Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

Perspectives on our planet in the Anthropocene

Jonathan Williams A B and Paul J. Crutzen A
+ Author Affiliations
- Author Affiliations

A Max Planck Institute for Chemistry, D-55128 Mainz, Germany.

B Corresponding author. Email: jonathan.williams@mpic.de




Prof. Jonathan Williams is an atmospheric chemist. He completed his B.Sc. and Ph.D. at the University of East Anglia, England, and after working as a postdoctoral researcher at the NOAA Aeronomy laboratory in Boulder, USA, he became a research group leader at the Max Planck Institute for Chemistry, Germany, with a focus on the investigation of the chemistry of volatile organic compounds (VOCs) in the atmosphere. He has participated in many international field campaigns on aircraft, ships and at ground stations. He is editor on several journals and recently co-authored the textbook The Atmospheric Chemist's Companion.



Born in 1933 in Amsterdam, Prof. Paul J. Crutzen was trained as a civil engineer and worked with the Bridge Construction Bureau of the City of Amsterdam. In 1959 he joined Stockholm University (MISU) to study meteorology and atmospheric chemistry. His research has been especially concerned with the natural and anthropogenically disturbed photochemistry of ozone in the stratosphere and troposphere. Thereby he identified the importance of nitrogen oxides emitted by fossil fuel and biomass burning, especially in the tropics, as important sources of air pollution with potential impacts on ozone and Earth climate. He served as Director of Research at the National Center of Atmospheric Research in Boulder, Colorado, 1977–80, and thereafter, until his retirement in 2000, at the Max Planck Institute for Chemistry in Mainz. Until April 2008 he did part-time research at the University of California, San Diego, Scripps Institution of Oceanography. In 1995 he received the Nobel Prize for Chemistry for his work on atmospheric ozone.

Environmental Chemistry 10(4) 269-280 https://doi.org/10.1071/EN13061
Submitted: 19 March 2013  Accepted: 27 May 2013   Published: 20 August 2013

Environmental context. The term Anthropocene has been proposed as a name for the present geological epoch in recognition of the recent rise of humans to being a geophysical force of planetary importance. This paper provides an overview of humanity’s global impact in terms of population, energy and food demands, climate, air and ocean pollution, biodiversity and erosion, before giving a perspective on our collective future in the Anthropocene.

Abstract. Within the last 70 years (an average person's lifetime), the human population has more than tripled. Our energy, food and space demands as well as the associated waste products have affected the Earth to such an extent that humanity may be considered a geophysical force in its own right. As a result it has been proposed to name the current epoch the ‘Anthropocene’. Here we draw on a broad range of references to provide an overview of these changes in terms of population, energy and food demands, climate, air and ocean pollution, biodiversity and erosion. The challenges for the future in the Anthropocene are highlighted. We hope that in the future, the ‘Anthropocene’ will not only be characterised by continued human plundering of the Earth’s resources and dumping of excessive amounts of waste products in the environment, but also by vastly improved technology and management, wise use of the Earth’s resources, control of the human and domestic animal population, and overall careful manipulation and restoration of the natural environment.

This paper is the first in a series of annual invited papers commemorating Professor Sherwood (Sherry) Rowland, Nobel laureate and founding Board Member of Environmental Chemistry.


References

[1]  I. Tattersall, J. H. Schwartz, Evolution of the genus Homo. Annu. Rev. Earth Planet. Sci. 2009, 37, 67.
Evolution of the genus Homo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVCktrY%3D&md5=d97410893c9ee55825c7f9f787c8545fCAS |

[2]  S. R. James, Hominid use of fire in the lower and middle Pleistocene. Curr. Anthropol. 1989, 30, 1.
Hominid use of fire in the lower and middle Pleistocene.Crossref | GoogleScholarGoogle Scholar |

[3]  M. Musso, A. Moro, V. Glauche, M. Rijntjes, J. Reichenbach, C. Büchel, C. Weiller, Broca’s area and the language instinct. Nat. Neurosci. 2003, 6, 774.
Broca’s area and the language instinct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVKmtb4%3D&md5=0ebf5a1bf18c03758465aa3c2989d37cCAS | 12819784PubMed |

