A perspective on time: loss frequencies, time scales and lifetimes
Michael J. Prather A B and Christopher D. Holmes AA Earth System Science Department, University of California–Irvine, Irvine, CA 92697-3100, USA.
B Corresponding author. Email: mprather@uci.edu
Environmental Chemistry 10(2) 73-79 https://doi.org/10.1071/EN13017
Submitted: 24 January 2013 Accepted: 9 April 2013 Published: 30 May 2013
Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND
Environmental context. The need to describe the Earth’s system or any of its components with a quantity that has units of time is ubiquitous. These quantities are used as metrics of the system to describe the response to a perturbation, the cumulative effect of an action or just the budget in terms of sources and sinks. Given a complex, non-linear system, there are many different ways to derive such quantities, and careful definitions are needed to avoid mistaken approximations while providing useful parameters describing the system.
Abstract. Diagnostic quantities involving time include loss frequency, decay times or time scales and lifetimes. For the Earth’s system or any of its components, all of these are calculated differently and have unique diagnostic properties. Local loss frequency is often assumed to be a simple, linear relationship between a species and its loss rate, but this fails in many important cases of atmospheric chemistry where reactions couple across species. Lifetimes, traditionally defined as total burden over loss rate, are mistaken for a time scale that describes the complete temporal behaviour of the system. Three examples here highlight: local loss frequencies with non-linear chemistry (tropospheric ozone); simple atmospheric chemistry with multiple reservoirs (methyl bromide) and fixed chemistry but evolving lifetimes (methyl chloroform). These are readily generalised to other biogeochemistry and Earth system models.
Additional keywords: chemical modes, eigenvalues, global warming potentials.
References
[1] M. J. Prather, Lifetimes and time scales in atmospheric chemistry. Philos. Trans. Roy. Soc. A 2007, 365, 1705.| Lifetimes and time scales in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Kks70%3D&md5=e54541971e6e3fb921ce4f9c5b6d6c9eCAS |
[2] B. Bolin, H. Rodhe, Note on concepts of age distribution and transit-time in natural reservoirs. Tellus 1973, 25, 58.
| Note on concepts of age distribution and transit-time in natural reservoirs.Crossref | GoogleScholarGoogle Scholar |
[3] C. E. Junge, Residence time and variability of tropospheric trace gases. Tellus 1974, 26, 477.
| Residence time and variability of tropospheric trace gases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXjtlGluw%3D%3D&md5=c540c3c28bab4bc3ba6e8c874ff5606dCAS |
[4] M. J. Prather, Lifetimes and eigenstates in atmospheric chemistry. Geophys. Res. Lett. 1994, 21, 801.
| Lifetimes and eigenstates in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtV2mtbY%3D&md5=d878f31a92ef51b0af42290985a8f81eCAS |
[5] R. G. Derwent, W. J. Collins, C. E. Johnson, D. S. Stevenson, Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects. Clim. Change 2001, 49, 463.
| Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1KqsrY%3D&md5=f7a73ce9d33fadc4726e8de8cf62370dCAS |
[6] D. H. Ehhalt, F. Rohrer, S. Schauffler, M. J. Prather, On the decay of stratospheric pollutants: diagnosing the longest-lived eigenmode. J. Geophys. Res. – Atmos. 2004, 109, D08102.
| On the decay of stratospheric pollutants: diagnosing the longest-lived eigenmode.Crossref | GoogleScholarGoogle Scholar |
[7] B. C. O’Neill, S. R. Gaffin, F. N. Tubiello, M. Oppenheimer, Reservoir timescales for anthropogenic CO2 in the atmosphere. Tellus B Chem. Phys. Meterol. 1994, 46, 378.
| Reservoir timescales for anthropogenic CO2 in the atmosphere.Crossref | GoogleScholarGoogle Scholar |
[8] J. S. Fuglestvedt, I. S. A. Isaksen, W. C. Wang, Estimates of indirect global warming potentials for CH4, CO and NOx. Clim. Change 1996, 34, 405.
