Development and validation of a shipboard system for measuring high-resolution vertical profiles of aqueous dimethylsulfide concentrations using chemical ionisation mass spectrometry
Sarah-Jeanne Royer A , Martí Galí A C , Eric S. Saltzman B , Cyril A. McCormick B , Thomas G. Bell B D and Rafel Simó A EA Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, E-08003 Barcelona, Catalonia, Spain.
B University of California, Irvine, CA 92697-3100, USA.
C Present address: Takuvik Joint International Laboratory and Québec-Océan, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
D Present address: Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK.
E Corresponding author. Email: rsimo@icm.csic.es
Environmental Chemistry 11(3) 309-317 https://doi.org/10.1071/EN13203
Submitted: 13 November 2013 Accepted: 14 February 2014 Published: 5 June 2014
Environmental context. Dimethylsulfide, a trace gas produced by oceanic plankton, is a key chemical species in the global cycles of sulfur and aerosols, with implications that span marine ecology to climate regulation. Knowledge of what governs dimethylsulfide production in the surface ocean depends on our ability to measure concentration changes over time and depth. We describe a sampling and analytical system that provides continuous shipboard measurements of dimethylsulfide concentrations in high-resolution vertical profiles.
Abstract. A sampling and analytical system has been developed for shipboard measurements of high-resolution vertical profiles of the marine trace gas dimethylsulfide (DMS). The system consists of a tube attached to a conductivity–temperature–depth (CTD) probe with a peristaltic pump on deck that delivers seawater to a membrane equilibrator and atmospheric pressure chemical ionisation mass spectrometer (Eq-APCIMS). This allows profiling of DMS concentrations to a depth of 50 m, with a depth resolution of 1.3–2 m and a detection limit of nearly 0.1 nmol L–1. The seawater is also plumbed to allow parallel operation of additional continuous instruments, and simultaneous collection of discrete samples for complementary analyses. A valve alternates delivery of seawater from the vertical profiler and the ship’s underway intake, thereby providing high-resolution measurements in both the vertical and horizontal dimensions. Tests conducted on various cruises in the Mediterranean Sea, Atlantic, Indian, and Pacific Oceans show good agreement between the Eq-APCIMS measurements and purge and trap gas chromatography with flame photometric detection (GC-FPD) and demonstrate that the delivery of seawater from the underway pump did not significantly affect endogenous DMS concentrations. Combining the continuous flow DMS analysis with high-frequency hydrographic, optical, biological and meteorological measurements will greatly improve the spatial–temporal resolution of seagoing measurements and improve our understanding of DMS cycling.
References
[1] M. O. Andreae, Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 1990, 30, 1.| Ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlslOksbw%3D&md5=02c0601b6927ff67f0ac2dbbb2ebc6abCAS |
[2] T. S. Bates, B. K. Lamb, A. Guenther, J. Dignon, R. E. Stoiber, Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem. 1992, 14, 315.
| Sulfur emissions to the atmosphere from natural sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFalu78%3D&md5=5e0463dd98f45d18ac1476231a198041CAS |
[3] R. Simó, Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 2001, 16, 287.
| Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links.Crossref | GoogleScholarGoogle Scholar | 11369106PubMed |
[4] A. J. Kettle, M. O. Andreae, D. Amouroux, T. W. Andreae, T. S. Bates, H. Berresheim, H. Bingemer, R. Boniforti, M. A. J. Curran, G. R. DiTullio, G. Helas, G. B. Jones, M. D. Keller, R. P. Kiene, C. Leck, M. Levasseur, G. Malin, M. Maspero, P. Matrai, A. R. McTaggart, N. Mihalopoulos, B. C. Nguyen, A. Novo, J. P. Putaud, S. Rapsomanikis, G. Roberts, G. Schebeske, S. Sharma, R. Simó, R. Staubes, S. Turner, G. Uher, A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochem. Cycles 1999, 13, 399.
| A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOrurw%3D&md5=d177b9898dc06d4c6be27039c8abfedaCAS |
[5] A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dacha, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25, GB1004.
| An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar |
[6] A. D. Clarke, D. Davis, V. N. Kapustin, F. Eisele, G. Chen, I. Paluch, D. Lenschow, A. R. Bandy, D. Thornton, K. Moore, L. Mauldin, D. Tanner, M. Litchy, M. A. Carroll, J. Collins, G. Albercook, Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Science 1998, 282, 89.
| Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFKqtro%3D&md5=3db72e8582951fd131226e200b45755aCAS | 9756483PubMed |
[7] J. E. Lovelock, R. J. Maggs, R. A. Rasmussen, Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 1972, 237, 452.
| Atmospheric dimethyl sulphide and the natural sulphur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXisVOmug%3D%3D&md5=fc5b5d50fc9d7a787017386c65b462aeCAS |
[8] R. P. Kiene, L. J. Linn, J. A. Bruton, New and important roles for DMSP in marine microbial communities. J. Sea Res. 2000, 43, 209.
| New and important roles for DMSP in marine microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=202179d18f7b5f1d216661a7b232b461CAS |
[9] J. Stefels, Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 2000, 43, 183.
| Physiological aspects of the production and conversion of DMSP in marine algae and higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtb4%3D&md5=b59249c4a0f6039ab0e45339862a5f7cCAS |
[10] J. R. Seymour, R. Simó, T. Ahmed, R. Stocker, Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 2010, 329, 342.
| Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2iu70%3D&md5=6210842302b1872e5c8ee8b224cdd619CAS | 20647471PubMed |
[11] J.-B. Raina, D. M. Tapiolas, S. Forêt, A. Lutz, D. Abrego, J. Ceh, F. O. Seneca, P. L. Clode, D. G. Bourne, B. L. Willis, C. A. Motti, DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 2013, 502, 677.
| DMSP biosynthesis by an animal and its role in coral thermal stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12ksL%2FN&md5=32edcf1482990d3fdcbe00b2198f3c1eCAS | 24153189PubMed |
[12] J. R. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
| Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=0caedeb2c1cade8d09f288713f815ae7CAS |
[13] P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emission. Nature 2011, 480, 51.
| The case against climate regulation via oceanic phytoplankton sulphur emission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=dc89a2cc7e1962022726696ee6779c4dCAS | 22129724PubMed |
[14] Y. Iizuka, R. Uemura, H. Motoyama, T. Suzuki, T. Miyake, M. Hirabayashi, T. Hondoh, Sulphate-climate coupling over the past 300 000 years in inland Antarctica. Nature 2012, 490, 81.
| Sulphate-climate coupling over the past 300 000 years in inland Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGjs7nL&md5=bec82361ef5482045e2d0625c886ecd6CAS | 23038469PubMed |
[15] M. O. Andreae, W. R. Barnard, Determination of trace quantities of dimethyl sulfide in aqueous solutions. Anal. Chem. 1983, 55, 608.
| Determination of trace quantities of dimethyl sulfide in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtFegur0%3D&md5=ece4dcc9549ff5e2a266f78eaa37433aCAS |
[16] S. M. Turner, P. S. Liss, Measurements of various sulphur gases in a coastal marine environment. J. Atmos. Chem. 1985, 2, 223.
| Measurements of various sulphur gases in a coastal marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXit1Gls78%3D&md5=893d31acaf8f67a4b86004ed2cc69b45CAS |
[17] T. S. Bates, J. D. Cline, R. H. Gammon, S. R. Kelly-Hansen, Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. J. Geophys. Res. 1987, 92, 2930.
| Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkt1Oqu70%3D&md5=07825f02d07ca2260ae7357001cbce14CAS |
[18] J. W. H. Dacey, F. A. Howse, A. F. Michaels, S. G. Wakeham, Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 2085.
| Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFyjtg%3D%3D&md5=5f187c992e1253a4fc48c03d0dcbb409CAS |
[19] R. Simó, Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters. J. Chromatogr. A 1998, 807, 151.
| Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters.Crossref | GoogleScholarGoogle Scholar | 9646493PubMed |
[20] P. D. Tortell, Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr. Methods 2005, 3, 24.
| Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yltLzJ&md5=8f6643a87336158bf112555358160b20CAS |
[21] S. Kameyama, H. Tanimoto, S. Inomata, U. Tsunogai, A. Ooki, Y. Yokouchi, S. Takeda, H. Obata, M. Uematsu, Equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) for sensitive, high-resolution measurement of dimethyl sulfide dissolved in seawater. Anal. Chem. 2009, 81, 9021.
| Equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) for sensitive, high-resolution measurement of dimethyl sulfide dissolved in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2qtL%2FM&md5=a7b251d71d3d3353d7eb37da7f837030CAS | 19791769PubMed |
[22] E. S. Saltzman, W. J. De Bruyn, M. J. Lawler, C. Marandino, C. McCormick, A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater. Ocean Sci. 2009, 6, 1569.
