Composites of nanostructured calcium silicate hydrate with superparamagnetic particles and their use in the uptake of copper from solution
Mathew J. Cairns A , Giancarlo M. Barassi A and Thomas Borrmann A B CA School of Chemical and Physical Sciences, Victoria University, PO Box 600, 6140 Wellington, New Zealand.
B Present Address: Othbergstrasse 10, D-37632 Eschershausen, Germany.
C Corresponding author. Email: aoc@gmx.li
Environmental Chemistry 11(3) 301-308 https://doi.org/10.1071/EN13183
Submitted: 11 October 2013 Accepted: 1 February 2014 Published: 5 June 2014
Environmental context. Mining operations release dissolved metals in waste streams which can present an environmental hazard as well as an economic loss. Large volumes of waste water and low levels of metals mean that highly effective materials such as nanoparticles or nanostructures need to be employed to remove the dissolved metals from the stream. The challenge in using nanotechnology lies in the recovery of the particles, as filtration proves ineffective; this article discusses use of magnetic composites as a potential solution to this challenge.
Abstract. Composites of magnetite and maghemite with a nanostructured calcium silicate hydrate are generated and used in the sorption of copper from solution. The superparamagnetic components allow use of high gradient separation thereby circumventing the time-consuming recovery of the silicate by filtration. The sorption capacity of the composites is comparable to that of the pure silicate. The ideal ratio of iron oxide to calcium silicate hydrate is identified to be 10 wt % of magnetite or maghemite.
Additional keywords: copper sorption, high gradient magnetic separation, sorption, superparamagnetic composite.
References
[1] D. C. Southam, T. W. Lewis, A. J. McFarlane, T. Borrmann, J. H. Johnston, Calcium–phosphorus interactions at a nanostructured silicate surface. J. Colloid Interface Sci. 2008, 319, 489.| Calcium–phosphorus interactions at a nanostructured silicate surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGmsLc%3D&md5=1087be006e491322ed58cc11045b78d8CAS | 18184617PubMed |
[2] M. J. Cairns, T. Borrmann, J. H. Johnston, W. Hoell, A study of the uptake of copper ions by nanostructured calcium silicate. Micropor. Mesopor. Mater. 2006, 95, 126.
| A study of the uptake of copper ions by nanostructured calcium silicate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSit73K&md5=2cc928139fe198cd586b53ec6cbfe807CAS |
[3] T. Borrmann, M. J. Cairns, B. G. Anderson, W. Hoell, J. H. Johnston, Nanostructured calcium silicate as sorbent in a study of artificial mining waste. Int. J. Environment Waste Manag. 2011, 8, 383.
| Nanostructured calcium silicate as sorbent in a study of artificial mining waste.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGrsLvP&md5=1b3b36b528b050f6743f18436b653d8eCAS |
[4] D. Feng, C. Aldrich, H. Tan, Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy 2000, 56, 359.
| Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksV2ksLw%3D&md5=89cc0b1021eff406507047f3b1989b28CAS |
[5] J. Svoboda, A realistic description of the process of high-gradient magnetic separation. Miner. Eng. 2001, 14, 1493.
| A realistic description of the process of high-gradient magnetic separation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFCqsrc%3D&md5=e9108d3dd8d3bdb30f88768d53037455CAS |
[6] J. H. P. Watson, Magnetic filtration. J. Appl. Phys. 1973, 44, 4209.
| Magnetic filtration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltFyiurg%3D&md5=d9f7bdda90372bad20d0ffcca776c822CAS |
[7] G. D. Moeser, K. A. Roach, W. H. Green, T. A. Hatton, P. E. Laibinis, High‐gradient magnetic separation of coated magnetic nanoparticles. AIChE J. 2004, 50, 2835.
| High‐gradient magnetic separation of coated magnetic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFCgurw%3D&md5=edc806034abb7f5e1f912e138a9406e0CAS |
[8] J. J. Hubbuch, O. R. T. Thomas, High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnol. Bioeng. 2002, 79, 301.
| High-gradient magnetic affinity separation of trypsin from porcine pancreatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFClurs%3D&md5=8fd8b55d14a5d56ae965679933aba63aCAS | 12115419PubMed |
[9] M. Franzreb, C. Reichert, United States Patent 7,506,765 2009.
