thin fims (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass. J. Environ. Rad 2010, 101, 140.
| Diffusive gradient in thin fims (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.Crossref | GoogleScholarGoogle Scholar |
[154] J. L. Liu, X. B. Feng, G. L. Qiu, C. W. N. Anderson, H. Yao, Prediction of methyl mercury uptake by rice plants (Oryza sativa L.) using diffusive gradients in thin films technique. Environ. Sci. Technol. 2012, 46, 11013.
| Prediction of methyl mercury uptake by rice plants (Oryza sativa L.) using diffusive gradients in thin films technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmtb%2FJ&md5=2dfdc0be057f9fa776965eea8fb21f57CAS |