Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Is site preference of N2O a tool to identify benthic denitrifier N2O?

Aurélie Mothet A C , Mathieu Sebilo A , Anniet M. Laverman B , Véronique Vaury A and André Mariotti A
+ Author Affiliations
- Author Affiliations

A UPMC Univ Paris 06, UMR Bioemco, 4 place Jussieu, Cedex 05, F-75252 Paris, France.

B UPMC CNRS Univ Paris 06, UMR Sisyphe, 4 place Jussieu, Cedex 05, F-75252 Paris, France.

C Corresponding author. Email: aurelie.mothet@upmc.fr

Environmental Chemistry 10(4) 281-284 https://doi.org/10.1071/EN13021
Submitted: 30 January 2013  Accepted: 25 June 2013   Published: 16 August 2013

Environmental context. The greenhouse gas nitrous oxide is produced by bacteria and emitted from terrestrial and aquatic environments; the origin of this compound can be determined by its 15N intramolecular distribution (site preference). The site preference of nitrous oxide was characterised experimentally in bacterial denitrifying communities under controlled conditions. This study shows the importance of the last step of denitrification on the site preference values, and that complementary methods are necessary to identify the sources of nitrous oxide.

Abstract. Site preference values of nitrous oxide emitted during different steps of benthic denitrification were determined. Compared to that of nitrous oxide as end product, the site preference during complete denitrification presents a large variation, due to the final step, and is highly correlated with nitrate reduction rate. The nitrous oxide reduction step appears decisive on the site preference values.


References

[1]  P. J. Crutzen, The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. R. Met. Soc. 1970, 96, 320.
The influence of nitrogen oxides on the atmospheric ozone content.Crossref | GoogleScholarGoogle Scholar |

[2]  S. A. Montzka, E. J. Dlugokencky, J. H. Butler, Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43.
Non-CO2 greenhouse gases and climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslShsr4%3D&md5=bac44ca59cacfc74ddde32fa1e3cbea9CAS | 21814274PubMed |

[3]  T. Yoshida, M. Alexander, Nitrous oxide formation by Nitrosomonas europaea and heterotrophic microorganisms. Soil Sci. Soc. Am. Proc. 1970, 34, 880.
Nitrous oxide formation by Nitrosomonas europaea and heterotrophic microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXitVKntw%3D%3D&md5=b606dce9ad21157cda6946359c41cf94CAS |

[4]  J. Wijler, C. C. Delwiche, Investigations on the denitrifying process in soil. Plant Soil 1954, 5, 155.
Investigations on the denitrifying process in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXktlOnsA%3D%3D&md5=9262e35bde71506012435bab39434f57CAS |

[5]  M. K. Firestone, E. A. Davidson, Microbiological basis of NO and N2O production and consumption in soils, in Exchanges of Trace Gases Between Terrestrial Ecosystems and the Atmosphere (Eds M. O. Andreae, D. S. Schimel) 1989, pp. 7–21 (Wiley: New York).

[6]  N. Yoshida, S. Toyoda, Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 2000, 405, 330.
Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1KltLw%3D&md5=a460c4de2f1d8869d5bfe002a0d543a8CAS | 10830958PubMed |

[7]  S. Toyoda, H. Mutobe, H. Yamagishi, N. Yoshida, Y. Tanji, Fractionation of N2O isotopomers during production by denitrifier. Soil Biol. Biochem. 2005, 37, 1535.
Fractionation of N2O isotopomers during production by denitrifier.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFSksb0%3D&md5=d95b1cce3f3282e75ca210bef2ae46ffCAS |

[8]  R. L. Sutka, N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pitt, F. Li, Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl. Environ. Microbiol. 2006, 72, 638.
Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFeitA%3D%3D&md5=f41c394e657000f9f7fe50544bcc79eeCAS | 16391101PubMed |

[9]  R. Bol, T. Röckmann, M. Blackwell, S. Yamulki, Influence of flooding on δ15N, δ18O, 1δ15N and 2δ15N signatures of N2O released from estuarine soils–a laboratory experiment using tidal flooding chambers. Rapid Commun. Mass Spectrom. 2004, 18, 1561.
Influence of flooding on δ15N, δ18O, 1δ15N and 2δ15N signatures of N2O released from estuarine soils–a laboratory experiment using tidal flooding chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFegs7g%3D&md5=da69a5417939b0d005e12bc460e7458dCAS | 15282780PubMed |