[10] A. Meyer, D. B. Hansen, C. S. G. Gomes, T. J. Hobley, O. R. T. Thomas, M. Franzreb, Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey. Biotechnol. Prog. 2005, 21, 244.
| Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSltA%3D%3D&md5=7ab5a5bb3c590b9d200108155fc9033fCAS | 15903263PubMed |
[11] J. G. Rayner, T. J. Napier-Munn, The mechanism of magnetics capture in the wet drum magnetic separator. Miner. Eng. 2000, 13, 277.
| The mechanism of magnetics capture in the wet drum magnetic separator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKns7w%3D&md5=68f60329c524ac29c8eb5fd89fac6a9dCAS |
[12] A. J. Priestley, Australian Patent 553 423 1982.
[13] S. Pavlova, I. Dobrevsky, Modified Sirofloc process for natural water treatment. Desalination 2005, 173, 55.
| Modified Sirofloc process for natural water treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlSgsLw%3D&md5=da27172884f7149f2d9894aebdab81f7CAS |
[14] M. Franzreb, P. Kampeis, M. Franz, S. H. Eberle, Use of magnet technology for phosphate elimination from municipal sewage. Acta Hydrochim. Hydrobiol. 1998, 26, 213.
| Use of magnet technology for phosphate elimination from municipal sewage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFOlsL8%3D&md5=00afdcb868f6a7cab3407fdcfb115dbfCAS |
[15] H.-N. Chou, C. A. Naleway, Extraction-spectrophotometric determination of trace phosphorus in chromium-bearing materials which may contain silica, niobium, tantalum, zirconium, titanium, and hafnium. Anal. Chem. 1984, 56, 1737.
| Extraction-spectrophotometric determination of trace phosphorus in chromium-bearing materials which may contain silica, niobium, tantalum, zirconium, titanium, and hafnium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksVOku7o%3D&md5=74a52226078d73ce122e8ad928b96184CAS |
[16] N. Athanasopoulos, Flame Methods Manual for Atomic Absorption 1989 (GBC Scientific Equipment Pty Ltd: Melbourne).
[17] I. I. Flowsorb, 2300 Instruction Manual for Determining Single Point and Multipoint Surface Area, Total Pore Volume, and Pore Area and Volume Distribution 1990 (Micromeritics Instrument Corporation: Norcross, GA, USA).
[18] M. Wojdyr, Fityk: a general-purpose peak fitting program. J. Appl. Cryst. 2010, 43, 1126.
| Fityk: a general-purpose peak fitting program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOqsbbK&md5=759c79d1c0011aa3d70ef9ea2ebd6cfbCAS |
[19] A. J. McFarlane, The Synthesis and Characterisation of Nanostructured Calcium Silicate 2008, Ph.D. thesis, Victoria University of Wellington.
[20] P. Berger, N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, G. C. Lisensky, Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 1999, 76, 943.
| Preparation and properties of an aqueous ferrofluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVCnsLY%3D&md5=34c12c3998266652cefab63c111805d8CAS |
[21] R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247.
| Preparation of aqueous magnetic liquids in alkaline and acidic media.Crossref | GoogleScholarGoogle Scholar |
[22] T. Borrmann, J. H. Johnston, A. J. McFarlane, K. J. D. MacKenzie, A. Nukui, Structural elucidation of synthetic calcium silicates. Powder Diffraction 2008, 23, 204.
| Structural elucidation of synthetic calcium silicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGjt7nF&md5=62fd3f2c855be11515f55823593bd726CAS |
[23] D. J. Dunlop, Superparamagnetic and single-domain threshold sizes in magnetite. J. Geophys. Res. 1973, 78, 1780.
| Superparamagnetic and single-domain threshold sizes in magnetite.Crossref | GoogleScholarGoogle Scholar |