| Estimates of indirect global warming potentials for CH4, CO and NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXoslGktQ%3D%3D&md5=c5a0445d931ec46f179bd3c41a77a1e2CAS |
[9] J. S. Daniel, S. Solomon, D. L. Albritton, On the evaluation of halocarbon radiative forcing and global warming potentials. J. Geophys. Res. – Atmos. 1995, 100, 1271.
| On the evaluation of halocarbon radiative forcing and global warming potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlaqs74%3D&md5=7521ec50cf5e49d1ff87f2189f9826caCAS |
[10] S. Solomon, D. L. Albritton, Time-dependent ozone depletion potentials for short-term and long-term forecasts. Nature 1992, 357, 33.
| Time-dependent ozone depletion potentials for short-term and long-term forecasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFemtbg%3D&md5=a4c0ddd6ec41eb347a4b6ffda5c8985aCAS |
[11] D. J. Wuebbles, Weighing functions for ozone depletion and greenhouse-gas effects on climate. Annu. Rev. Energy Environ. 1995, 20, 45.
| Weighing functions for ozone depletion and greenhouse-gas effects on climate.Crossref | GoogleScholarGoogle Scholar |
[12] D. L. Albritton, R. G. Derwent, I. S. A. Isaksen, M. Lal, D. J. Wuebbles, Trace gas radiative forcing indices, in Climate Change 1994, Intergovernmental Panel on Climate Change (Eds J. T. Houghton, L. G. Meira-Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris, K. Maskell) 1995, pp. 202–231 (Cambridge University Press: Cambridge UK).
[13] P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland, Changes in atmospheric constituents and in radiative forcing in Climate Change 2007: The Physical Science Basis Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning) 2007, pp. 129–234 (Cambridge University Press: Cambridge UK).
[14] Scientific Assessment of Ozone Depletion: 2010 2010 (World Meteorological Organization: Geneva, Switzerland).
[15] M. J. Prather, J. Hsu, Coupling of nitrous oxide and methane by global atmospheric chemistry. Science 2010, 330, 952.
| Coupling of nitrous oxide and methane by global atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2isbvK&md5=6d926a53e8bb247efbd24fb509c5b3e0CAS | 21071666PubMed |
[16] S. C. Olsen, B. J. Hannegan, X. Zhu, M. J. Prather, Evaluating ozone depletion from very short-lived halocarbons. Geophys. Res. Lett. 2000, 27, 1475.
| Evaluating ozone depletion from very short-lived halocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVGhs7s%3D&md5=a3094db51e07dc953c317694718da419CAS |
[17] C. H. Bridgeman, J. A. Pyle, D. E. Shallcross, A three-dimensional model calculation of the ozone depletion potential of 1-bromopropane (1-C3H7Br). J. Geophys. Res. – Atmos. 2000, 105, 26 493.
| A three-dimensional model calculation of the ozone depletion potential of 1-bromopropane (1-C3H7Br).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVGrs7g%3D&md5=15aedc51c7dd190b8a134beb353911d8CAS |
[18] D. J. Wuebbles, K. O. Patten, M. T. Johnson, R. Kotamarthi, New methodology for Ozone depletion potentials of short-lived compounds: n-propyl bromide as an example. J. Geophys. Res. – Atmos. 2001, 106, 14 551.
| New methodology for Ozone depletion potentials of short-lived compounds: n-propyl bromide as an example.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVGqtrk%3D&md5=7cd5ee31c111ef7ff7c78d1b2217c81aCAS |
[19] A. Mellouki, R. K. Talukdar, A. M. Schmoltner, T. Gierczak, M. J. Mills, S. Solomon, A. R. Ravishankara, Atmospheric lifetimes and ozone depletion potentials of methyl-bromide (CH3Br) and dibromomethane (CH2Br2). Geophys. Res. Lett. 1992, 19, 2059.