[4]  W. Enard, M. Przeworski, S. E. Fisher, C. S. Lai, V. Wiebe, T. Kitano, A. P. Monaco, S. Pääbo, Molecular evolution of FOXP2, a gene involved in speech and language. Nature 2002, 418, 869.
Molecular evolution of FOXP2, a gene involved in speech and language.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlWltbY%3D&md5=8846e93164e5c4fe06ba3b1f602b1144CAS | 12192408PubMed |

[5]  W. Steffen, P. J. Crutzen, J. R. McNeill, The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 2007, 36, 614.
The Anthropocene: are humans now overwhelming the great forces of nature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSqsrs%3D&md5=68e512b70e74d3bd82b56f6d69e8f239CAS | 18240674PubMed |

[6]  M. J. Molina, F. S. Rowland, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 1974, 249, 810.
Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlslGntr8%3D&md5=df7a5a1dec4259cb609b46c37a85090aCAS |

[7]  J. Cohen, Human population: the next half century. Science 2003, 302, 1172.
Human population: the next half century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Smt7w%3D&md5=9c65fcc92920d0bc41034f4784a3dea8CAS | 14615528PubMed |

[8]  W. Steffen, R. A. Sanderson, P. D. Tyson, J. Jäger, P. A. Matson, B. Moore III, F. Oldfield, K. Richardson, H.-J. Schellnhuber, B. L. Turner, R. J. Wasson, Global Change and the Earth System: A Planet under Pressure Series: Global Change – The IGBP Series, 1st edn 2004 (Springer: Berlin).

[9]  P. J. Crutzen, Geology of mankind. Nature 2002, 415, 23.
Geology of mankind.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Gksg%3D%3D&md5=501fd7d190c619b92aa7683088f8f464CAS | 11780095PubMed |

[10]  P. J. Crutzen, The ‘Anthropocene’. J. Phys. IV France 2002, 12, 1.
The ‘Anthropocene’.Crossref | GoogleScholarGoogle Scholar |

[11]  P. J. Crutzen, E. F. Stoermer, The Anthropocene. Glob. Change Newsl. 2000, 41, 17.

[12]  P. J. Crutzen, W. Steffen, How long have we been in the Anthropocene era. Clim. Change 2003, 61, 251.
How long have we been in the Anthropocene era.Crossref | GoogleScholarGoogle Scholar |

[13]  J. Zalasiewicz, M. Williams, A. G. Smith, T. L. Barry, A. L. Coe, P. R. Bown, P. Brenchley, D. Cantrill, A. Gale, P. Gibbard, F. J. Gregory, M. W. Hounslow, A. C. Kerr, P. Pearson, R. Knox, J. Powell, C. Waters, J. Marshall, M. Oates, P. Rawson, P. Stone, Are we now living in the Anthropocene. GSA Today 2008, 18, 4.
Are we now living in the Anthropocene.Crossref | GoogleScholarGoogle Scholar |

[14]  P. M. Vitousek, H. A. Mooney, J. Lubchenco, J. M. Melillo, Human domination of earth’s ecosystems. Science 1997, 277, 494.
Human domination of earth’s ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVektLs%3D&md5=f4813fd5c085e7a6305a87025eef6dbcCAS |

[15]  BP Statistical Review of World Energy June 2012 2012. Available at http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2012.pdf [Verified 17 July 2013].

[16]  J. Chow, R. J. Kopp, P. R. Portney, Energy resources and global development. Science 2003, 302, 1528.
Energy resources and global development.Crossref | GoogleScholarGoogle Scholar | 14645838PubMed |

[17]  T. Lenton, A. Watson, Revolutions that Made the Earth 2011 (Oxford University Press: Oxford, UK).

[18]  A. D. Barnosky, Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 2008, 105, 11 543.
Megafauna biomass tradeoff as a driver of Quaternary and future extinctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSjtr3O&md5=14e1df8af427c2d3b0ca73c30848cb9dCAS |

[19]  D. Cordell, J.-O. Drangert, S. White, The story of phosphorus: global food security and food for thought. Glob. Environ. Change 2009, 19, 292.
The story of phosphorus: global food security and food for thought.Crossref | GoogleScholarGoogle Scholar |

[20]  F.S Rowland, Stratospheric ozone depletion. Phil. Trans. R. Soc. B 2006, 361, 769.
Stratospheric ozone depletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFGkur8%3D&md5=90dee8c2a9753cb9debdca22115a46b3CAS | 16627294PubMed |

[21]  L. R. Brown, Full Planet, Empty Plates: The New Geopolitics of Food Scarcity 2012 (W. W. Norton & Co.: New York).