[23] P. D. Tortell, M. C. Long, Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom. Geophys. Res. Lett. 2009, 36, L01603.
| Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom.Crossref | GoogleScholarGoogle Scholar |
[24] E. C. Asher, A. Merzouk, P. D. Tortell, Fine-scale spatial and temporal variability of surface water dimethylsufide (DMS) concentrations and sea–air fluxes in the NE Subarctic Pacific. Mar. Chem. 2011, 126, 63.
| Fine-scale spatial and temporal variability of surface water dimethylsufide (DMS) concentrations and sea–air fluxes in the NE Subarctic Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsb7F&md5=17780683cb81b3471ade3a501873d14bCAS |
[25] S. Kameyama, H. Tanimoto, S. Inomata, H. Yoshikawa-Inoue, U. Tsunogai, A. Tsuda, M. Uematsu, M. Ishii, D. Sasano, K. Suzuki, Y. Nosaka, Strong relationship between dimethyl sulfide and net community production in the western subarctic Pacific. Geophys. Res. Lett. 2013, 40, 3986.
| Strong relationship between dimethyl sulfide and net community production in the western subarctic Pacific.Crossref | GoogleScholarGoogle Scholar |
[26] T. G. Bell, G. Malin, G. A. Lee, J. Stefels, S. Archer, M. Steinke, P. Matrai, Global oceanic DMS data inter-comparability. Biogeochem. 2012, 110, 147.
| Global oceanic DMS data inter-comparability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7fJ&md5=d9d4ec80abfe0ea9f5b6a7bbc9e4ae12CAS |
[27] P. D. Tortell, C. Guéguen, M. C. Long, C. D. Payne, P. Lee, G. R. DiTullio, Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 241.
| Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1eisLg%3D&md5=35c8e1ec97728accb0420b38556a7c61CAS |
[39] J. W. H. Dacey, G. Wakeham, B. L. Howes, Henry's law constants for dimethylsulfide in freshwater and seawater. Geophys. Res. Lett. 1984, 11, 991.
| Henry's law constants for dimethylsulfide in freshwater and seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmslSjuw%3D%3D&md5=bbb19f04b09a1bfb51fa361738d54fd3CAS |
[28] R. Simó, J. O. Grimalt, J. Albaigés, Sequential method for the field determination of nanomolar concentrations of dimethyl sulfoxide in natural waters. Anal. Chem. 1996, 68, 1493.
| Sequential method for the field determination of nanomolar concentrations of dimethyl sulfoxide in natural waters.Crossref | GoogleScholarGoogle Scholar | 21619113PubMed |
[29] M. Galí, C. Ruiz-González, T. Lefort, J. M. Gasol, C. Cardelús, C. Romera-Castillo, R. Simó, Spectral irradiance dependence of sunlight effects on plankton dimethylsulfide production. Limnol. Oceanogr. 2013, 58, 489.
[30] G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. A. 1953, 219, 186.
| Dispersion of soluble matter in solvent flowing slowly through a tube.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXmsVCkuw%3D%3D&md5=1dfbbfc22126657b655794fbdbce4400CAS |
[31] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, E. S. Saltzman, Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. 2013, 13, 11073.
| Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlKksQ%3D%3D&md5=dd573d39dda64805e362e50de89485f6CAS |
[32] B. Hales, T. Takahashi, The pumping SeaSoar: a high-resolution seawater sampling platform. J. Atmos. Ocean. Technol. 2002, 19, 1096.
| The pumping SeaSoar: a high-resolution seawater sampling platform.Crossref | GoogleScholarGoogle Scholar |
[33] C. A. Marandino, W. J. De Bruyn, S. D. Miller, E. S. Saltzman, Eddy correlation measurements of the air/sea flux of dimethylsulfide over the North Pacific Ocean. J. Geophys. Res. 2007, 112, D03301.
| Eddy correlation measurements of the air/sea flux of dimethylsulfide over the North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |
[34] C. A. Marandino, W. J. De Bruyn, S. D. Miller, E. S. Saltzman, DMS air/sea flux and gas transfer coefficients from the North Atlantic summertime coccolithophore bloom. Geophys. Res. Lett. 2008, 35, L23812.
| DMS air/sea flux and gas transfer coefficients from the North Atlantic summertime coccolithophore bloom.Crossref | GoogleScholarGoogle Scholar |
[35] C. A. Marandino, W. J. De Bruyn, S. D. Miller, E. S. Saltzman, Open ocean DMS air/sea fluxes over the eastern South Pacific Ocean. Atmos. Chem. Phys. 2009, 9, 345.
| Open ocean DMS air/sea fluxes over the eastern South Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisleisrY%3D&md5=b1caf8879bb0146e6bd0caeadd566382CAS |
[36] L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, P. D. Quay, Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes. Geophys. Res. Lett. 2010, 37, L01601.
| Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes.Crossref | GoogleScholarGoogle Scholar |
[37] Z. Kolber, O. Prasil, P. P. G. Falkowski, Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta 1998, 1367, 88.
| Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslOgsrg%3D&md5=a3e55b03588a7bdd4d9e6a9476aeacefCAS | 9784616PubMed |
[38] W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
| An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=9fb93ba0c9059bff7ed9688bd1a05f42CAS | 12124622PubMed |