| Atmospheric lifetimes and ozone depletion potentials of methyl-bromide (CH3Br) and dibromomethane (CH2Br2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFKqsrc%3D&md5=607c37d8ece6a706919670a32571baf1CAS |
[20] M. J. Prather, Time scales in atmospheric chemistry: theory, GWPs for CH4 and CO, and runaway growth. Geophys. Res. Lett. 1996, 23, 2597.
| Time scales in atmospheric chemistry: theory, GWPs for CH4 and CO, and runaway growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFWis74%3D&md5=01fec7d1a15bbe8a3a6ab26b29636f77CAS |
[21] F. Raes, H. Liao, W. T. Chen, J. H. Seinfeld, Atmospheric chemistry–climate feedbacks. J. Geophys. Res. – Atmos. 2010, 115, D12121.
| Atmospheric chemistry–climate feedbacks.Crossref | GoogleScholarGoogle Scholar |
[22] M. J. Prather, D. Ehhalt, F. Dentener, R. Derwent, E. Dlugokencky, E. Holland, I. Isaksen, J. Katime, V. Kirchhoff, P. Matson, P. Midgley, M. Wang, Atmospheric chemistry and greenhouse gases, in Climate Change 2001: The Scientific Basis Third Assessment Report of the Intergovernmental Panel on Climate Change (Eds J. T. Houghton, Y. Ding, D. J. Griggs) 2001, pp. 239–287 (Cambridge University Press: Cambridge UK).
[23] Scientific Assessment of Ozone Depletion: 2006 2006 (World Meteorological Organization: Geneva, Switzerland).
[24] M. R. Manning, Characteristic modes of isotopic variations in atmospheric chemistry. Geophys. Res. Lett. 1999, 26, 1263.
| Characteristic modes of isotopic variations in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslCltLw%3D&md5=a7da11fb08006511a805b98d7b387b8dCAS |
[25] B. F. Farrell, P. J. Ioannou, Perturbation dynamics in atmospheric chemistry. J. Geophys. Res. – Atmos. 2000, 105, 9303.
| Perturbation dynamics in atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFSgtLs%3D&md5=7fd92b60f5b19c93e54bff60778db7c6CAS |
[26] K. R. Lassey, D. C. Lowe, M. R. Manning, The trend in atmospheric methane δ13C implications for isotopic constraints on the global methane budget. Global Biogeochem. Cycles 2000, 14, 41.
| The trend in atmospheric methane δ13C implications for isotopic constraints on the global methane budget.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGnu78%3D&md5=63026e8f6743a144148d971cc70b4df8CAS |
[27] J. Y. Xu, A. K. Smith, Evaluation of processes that affect the photochemical timescale of the sodium layer. J. Atmos. Sol. Terr. Phys. 2005, 67, 1216.
| Evaluation of processes that affect the photochemical timescale of the sodium layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslahtLo%3D&md5=d2eff39c8c3084b0493e7ff85d2583f7CAS |
[28] M. J. Prather, Lifetimes of atmospheric species: integrating environmental impacts. Geophys. Res. Lett. 2002, 29, 2063.
| Lifetimes of atmospheric species: integrating environmental impacts.Crossref | GoogleScholarGoogle Scholar |
[29] M. J. Prather, Time scales in atmospheric chemistry: coupled perturbations to N2O, NOy, and O3. Science 1998, 279, 1339.
| Time scales in atmospheric chemistry: coupled perturbations to N2O, NOy, and O3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtleqsbs%3D&md5=01309eed97c3d33d7ff3532050a2fc67CAS | 9478891PubMed |
[30] J. Hsu, M. J. Prather, Global long-lived chemical modes excited in a 3-D chemistry transport model: stratospheric N2O, NOy, O3 and CH4 chemistry. Geophys. Res. Lett. 2010, 37, L07805.