[22]  D. Clery, Greenhouse – power plant hybrid set to make Jordan’s desert bloom. Science 2011, 331, 136.
Greenhouse – power plant hybrid set to make Jordan’s desert bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2ht7g%3D&md5=14dfce003a2438b6f5426e837e2c6a97CAS | 21233357PubMed |

[23]  D. M. Lapola, R. Schaldacha, J. Alcamoa, A. Bondeaud, J. Kocha, C. Koelkinga, J. A. Priess, Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl Acad. Sci. USA 2010, 107, 3388.
Indirect land-use changes can overcome carbon savings from biofuels in Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFymtb0%3D&md5=09e28665885ce69fa06d89348908ceb3CAS | 20142492PubMed |

[24]  Global Food, Waste Not, Want Not 2013 (Institute of Mechanical Engineers: London). Available at http://www.imeche.org/knowledge/themes/environment/global-food [Verified 2 August 2013].

[25]  D. Lüthi, M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, T. F. Stocker, High-resolution carbon dioxide concentration record 650 000–800 000 years before present. Nature 2008, 453, 379.
High-resolution carbon dioxide concentration record 650 000–800 000 years before present.Crossref | GoogleScholarGoogle Scholar | 18480821PubMed |

[26]  J. Jouzel, V. Masson-Delmotte, O. Cattani, G. Dreyfus, S. Falourd, G. Hoffmann, B. Minster, J. Nouet, J. M. Barnola, J. Chappellaz, H. Fischer, J. C. Gallet, S. Johnsen, M. Leuenberger, L. Loulergue, D. Luethi, H. Oerter, F. Parrenin, G. Raisbeck, D. Raynaud, A. Schilt, J. Schwander, E. Selmo, R. Souchez, R. Spahni, B. Stauffer, J. P. Steffensen, B. Stenni, T. F. Stocker, J. L. Tison, M. Werner, E. W. Wolff, Orbital and millennial Antarctic climate variability over the last 800 000 years. Science 2007, 317, 793.
Orbital and millennial Antarctic climate variability over the last 800 000 years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVWjt7w%3D&md5=b628acb7695d7cec735a0020a814622cCAS | 17615306PubMed |

[27]  F. Vimeux, K. M. Cuffey, J. Jouzel, New insights into southern hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet. Sci. Lett. 2002, 203, 829.
New insights into southern hemisphere temperature changes from Vostok ice cores using deuterium excess correction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1entbo%3D&md5=2524b16a3ec8179ca8c319325327d279CAS |

[28]  J. Hansen, M. Sato, P. Kharecha, G. Russell, D. W. Lea, M. Siddall, Climate change and trace gases. Phil. Trans. R. Soc. A 2007, 365, 1925.
Climate change and trace gases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1KksLs%3D&md5=c44d513e1f71ba7efe3e8486d8cdb88dCAS | 17513270PubMed |

[29]  C. D. Keeling, R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl, P. R. Guenther, L. S. Waterman, Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 1976, 28, 538.
Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhsVegtLw%3D&md5=4110e2035a2437b42eca1c6318b6924eCAS | 1:CAS:528:DyaE2sXhsVegtLw%3D&md5=4110e2035a2437b42eca1c6318b6924eCAS |

[30]  K. W. Thoning, P. P. Tans, W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. 1989, 94, 8549.
Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974–1985.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Cis7o%3D&md5=415ec0a44645ec5d888f68c92f9527e9CAS |

[31]  G.-K. Plattner, F. Joos, T. F. Stocker, O. Marchal, Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus 2001, 53B, 564.
| 1:CAS:528:DC%2BD3MXptVOltb4%3D&md5=4cb3386b11bc3e01545cf397024656e1CAS |

[32]  C. H. Langmuir, W. Broecker, How to Build a Habitable Planet 2012 (Princeton University Press: Princeton, NJ).

[33]  D. Archer, M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira, K. Matsumoto, G. Munhoven, A. Montenegro, K. Tokos, Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Plant. Sci. 2009, 37, 117.

[34]  IPCC, Summary for policymakers, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M.Tignor, H. L. Miller) pp. 1–18 2007 (Cambridge University Press: Cambridge, UK, and New York).

[35]  D. R. Blake, F. S. Rowland, Continuing worldwide increase in tropospheric methane 1978–1987. Science 1988, 239, 1129.
Continuing worldwide increase in tropospheric methane 1978–1987.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsFCjtbc%3D&md5=937f14b7c1a5db253c058bfdb30b87fcCAS | 17791972PubMed |

[36]  D. R. Blake, F. S. Rowland, Worldwide increase in tropospheric methane 1978–1983. J. Atmos. Chem. 1986, 4, 43.
Worldwide increase in tropospheric methane 1978–1983.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1yjsbo%3D&md5=711fc51ecb81526845660cc458f6c8a4CAS |

[37]  N. Gruber, J. N. Galloway, An earth system perspective of the global nitrogen cycle. Nature 2008, 451, 293.
An earth system perspective of the global nitrogen cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Cqsg%3D%3D&md5=23ff66ba33b188d32610441c308d1904CAS | 18202647PubMed |

[38]  P. J. Crutzen, The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 1979, 7, 443.
The role of NO and NO2 in the chemistry of the troposphere and stratosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkslKqsbc%3D&md5=9d6c58e8ddaf6d5ac6c8684b8ec4c4d8CAS |

[39]  P. J. Crutzen, Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma. Climatic Change 2006, 77, 211.
Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVaitbY%3D&md5=c9140ee588e01061d0401ece587f0ab7CAS |

[40]  Geoengineering the climate: science, governance and uncertainty, RS Policy document 10/09, RS1636 2009 (Royal Society: London).

[41]  D. W. Fahey, M. I. Hegglin, Twenty Questions and Answers about the Ozone Layer: 2010 Update. Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report number 52 2011 (World Meteorological Organization: Geneva, Switzerland). [Reprinted from Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, report number 52 2011 (World Meteorological Organization: Geneva, Switzerland)].

[42]  J. C. Farman, B. G. Gardiner, J. D. Shanklin, Nature 1985, 315, 207.
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktFSltrc%3D&md5=84e0545ae686e21631fb33cc5e8e7a28CAS | 1:CAS:528:DyaL2MXktFSltrc%3D&md5=84e0545ae686e21631fb33cc5e8e7a28CAS |

[43]  D. J. Hofmann, S. J. Oltmans, J. M. Harris, B. J. Johnson, J. A. Lathrop, Ten years of ozonesonde measurements at the south pole: implications for recovery of springtime Antarctic ozone. J. Geophys. Res. 1997, 102, 8931.
Ten years of ozonesonde measurements at the south pole: implications for recovery of springtime Antarctic ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFSgurw%3D&md5=c338c763b41a054dff252bcb2f207098CAS | 1:CAS:528:DyaK2sXjsFSgurw%3D&md5=c338c763b41a054dff252bcb2f207098CAS |

[44]  F. S. Rowland, J. E. Spencer, M. J. Molina, Stratospheric formation and photolysis of chlorine nitrate. J. Phys. Chem. 1976, 80, 2711.
Stratospheric formation and photolysis of chlorine nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhtVGqtA%3D%3D&md5=f418d296db0b1ff931903b2ed7341726CAS | 1:CAS:528:DyaE2sXhtVGqtA%3D%3D&md5=f418d296db0b1ff931903b2ed7341726CAS |

[45]  S. Solomon, R. Garcia, F. S. Rowland, D. J. Wuebbles, On the depletion of Antarctic ozone. Nature 1986, 321, 755.
On the depletion of Antarctic ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVKlsb0%3D&md5=6968a9c2d87dbd3389336132693473ceCAS | 1:CAS:528:DyaL28XksVKlsb0%3D&md5=6968a9c2d87dbd3389336132693473ceCAS |

[46]  IPCC, IPCC/TEAP Special Report. Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons 2005 (Cambridge University Press: Cambridge, UK).

[47]  H. Akimoto, Global air quality and pollution. Science 2003, 302, 1716.
Global air quality and pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVWns7g%3D&md5=c0bba6c4aeb7064f1e8dbca47e89b6efCAS | 1:CAS:528:DC%2BD3sXpsVWns7g%3D&md5=c0bba6c4aeb7064f1e8dbca47e89b6efCAS | 14657488PubMed |

[48]  J. Lelieveld, J. van Aardenne, H. Fischer, M. de Reus, J. Williams, P. Winkler, Increasing ozone over the Atlantic Ocean. Science 2004, 304, 1483.
Increasing ozone over the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGmsb4%3D&md5=40423ec7f3a1413a6184b49d3613cc03CAS | 15143217PubMed |

[49]  C. Le Quéré, C. Rödenbeck, E. T. Buitenhuis, T. J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, M. Heimann, Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 2007, 316, 1735.
Saturation of the Southern Ocean CO2 sink due to recent climate change.Crossref | GoogleScholarGoogle Scholar | 17510327PubMed |

[50]  K. Caldeira, M. E. Wickett, Anthropogenic carbon and ocean pH. Nature 2003, 425, 365.
Anthropogenic carbon and ocean pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2ktrs%3D&md5=b241f5b1b6d37873fdfa13f5a9198a66CAS | 14508477PubMed |

[51]  S. C. Doney, M. Ruckelshaus, J. E. Duffy, J. P. Barry, F. Chan, C. A. English, H. M. Galindo, J. M. Grebmeier, A. B. Hollowed, N. Knowlton, J. Polovina, N. N. Rabalais, W. J. Sydeman, L. D. Talley, Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 2012, 4, 11.
Climate change impacts on marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

[52]  J. P. Gattuso, L. Hansson, Ocean Acidification 2011 (Oxford University Press: Oxford, UK).

[53]  O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi, M. E. Hatziolos, Coral reefs under rapid climate change and ocean acidification. Science 2007, 318, 1737.
Coral reefs under rapid climate change and ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhu7fN&md5=da6bb7b15ab7019872974ddf6af4e51fCAS | 1:CAS:528:DC%2BD2sXhsVWhu7fN&md5=da6bb7b15ab7019872974ddf6af4e51fCAS | 18079392PubMed |

[54]  B. Hönisch, A. Ridgwell, D. N. Schmidt, E. Thomas, S. J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R. C. Martindale, S. E. Greene, W. Kiessling, J. Ries, J. C. Zachos, D. L. Royer, S. Barker, T. M. Marchitto, R. Moyer, C. Pelejero, P. Ziveri, G. L. Foster, B. Williams, The geological record of ocean acidification. Science 2012, 335, 1058.
The geological record of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 22383840PubMed |

[55]  U. Riebesell, I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, F. M. M. Morel, Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature 2000, 407, 634.

[56]  F. Pearce, Earth: the parched planet. New Sci. 2006, 2006, 2540.

[57]  P. H. Gleick, Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524.
Global freshwater resources: Soft-path solutions for the 21st century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Smsb0%3D&md5=927b508638062a151ac0eca8f59bdaaeCAS | 1:CAS:528:DC%2BD3sXpt1Smsb0%3D&md5=927b508638062a151ac0eca8f59bdaaeCAS | 14645837PubMed |

[58]  J. Burke, M. Moench, Groundwater and Society: Resources, Tensions, Opportunities 2000 (United Nations: New York).

[59]  B. H. Wilkinson, Humans as geological agents. Geology 2005, 33, 161.
Humans as geological agents.Crossref | GoogleScholarGoogle Scholar |

[60]  J. P. M. Syvitski, A. Kettner, Sediment flux and the anthropocene. Phil. Trans. R. Soc. A 2011, 369, 957.
Sediment flux and the anthropocene.Crossref | GoogleScholarGoogle Scholar |

[61]  I. S. Sen, B. Peucker-Ehrenbrink, Anthropogenic disturbance of element cycles at the earth’s surface. Environ. Sci. Technol. 2012, 46, 8601.
Anthropogenic disturbance of element cycles at the earth’s surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeqtrvK&md5=1cca3359bf31e185e8749577d682babaCAS | 1:CAS:528:DC%2BC38XhtVeqtrvK&md5=1cca3359bf31e185e8749577d682babaCAS | 22803636PubMed |

[62]  R. J. Klee, T. E. Graedel, Elemental cycles: a status report on human or natural dominance. Annu. Rev. Environ. Resour. 2004, 29, 69.
Elemental cycles: a status report on human or natural dominance.Crossref | GoogleScholarGoogle Scholar |

[63]  J. Zalasiewicz, The Earth After Us: What Legacy will Humans Leave in the Rocks? 2008 (Oxford University Press: Oxford, UK).

[64]  A. Weisman, The World Without Us 2008 (Virgin Books: Croydon, UK).

[65]  S. Al-Rousan, J. Pätzold, S. Al-Moghrabi, G. Wefer, Invasion of anthropogenic CO2 recorded in planktonic foraminifera from the northern Gulf of Aquaba. Int. J. Earth Sci. 2004, 93, 1066.
Invasion of anthropogenic CO2 recorded in planktonic foraminifera from the northern Gulf of Aquaba.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVegu7fJ&md5=a19f71438ed2ece498f07b6e1b047c43CAS | 1:CAS:528:DC%2BD2cXhtVegu7fJ&md5=a19f71438ed2ece498f07b6e1b047c43CAS |

[66]  E. O. Wilson, The Future of Life 2003 (Vintage Press: London, UK).

[67]  A.D. Barnosky, Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 2008, 105, 11 543.
Megafauna biomass tradeoff as a driver of Quaternary and future extinctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSjtr3O&md5=14e1df8af427c2d3b0ca73c30848cb9dCAS | 1:CAS:528:DC%2BD1cXhtVSjtr3O&md5=14e1df8af427c2d3b0ca73c30848cb9dCAS |

[68]  E. C. Ellis, K. K. Goldewijk, S. Siebert, D. Lightman, N. Ramankutty, Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010, 19, 589.

[69]  J. H. Lawton, R. M. May, Extinction Rates 2005 (Oxford University Press: Oxford, UK).

[70]  Millennium Ecosystem Assessment, Living Beyond Our Means: Natural Assets and Human Well-being (Ed. R. T. Watson, A.H. Zakri) 2005 (World Resources Institute: Washington, DC).

[71]  C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. Ferreira de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, S. E. Williams, Extinction risk from climate change. Nature 2004, 427, 145.
Extinction risk from climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFOgtQ%3D%3D&md5=f9c6718f6d2cf2338f895eaa3f30c98cCAS | 1:CAS:528:DC%2BD2cXhtFOgtQ%3D%3D&md5=f9c6718f6d2cf2338f895eaa3f30c98cCAS | 14712274PubMed |

[72]  A. D. Barnosky, N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, K. C. Maguire, B. Mersey, E. A. Ferrer, Has the Earth’s sixth mass extinction already arrived. Nature 2011, 471, 51.
Has the Earth’s sixth mass extinction already arrived.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Cktbo%3D&md5=c944c22610615b3ae5795ef278582df5CAS | 1:CAS:528:DC%2BC3MXis1Cktbo%3D&md5=c944c22610615b3ae5795ef278582df5CAS | 21368823PubMed |

[73]  D. Pauly, J. Alder, E. Bennett, V. Christensen, P. Tyedmers, R. Watson, The future for fisheries. Science 2003, 302, 1359.
The future for fisheries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVGjs7w%3D&md5=d8a613ab11af343c7cffcf13e87781e5CAS | 1:CAS:528:DC%2BD3sXptVGjs7w%3D&md5=d8a613ab11af343c7cffcf13e87781e5CAS | 14631031PubMed |

[74]  J. Williams, P. J. Crutzen, Nitrous oxide from aquaculture. Nat. Geosci. 2010, 3, 143.
Nitrous oxide from aquaculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVahtbg%3D&md5=368345c8e60c68a431b0be2ef2f9ffafCAS | 1:CAS:528:DC%2BC3cXisVahtbg%3D&md5=368345c8e60c68a431b0be2ef2f9ffafCAS |

[75]  FAO, JRC. Global forest land-use change 1990–2005, FAO Forestry Paper number 169 (Eds E. J. Lindquist, R. D’Annunzio, A. Gerrand, K. MacDicken, F. Achard, R. Beuchle, A. Brink, H. D. Eva, P. Mayaux, J. San-Miguel-Ayanz, H.-J. Stibig) 2012 (Food and Agriculture Organization of the United Nations and European Commission Joint Research Centre: Rome).

[76]  G. P. Marsh, The Earth as Modified by Human Action 1965 (Belnap Press, Harvard University Press: Cambridge, MA).

[77]  W. C. Clark, Sustainable Development of the Biosphere (Eds W. C. Clark, R. E. Munn) 1986 (Cambridge University Press: Cambridge, UK).

[78]  V. I. Vernadsky, The Biosphere 1998 (Copernicus, Springer: New York). [Translated and annotated version from the original of 1926].

[79]  P. K. Haff, Technology and human purpose: the problem of solids transport on the Earth’s surface. Earth Syst. Dynam. 2012, 3, 149.
Technology and human purpose: the problem of solids transport on the Earth’s surface.Crossref | GoogleScholarGoogle Scholar |

[80]  J.-B. Michel, Y. K. Shen, A. Presser Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, E. Lieberman Aiden, Quantitative analysis of culture using millions of digitized books. Science 2011, 331, 176.
Quantitative analysis of culture using millions of digitized books.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslSjug%3D%3D&md5=055eb7f2c1ae8215a9e6909e156c8299CAS | 1:CAS:528:DC%2BC3MXjslSjug%3D%3D&md5=055eb7f2c1ae8215a9e6909e156c8299CAS | 21163965PubMed |

[81]  J. P. M. Syvitski, Anthropocene: an epoch of our making. Glob. Change 2012, 78, 12.

[82]  J. Zalasiewicz, M. Williams, A. Haywood, M. Ellis, The Anthropocene: a new epoch of geological time. Phil. Trans. R. Soc. 2011, 369, 835.
The Anthropocene: a new epoch of geological time.Crossref | GoogleScholarGoogle Scholar |

[83]  R. T. Watson, H. Rodhe, H. Oescher, U. Siegenthaler, Greenhouse gases and aerosols, in Climate Change. The IPCC Scientific Assessment (Eds J. T. Houghton, G. J. Jenkins, J. J. Ephraums) 1990, pp. 5–40 (Cambridge University Press: New York).

[84]  W. Steffen, J. Grinevald, P. Crutzen, J. McNeill, The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. 2011, 369, 842.
The Anthropocene: conceptual and historical perspectives.Crossref | GoogleScholarGoogle Scholar |

[85]  W. D. Ruddiman, The anthropogenic greenhouse era began thousands of years ago. Clim. Change 2003, 61, 261.
The anthropogenic greenhouse era began thousands of years ago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVOksLs%3D&md5=af49fb29ea80a86f27218919812e9704CAS | 1:CAS:528:DC%2BD3sXptVOksLs%3D&md5=af49fb29ea80a86f27218919812e9704CAS |

[86]  S. J. Gale, P. G. Hoare, The stratigraphic status of the Anthropocene. Holocene 2012, 22, 1491.
The stratigraphic status of the Anthropocene.Crossref | GoogleScholarGoogle Scholar |

[87]  F. Biermann, K. Abbott, S. Andresen, K. Bäckstrand, S. Bernstein, M. M. Betsill, H. Bulkeley, B. Cashore, J. Clapp, C. Folke, A. Gupta, J. Gupta, P. M. Haas, A. Jordan, N. Kanie, T. Kluvánková-Oravská, L. Lebel, D. Liverman, J. Meadowcroft, R. B. Mitchell, P. Newell, S. Oberthür, L. Olsson, P. Pattberg, R. Sánchez-Rodríguez, H. Schroeder, A. Underdal, S. Camargo Vieira, C. Vogel, O. R. Young, A. Brock, R. Zondervan, Navigating the Anthropocene: improving earth system governance. Science 2012, 335, 1306.
Navigating the Anthropocene: improving earth system governance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFeitr0%3D&md5=ff3272f106486df9ead930392efa91dfCAS | 1:CAS:528:DC%2BC38XlsFeitr0%3D&md5=ff3272f106486df9ead930392efa91dfCAS | 22422966PubMed |

[88]  S. R. Palumbi, Humans as the world’s greatest force. Science 2001, 293, 1786.
Humans as the world’s greatest force.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVSltro%3D&md5=241fd7363bfdf99a4d46a8e29f9c1526CAS | 1:CAS:528:DC%2BD3MXmvVSltro%3D&md5=241fd7363bfdf99a4d46a8e29f9c1526CAS | 11546863PubMed |