[10]  R. Well, H. Flessa, F. Jaradat, S. Toyoda, N. Yoshida, Measurement of isotopomer signatures of N2O in groundwater. J. Geophys. Res. 2005, 110, G02006.
Measurement of isotopomer signatures of N2O in groundwater.Crossref | GoogleScholarGoogle Scholar |

[11]  N. E. Ostrom, A. Pitt, R. Sutka, P. H. Ostrom, A. S. Grandy, K. M. Huizinga, G. P. Robertson, Isotopologue effects during N2O reduction in soils and in pure culture of denitrifiers. J. Geophys. Res. 2007, 112, G02005.
Isotopologue effects during N2O reduction in soils and in pure culture of denitrifiers.Crossref | GoogleScholarGoogle Scholar |

[12]  A. M. Laverman, P. van Cappellen, D. van Rotterdam-Los, C. Pallud, J. Abell, Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiol. Ecol. 2006, 58, 179.
Potential rates and pathways of microbial nitrate reduction in coastal sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2rtrvJ&md5=9e66a93ea212d6b03929ac2eca6615a0CAS | 17064260PubMed |

[13]  T. Yoshinari, R. Hynes, R. Knowles, Acetylene inhibition of nitrous-oxide reduction and measurement of denitrification and nitrogen-fixation in soil. Soil Biol. Biochem. 1977, 9, 177.
Acetylene inhibition of nitrous-oxide reduction and measurement of denitrification and nitrogen-fixation in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1WntbY%3D&md5=467db299734a58a1a4f085d56b801ad0CAS |

[14]  J. Abell, A. M. Laverman, P. van Cappellen, Bioavailability of organic matter in a freshwater estuarine sediment: long-term degradation experiments with and without nitrate supply. Biogeochemistry 2009, 94, 13.
Bioavailability of organic matter in a freshwater estuarine sediment: long-term degradation experiments with and without nitrate supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKktrjK&md5=6851dd66eed65bf85c10cad4671c4180CAS |

[15]  P. Semaoune, M. Sebilo, J. Templier, S. Derenne, Is there any isotopic fractionation of nitrate associated with diffusion and advection? Environ. Chem. 2012, 9, 158.
Is there any isotopic fractionation of nitrate associated with diffusion and advection?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFGnt74%3D&md5=12824245a51c0b17705c8ac06b0dcab8CAS |

[16]  J. Tilsner, N. Wrage, J. Lauf, G. Gebauer, Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany – II. Stable isotope natural abundance of N2O. Biogeochemistry 2003, 63, 249.
Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany – II. Stable isotope natural abundance of N2O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVGrsbk%3D&md5=73dcdc67bb4bccb6d2fce2f1ad13f7feCAS |

[17]  O. V. Menyailo, B. A. Hungate, Stable isotope discrimination during soil denitrification: production and consumption of nitrous oxide. Global Biogeochem. Cycles 2006, 20, GB3025.
Stable isotope discrimination during soil denitrification: production and consumption of nitrous oxide.Crossref | GoogleScholarGoogle Scholar |

[18]  B. N. Popp, M. B. Westley, S. Toyoda, T. Miwa, J. E. Dore, N. Yoshida, T. M. Rust, F. J. Sansone, M. E. Russ, N. E. Ostrom, P. H. Ostrom, Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre. Global Biogeochem. Cycles 2002, 16, 12-1.
Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre.Crossref | GoogleScholarGoogle Scholar |

[19]  C. C. Barford, J. P. Montoya, M. A. Altabet, R. Mitchell, Steady-state nitrogen isotope effects of N2 and N2O production in Paracoccus denitrificans. Appl. Environ. Microbiol. 1999, 65, 989.
| 1:CAS:528:DyaK1MXhslWkt7o%3D&md5=703ea42f1add014c90734df0607b767cCAS | 10049852PubMed |