| Global long-lived chemical modes excited in a 3-D chemistry transport model: stratospheric N2O, NOy, O3 and CH4 chemistry.Crossref | GoogleScholarGoogle Scholar |
[31] T. M. Hall, D. W. Waugh, Stratospheric residence time and its relationship to mean age. J. Geophys. Res. 2000, 105, 6773.
| Stratospheric residence time and its relationship to mean age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVakurs%3D&md5=745002d9aca910894e79fb769758dd45CAS |
[32] T. M. Hall, R. A. Plumb, Age as a diagnostic of stratospheric transport. J. Geophys. Res. – Atmos. 1994, 99, 1059.
| Age as a diagnostic of stratospheric transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltFKgt7s%3D&md5=848a27cca54c090028d1304f32c74a7bCAS |
[33] M. J. Prather, X. Zhu, Q. Tang, J. N. Hsu, J. L. Neu, An atmospheric chemist in search of the tropopause. J. Geophys. Res. – Atmos. 2011, 116, D04306.
| An atmospheric chemist in search of the tropopause.Crossref | GoogleScholarGoogle Scholar |
[34] L. Jaeglé, D. J. Jacob, W. H. Brune, P. O. Wennberg, Chemistry of HOx radicals in the upper troposphere. Atmos. Environ. 2001, 35, 469.
| Chemistry of HOx radicals in the upper troposphere.Crossref | GoogleScholarGoogle Scholar |
[35] G. Sonnemann, B. Fichtelmann, Subharmonics, cascades of period doubling, and chaotic behavior of photochemistry of the mesopause region. J. Geophys. Res. – Atmos. 1997, 102, 1193.
| Subharmonics, cascades of period doubling, and chaotic behavior of photochemistry of the mesopause region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFGlsr4%3D&md5=c1ab86e3ca540daa77d8debea67a6f99CAS |
[36] J. G. Esler, An integrated approach to mixing sensitivities in tropospheric chemistry: a basis for the parameterization of subgrid-scale emissions for chemistry transport models. J. Geophys. Res. – Atmos. 2003, 108, 4632.
| An integrated approach to mixing sensitivities in tropospheric chemistry: a basis for the parameterization of subgrid-scale emissions for chemistry transport models.Crossref | GoogleScholarGoogle Scholar |
[37] N. Bell, D. E. Heard, M. J. Pilling, A. S. Tomlin, Atmospheric lifetime as a probe of radical chemistry in the boundary layer. Atmos. Environ. 2003, 37, 2193.
| Atmospheric lifetime as a probe of radical chemistry in the boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVCrs70%3D&md5=535f0a90d234a239ef37cee2b24ce78aCAS |
[38] O. Wild, M. J. Prather, H. Akimoto, J. K. Sundet, I. S. A. Isaksen, J. H. Crawford, D. D. Davis, M. A. Avery, Y. Kondo, G. W. Sachse, S. T. Sandholm, Chemical transport model ozone simulations for spring 2001 over the western Pacific: regional ozone production and its global impacts. J. Geophys. Res. – Atmos. 2004, 109, D15S02.
[39] V. Grewe, The origin of ozone. Atmos. Chem. Phys. 2006, 6, 1495.
| The origin of ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Ohtbs%3D&md5=b6dc464664bbcef37a9160254d5d1e35CAS |
[40] J. F. Lamarque, P. G. Hess, Model analysis of the temporal and geographical origin of the CO distribution during the TOPSE campaign. J. Geophys. Res. – Atmos. 2003, 108, 8354.
| Model analysis of the temporal and geographical origin of the CO distribution during the TOPSE campaign.Crossref | GoogleScholarGoogle Scholar |
[41] S. A. Montzka, C. M. Spivakovsky, J. H. Butler, J. W. Elkins, L. T. Lock, D. J. Mondeel, New observational constraints for atmospheric hydroxyl on global and hemispheric scales. Science 2000, 288, 500.
