Copper and lead internalisation by freshwater microalgae at different carbonate concentrations
Paula Sánchez-Marín A , Claude Fortin A and Peter G. C. Campbell A BA Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
B Corresponding author. Email: peter.campbell@ete.inrs.ca
Environmental Chemistry 10(2) 80-90 https://doi.org/10.1071/EN13011
Submitted: 21 January 2013 Accepted: 26 March 2013 Published: 9 May 2013
Environmental context. Metal–carbonato complexes have been reported to contribute to metal uptake and toxicity in aquatic organisms. We show that in the presence of lead–carbonato complexes, Pb internalisation by the microalga Chlamydomonas reinhardtii is higher than that predicted on the basis of the free Pb2+ concentration. This effect, which was not observed for another microalga that takes up Pb more slowly, is attributed to the very high rates of Pb uptake by C. reinhardtii, which result in diffusion limitation.
Abstract. The possible contribution of metal–carbonato complexes to metal uptake or toxicity has been mentioned several times in the literature, often in studies where dissolved inorganic carbon (DIC) concentrations and pH were varied together, but a thorough study of the effect on DIC on metal bioavailability to aquatic organisms has not been done. By using closed systems – allowing changes in DIC concentrations at fixed pH – and ion selective electrodes to determine free metal ion concentrations, we show that lead internalisation by the unicellular alga Chlamydomonas reinhardtii in the presence of high DIC concentrations is higher than predicted by the free Pb2+ ion concentration at bulk [Pb2+] lower than 50 nM, but not at higher [Pb2+]. This effect is not observed for another microalga, Chlorella vulgaris, which shows a lower rate of Pb internalisation. Copper internalisation by C. reinhardtii seems also to be slightly higher than predicted on the basis of free Cu2+ at low (20 nM) bulk Cu2+ concentrations but not at higher ones. The possibility that Pb (and Cu) internalisation by C. reinhardtii is partially limited by diffusion from the bulk solution to the algal surface is identified and discussed as a possible explanation for these results.
Additional keywords: biotic ligand model, dissolved inorganic carbon, metal bioavailability, metal uptake.
References
[1] F. M. M. Morel, Principles of Aquatic Chemistry 1983 (Wiley: New York).[2] D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
| Biotic ligand model of the acute toxicity of metals. 1. Technical basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=ffb40e6e32965657a2c5631640d26359CAS | 11596774PubMed |
[3] J. W. Gorsuch, C. R. Janssen, C. M. Lee, M. C. Reiley, Special issue: The biotic ligand model for metals – current research, future directions, regulatory implications. Comp. Biochem. Phys. C 2002, 133, 1.
[4] A. M. Aucour, S. M. F. Sheppard, O. Guyomar, J. Wattelet, Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system. Chem. Geol. 1999, 159, 87.
| Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslGqsbs%3D&md5=cd0209840d02d27884c19b024c328981CAS |
[5] J. F. Hélie, C. Hillaire-Marcel, B. Rondeau, Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St Lawrence River – isotopic and chemical constraint. Chem. Geol. 2002, 186, 117.
| Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St Lawrence River – isotopic and chemical constraint.Crossref | GoogleScholarGoogle Scholar |
[6] K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A. K. Leuz, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands. Part 3. The Pb2+, OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report). Pure Appl. Chem. 2009, 81, 2425.
| Chemical speciation of environmentally significant metals with inorganic ligands. Part 3. The Pb2+, OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1ahuw%3D%3D&md5=8a00fa2d9c6a6ff8b830178dc4801b2eCAS |
[7] K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands. Part 2. The Cu2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report). Pure Appl. Chem. 2007, 79, 895.
| Chemical speciation of environmentally significant metals with inorganic ligands. Part 2. The Cu2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVGltbs%3D&md5=e16f805721d0c0246534c31875c1d775CAS |
[8] M. H. Spalding, Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Bot. 2008, 59, 1463.[Published online early 27 June 2007].
| Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtleltbg%3D&md5=249bdf436cde0b26402199c2ed4d061aCAS | 17597098PubMed |
[9] V. Slaveykova, K. Wilkinson, Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii. Environ. Chem. Lett. 2003, 1, 185.
| Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFKjt7w%3D&md5=8376cc672bcdfae2805a01624fb64f98CAS |
[10] K. A. C. De Schamphelaere, D. G. Heijerick, C. R. Janssen, Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp. Biochem. Phys. C 2002, 133, 243.
[11] M. Lavoie, S. Le Faucheur, A. Boullemant, C. Fortin, P. G. C. Campbell, The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes. J. Phycol. 2012, 48, 293.
| The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFGhsbc%3D&md5=3492b53b5cc0cb4b647d65cff45fd867CAS |
[12] R. W. Andrew, K. E. Biesinger, G. E. Glass, Effects of inorganic complexing on the toxicity of copper to Daphnia magna. Water Res. 1977, 11, 309.
| Effects of inorganic complexing on the toxicity of copper to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvVCisrc%3D&md5=d73b7a516a893fbfb4864c4bdeeed5c6CAS |
[13] K. A. C. De Schamphelaere, B. T. A. Bossuyt, C. R. Janssen, Variability of the protective effect of sodium on the acute toxicity of copper to freshwater cladocerans. Environ. Toxicol. Chem. 2007, 26, 535.
| Variability of the protective effect of sodium on the acute toxicity of copper to freshwater cladocerans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyrs7Y%3D&md5=371ef80994a8a9c0d4f59cad847fa02bCAS |
[14] S. Bayen, P. Gunkel-Grillon, I. Worms, M. Martin, J. Buffle, Influence of inorganic complexes on the transport of trace metals through permeation liquid membrane. Anal. Chim. Acta 2009, 646, 104.[Erratum in Anal. Chim. Acta. 2012, 713, 145]
| Influence of inorganic complexes on the transport of trace metals through permeation liquid membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlSnurw%3D&md5=97a52bcc7f2b21697ae05e1f01916907CAS | 19523562PubMed |
[15] C. Fortin, P. G. C. Campbell, Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: influence of chloride. Environ. Toxicol. Chem. 2000, 19, 2769.
| 1:CAS:528:DC%2BD3MXjtVeqtw%3D%3D&md5=46d89e6712965b03266accda7b8867e6CAS |
[16] A. E. Martell, R. M. Smith, NIST Critically Selected Stability Constants of Metal Complexes v. 8.0. NIST Standard Reference Data Base 46 2004 (National Institute of Standards and Technology: Gaithersburg, MD).
[17] J. Rachou, C. Gagnon, S. Sauvé, Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ. Chem. 2007, 4, 90.
| Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1entb8%3D&md5=5d1008d92805acd941977d79a287be5bCAS |
[18] H. Motulsky, A. Christopoulos, Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting 2003 (GraphPad Software Inc.: San Diego).
[19] K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A. K. Leuz, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands. Part 4. The Cd2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC technical report). Pure Appl. Chem. 2011, 83, 1163.
| Chemical speciation of environmentally significant metals with inorganic ligands. Part 4. The Cd2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC technical report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWqurc%3D&md5=bb17e27f63b2b0e49930d3efd9ff87c2CAS |
[20] J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (Biol.)interfaces. Part I. Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ. Sci. Technol. 2007, 41, 7609.
| Metal flux and dynamic speciation at (Biol.)interfaces. Part I. Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtr3E&md5=77233169bec610f0b775730fea5986ceCAS | 18075065PubMed |
[21] L. A. Gaither, D. J. Eide, Functional expression of the human hZIP2 zinc transporter. J. Biol. Chem. 2000, 275, 5560.
| Functional expression of the human hZIP2 zinc transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFKktr0%3D&md5=0d8aadac48e82c17978d97cbf01a033cCAS | 10681536PubMed |
[22] L. He, K. Girijashanker, T. P. Dalton, J. M. Reed, H. Li, M. Soleimani, D. W. Nebert, ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol. Pharmacol. 2006, 70, 171.
| 1:CAS:528:DC%2BD28XmsFynu74%3D&md5=2cfccc5c4800d495f453f5b961ecad77CAS | 16638970PubMed |
[23] K. Girijashanker, L. He, M. Soleimani, J. M. Reed, H. Li, Z. Liu, B. Wang, T. P. Dalton, D. W. Nebert, Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol. Pharmacol. 2008, 73, 1413.
| Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVWguro%3D&md5=e8b3c8dbd527b4e37cc9d59442d10ffbCAS | 18270315PubMed |
[24] L. A. Gaither, D. J. Eide, Eukaryotic zinc transporters and their regulation. Biometals 2001, 14, 251.
| Eukaryotic zinc transporters and their regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFWrtw%3D%3D&md5=7ac828a4937956716cd392f73c82f143CAS | 11831460PubMed |
[25] A. Rosakis, W. Köster, Transition metal transport in the green microalga Chlamydomonas reinhardtii – genomic sequence analysis. Res. Microbiol. 2004, 155, 201.
| Transition metal transport in the green microalga Chlamydomonas reinhardtii – genomic sequence analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVWksLk%3D&md5=b424d344315c154640655ea6dbd0fcc0CAS | 15059633PubMed |
[26] M. Hanikenne, U. Krämer, V. Demoulin, D. Baurain, A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol. 2005, 137, 428.
| A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Kqs7c%3D&md5=498e9a198576458855441671e83905e0CAS | 15710683PubMed |
[27] J. P. Pinheiro, J. Galceran, H. P. Van Leeuwen, Metal speciation dynamics and bioavailability: bulk depletion effects. Environ. Sci. Technol. 2004, 38, 2397.
| Metal speciation dynamics and bioavailability: bulk depletion effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslCltL8%3D&md5=53443a3a51e108ac32c3a903863f6e5fCAS | 15116846PubMed |
[28] B. Vigneault, P. G. C. Campbell, Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances. J. Phycol. 2005, 41, 55.
| Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVeqtLs%3D&md5=19338ad83c9c37458ad32210beeb492fCAS |
[29] M. Lavoie, P. G. C. Campbell, C. Fortin, Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga. Environ. Sci. Technol. 2012, 46, 12 129.
| Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCgtrjN&md5=d85b7127675ca462eaba325d23910678CAS |
[30] D. Y. Lee, C. Fortin, P. G. C. Campbell, Influence of chloride on silver uptake by two green algae, Pseudokirchneriella subcapitata and Chlorella pyrenoidosa. Environ. Toxicol. Chem. 2004, 23, 1012.
| Influence of chloride on silver uptake by two green algae, Pseudokirchneriella subcapitata and Chlorella pyrenoidosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Kgtrc%3D&md5=b88a4aa532e937966f26eb358737b1d9CAS | 15095899PubMed |
[31] J. Galceran, J. Puy, J. Salvador, J. Cecília, H. P. Van Leeuwen, Voltammetric lability of metal complexes at spherical microelectrodes with various radii. J. Electroanal. Chem. 2001, 505, 85.
| Voltammetric lability of metal complexes at spherical microelectrodes with various radii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGkt78%3D&md5=2e72daa5064c8974747c083a07a28699CAS |
[32] J. Galceran, J. Puy, J. Salvador, J. Cecilia, F. Mas, J. L. Garces, Lability and mobility effects on mixtures of ligands under steady-state conditions. Phys. Chem. Chem. Phys. 2003, 5, 5091.
| Lability and mobility effects on mixtures of ligands under steady-state conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWjtbw%3D&md5=b378f0bcce101938fa46a3b924b2b961CAS |
[33] Z. Zhang, D. Alemani, J. Buffle, R. M. Town, K. J. Wilkinson, Metal flux through consuming interfaces in ligand mixtures: boundary conditions do not influence the lability and relative contributions of metal species. Phys. Chem. Chem. Phys. 2011, 13, 17 606.
| Metal flux through consuming interfaces in ligand mixtures: boundary conditions do not influence the lability and relative contributions of metal species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eqtbfI&md5=3b5e31665fa62f8d51d6029b8b023f95CAS |
[34] Z. Zhang, J. Buffle, K. Startchev, D. Alemani, FLUXY: a simple code for computing steady-state metal fluxes at consuming (bio)interfaces, in natural waters. Environ. Chem. 2008, 5, 204.
| FLUXY: a simple code for computing steady-state metal fluxes at consuming (bio)interfaces, in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCrt7w%3D&md5=5f67a64fc355921de4ea526b9a687c39CAS |
[35] J. Crank, The Mathematics of Diffusion 1956 (Oxford University Press: New York).
[36] F. Degryse, E. Smolders, D. R. Parker, An agar gel technique demonstrates diffusion limitations to cadmium uptake by higher plants. Environ. Chem. 2006, 3, 419.
| An agar gel technique demonstrates diffusion limitations to cadmium uptake by higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWnur7P&md5=0a44945f1e1eeb45ca76afe1faa2eee3CAS |
[37] K. J. Wilkinson, J. Buffle, Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems, in Physicochemical Kinetics and Transport at Biointerfaces (Eds H. P. van Leeuwen, W. Koster) 2004, pp. 445–533 (Wiley: Chichester, UK).
[38] E. J. J. Kalis, T. A. Davis, R. M. Town, H. P. Van Leeuwen, Impact of pH on CdII partitioning between alginate gel and aqueous media. Environ. Chem. 2009, 6, 305.
| Impact of pH on CdII partitioning between alginate gel and aqueous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSlu77M&md5=4daad1ff2df7465c27cc5841598b905fCAS |
[39] H. Yasuda, C. E. Lamaze, L. D. Ikenberry, Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Makromol. Chem. 1968, 118, 19.
| Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXivFCrug%3D%3D&md5=2c1942b45d82c03d8f5e2aaccec6c1e7CAS |
[40] H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
| Diffusional characteristics of hydrogels used in DGT and DET techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFeqtLk%3D&md5=4f7dd857bba15120a9c9a881105fbb7bCAS |
[41] N. Fatin-Rouge, A. Milon, J. Buffle, R. R. Goulet, A. Tessier, Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J. Phys. Chem. B 2003, 107, 12 126.
| Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFWkt74%3D&md5=19ee77c80c3ba5520e0c2022773979d0CAS |
[42] M. Golmohamadi, T. A. Davis, K. J. Wilkinson, Diffusion and partitioning of cations in an agarose hydrogel. J. Phys. Chem. B 2012, 116, 6505.
| Diffusion and partitioning of cations in an agarose hydrogel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt12ltbY%3D&md5=0002417de3cdc51eed8badd5a0ac4623CAS |
[43] M. M. Lencka, A. Anderko, S. J. Sanders, R. D. Young, Modeling viscosity of multicomponent electrolyte solutions. Int. J. Thermophys. 1998, 19, 367.
| Modeling viscosity of multicomponent electrolyte solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVOgsrk%3D&md5=04eef65073287602b405bd27e03e6ce9CAS |
[44] E. Van Donk, M. Lürling, D. O. Hessen, G. M. Lokhorst, Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol. Oceanogr. 1997, 42, 357.
| Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers.Crossref | GoogleScholarGoogle Scholar |
[45] F. Degryse, E. Smolders, R. Merckx, Labile Cd complexes increase Cd availability to plants. Environ. Sci. Technol. 2006, 40, 830.
| Labile Cd complexes increase Cd availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlarsrfK&md5=77b83179dd4e6c113cf732bf02cea5c2CAS | 16509325PubMed |
[46] K. L. Hill, R. Hassett, D. Kosman, S. Merchant, Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol. 1996, 112, 697.
| Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFKks7s%3D&md5=6a04df12acff5324624d6d3f2a7be1c7CAS | 8883382PubMed |
[47] H. G. Weger, Ferric and cupric reductase activities in the green alga Chlamydomonas reinhardtii: experiments using iron-limited chemostats. Planta 1999, 207, 377.
| Ferric and cupric reductase activities in the green alga Chlamydomonas reinhardtii: experiments using iron-limited chemostats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlOgsbY%3D&md5=2d2f9566ee186123f51516538bf10f7cCAS |
[48] M. D. Page, J. Kropat, P. P. Hamel, S. S. Merchant, Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell 2009, 21, 928.
| Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylurg%3D&md5=99ba9935383f2aeeeeacea24af45e3cbCAS | 19318609PubMed |
[49] R. J. M. Hudson, Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Sci. Total Environ. 1998, 219, 95.
| Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrw%3D&md5=3865526af71e45cb1c05e0bbc1afb56dCAS |