| New observational constraints for atmospheric hydroxyl on global and hemispheric scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVKhur0%3D&md5=71157fb72dc600940c4d977880d2fa6eCAS | 10775106PubMed |
[42] S. A. Montzka, M. Krol, E. Dlugokencky, B. Hall, P. Jockel, J. Lelieveld, Small interannual variability of global atmospheric hydroxyl. Science 2011, 331, 67.
| Small interannual variability of global atmospheric hydroxyl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslan&md5=cade4d8831c263e6f1b018938ee1a993CAS | 21212353PubMed |
[43] M. Rigby, R. G. Prinn, S. O’Doherty, S. A. Montzka, A. McCulloch, C. M. Harth, J. Mühle, P. K. Salameh, R. F. Weiss, D. Young, P. G. Simmonds, B. D. Hall, G. S. Dutton, D. Nance, D. J. Mondeel, J. W. Elkins, P. B. Krummel, L. P. Steele, P. J. Fraser, Re-evaluation of the lifetimes of the major CFCs and CH3CCl3 using atmospheric trends. Atmos. Chem. Phys. Discuss. 2012, 12, 24 469.
| Re-evaluation of the lifetimes of the major CFCs and CH3CCl3 using atmospheric trends.Crossref | GoogleScholarGoogle Scholar |
[44] C. D. Holmes, M. J. Prather, O. A. Sovde, G. Myhre, Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmos. Chem. Phys. 2013, 13, 285.
| Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions.Crossref | GoogleScholarGoogle Scholar |
[45] S. A. Yvon-Lewis, J. H. Butler, The potential effect of oceanic biological degradation on the lifetime of atmospheric CH3Br. Geophys. Res. Lett. 1997, 24, 1227.
| The potential effect of oceanic biological degradation on the lifetime of atmospheric CH3Br.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFegsb8%3D&md5=91adeffb88bd3c4744af192f80233e72CAS |
[46] M. J. Prather, Timescales in atmospheric chemistry: CH3Br, the ocean, and ozone depletion potentials. Global Biogeochem. Cycles 1997, 11, 393.
| Timescales in atmospheric chemistry: CH3Br, the ocean, and ozone depletion potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Krurs%3D&md5=f9b84c83141f468ca66174092c821186CAS |
[47] J. H. Butler, Scientific uncertainties in the budget of atmospheric methyl bromide. Atmos. Environ. 1996, 30, R1.
[48] L. Hu, S. A. Yvon-Lewis, Y. Liu, T. S. Bianchi, The ocean in near equilibrium with atmospheric methyl bromide. Global Biogeochem. Cycles 2012, 24, 1227.
[49] J. S. Daniel, S. Solomon, On the climate forcing of carbon monoxide. J. Geophys. Res. – Atmos. 1998, 103, 13 249.
| On the climate forcing of carbon monoxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktleksLg%3D&md5=c9a617d976dc2ce49c591bd97856437eCAS |
[50] K. P. Shine, T. K. Berntsen, J. S. Fuglestvedt, R. Sausen, Scientific issues in the design of metrics for inclusion of oxides of nitrogen in global climate agreements. Proc. Natl. Acad. Sci. USA 2005, 102, 15 768.
| Scientific issues in the design of metrics for inclusion of oxides of nitrogen in global climate agreements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wru7jL&md5=3d3f19776c7b197d91d9a4bf6a86d2beCAS |
[51] O. Wild, M. J. Prather, Excitation of the primary tropospheric chemical mode in a global three-dimensional model. J. Geophys. Res. – Atmos. 2000, 105, 24 647.
| Excitation of the primary tropospheric chemical mode in a global three-dimensional model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVyrtbk%3D&md5=23db02003de0c0627ea5550925578685CAS |
[52] C. D. Holmes, M. J. Prather, A. O. Søvde, G. Myhre, Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmos. Chem. Phys. Discuss. 2012, 12, 20 931.
| Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions.Crossref | GoogleScholarGoogle Scholar |
[53] M. J. Prather, C. D. Holmes, J. Hsu, Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 2012, 39, L09803.
| Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar |