Benthic exchange of sedimentary metals (Cd, Cu, Fe, Mn, Ni and Zn) in the Deûle River (Northern France)
Beatriz Lourino-Cabana A , Ludovic Lesven A , Gabriel Billon A , Lionel Denis B C , Baghdad Ouddane A E and Abdel Boughriet A DA Université Lille Nord de France – CNRS UMR 8217 Géosystèmes, Equipe Chimie et Sédiment, Bâtiment C8, 59655 Villeneuve d’Ascq Cedex, France.
B Université Lille Nord de France – CNRS UMR 8187 LOG, Station Marine de Wimereux, 62930 Wimereux, France.
C IRD – UMR 6535 LOPB, Universidad Autónoma Metropolitana, Departamento de Hidrobiología/IRD, 09340 Iztapalapa, México DF, México.
D Université Lille Nord de France, Rue de l’université, PO Box 819, 62408 Béthune, France.
E Corresponding author. Email: Baghdad.ouddane@univ-lille1.fr
Environmental Chemistry 9(5) 485-494 https://doi.org/10.1071/EN12046
Submitted: 6 July 2011 Accepted: 6 October 2012 Published: 19 November 2012
Environmental context. Exchange processes at the water–sediment interface can release metals to riverine waters, having negative effects on organisms in the water column. We investigate the geochemical processes and metal exchange between the surface sediment and the overlying water under metal contamination conditions. Results suggest that the sediment can be a significant source of metal pollution in aquatic systems, particularly during anoxic events.
Abstract. Experiments were performed on the Deûle River (Northern France), which is strongly polluted by smelting plants, in the aim to investigate the influence of diagenetic processes and benthic macro-faunal activity on trace metal (Cd, Cu, Ni and Zn) and major metal (Fe, Mn) exchanges occurring at the water–sediment interface. Diffusive metal fluxes were determined from pore water metal concentration gradients measured in sediment cores. Benthic metal fluxes were evaluated using incubation chambers under dark conditions, and by further examining key variables (O2, CO2, redox potential and pH) affecting metal release and sequestration processes. As a whole, it was demonstrated that benthic fluxes were strongly dependent upon medium oxygenation and generation of colloidal iron oxides and hydroxides at the overlying water–sediment interface, raising the possibility of trace-metal adsorption and (co)precipitation.
Additional keywords: colloids, diffusive flux, overlying water, pore water, sediment, trace metals.
References
[1] L. Lesven, B. Lourino-Cabana, G. Billon, P. Recourt, B. Ouddane, O. Mikkelsen, A. Boughriet, On metal diagenesis in contaminated sediments of the Deûle River (Northern France) Appl. Geochem. 2010, 25, 1361.| On metal diagenesis in contaminated sediments of the Deûle River (Northern France)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVamt7jL&md5=7fc1fe527078bfa696cd035e0d102d5bCAS |
[2] R. Chester, Marine Geochemistry 1990 (Unwin Hyman Ltd: London).
[3] C. Zago, G. Capodaglio, S. Ceradini, G. Ciceri, L. Abelmoschi, F. Soggia, P. Cescon, G. Scarponi, Benthic fluxes of cadmium, lead, copper and nitrogen species in the northern Adriatic Sea in front of the River Po outflow, Italy Sci. Total Environ. 2000, 246, 121.
| Benthic fluxes of cadmium, lead, copper and nitrogen species in the northern Adriatic Sea in front of the River Po outflow, ItalyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlemsQ%3D%3D&md5=7bf828b60e8b48facbce304cbdff11e8CAS |
[4] K. W. Warnken, G. A. Gill, L. L. Griffin, P. H. Santschi, Sediment–water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas Mar. Chem. 2001, 73, 215.
| Sediment–water exchange of Mn, Fe, Ni and Zn in Galveston Bay, TexasCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFSmsg%3D%3D&md5=b90235f84b5ae75856dcb6cca0d4feffCAS |
[5] A. Tengberg, H. Stahl, G. Gust, V. Müller, U. Arning, H. Andersson, P. O. J. Hall, Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics Prog. Oceanogr. 2004, 60, 1.
| Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamicsCrossref | GoogleScholarGoogle Scholar |
[6] L. Denis, C. Grenz, E. Alliot, M. Rodier, Temporal variability in dissolved inorganic nitrogen fluxes at the sedimentent-water interface and related annual budget on a continental shelf (NW Mediterranean) Oceanol. Acta 2001, 24, 85.
| Temporal variability in dissolved inorganic nitrogen fluxes at the sedimentent-water interface and related annual budget on a continental shelf (NW Mediterranean)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVWmsbY%3D&md5=1eb27de2a9cb5adab9cff60750d407ffCAS |
[7] E. Almroth, A. Tengberg, J. H. Andersson, S. Pakhomova, P. O. J. Hall, Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea Cont. Shelf Res. 2009, 29, 807.
| Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic SeaCrossref | GoogleScholarGoogle Scholar |
[8] J. Blasco, V. Sáenz, A. Gómez-Parra, Heavy metal fluxes at the sediment-water interface of three coastal ecosystems from south-west of the Iberian Peninsula Sci. Total Environ. 2000, 247, 189.
| Heavy metal fluxes at the sediment-water interface of three coastal ecosystems from south-west of the Iberian PeninsulaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVKhu7Y%3D&md5=d18e3b763a192c5d5e2528f2263a575cCAS |
[9] C. Turetta, G. Capodaglio, W. Cairns, S. Rabar, P. Cescon, Benthic fluxes of trace metals in the lagoon of Venice Microchem. J. 2005, 79, 149.
| Benthic fluxes of trace metals in the lagoon of VeniceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWluw%3D%3D&md5=50901afd3579e7fb0809592983625783CAS |
[10] S. V. Pakhomova, P. O. J. Hall, M. Y. Kononets, A. G. Rozanov, A. Tengberg, A. V. Vershinin, Fluxes of iron and manganese across the sediment–water interface under various redox conditions Mar. Chem. 2007, 107, 319.
| Fluxes of iron and manganese across the sediment–water interface under various redox conditionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWntbrJ&md5=89713699d4c9666777134c05dcbba687CAS |
[11] M. F. Soto-Jiménez, F. Paez-Osuna, Diagenetic processes on metals in hypersaline mudflat sediments from a subtropical saltmarsh (SE Gulf of California): postdepositional mobility and geochemical fractions Appl. Geochem. 2008, 23, 1202.
| Diagenetic processes on metals in hypersaline mudflat sediments from a subtropical saltmarsh (SE Gulf of California): postdepositional mobility and geochemical fractionsCrossref | GoogleScholarGoogle Scholar |
[12] A. Stockdale, W. Davison, H. Zhang, Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence Earth Sci. Rev. 2009, 92, 81.
| Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidenceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslSjsg%3D%3D&md5=f981a46b32ca13400ffc917117b44ae8CAS |
[13] S. Tankere-Muller, H. Zhang, W. Davison, N. Finke, O. Larsen, H. Stahl, R. N. Glud, Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment Mar. Chem. 2007, 106, 192.
| Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sedimentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSmur0%3D&md5=48c0a4b1875ed971546566329d4465a7CAS |
[14] B. Louriño-Cabana, L. Lesven, A. Charriau, G. Billon, B. Ouddane, A. Boughriet, Potential risks of metal toxicity in contaminated sediments of Deûle River in Northern France J. Hazard. Mater. 2011, 186, 2129.
| Potential risks of metal toxicity in contaminated sediments of Deûle River in Northern FranceCrossref | GoogleScholarGoogle Scholar |
[15] M. Varol, B. Åžen, Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey Catena 2012, 92, 1.
| Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, TurkeyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Gjs7Y%3D&md5=206fa84ae36d5a1f3f7e412ecfb76984CAS |
[16] A. Boughriet, N. Proix, G. Billon, P. Recourt, B. Ouddane, Environmental impacts of heavy metal discharges from a smelter in Deûle-canal sediments (Northern France): concentration levels and chemical distribution Water Air Soil Pollut. 2007, 180, 83.
| Environmental impacts of heavy metal discharges from a smelter in Deûle-canal sediments (Northern France): concentration levels and chemical distributionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFWisL8%3D&md5=637ae900868d8e744865bc79c4522cd8CAS |
[17] A. Boughriet, P. Recourt, N. Proix, G. Billon, M. Leermakers, J. C. Fischer, B. Ouddane, Fractionation of anthropogenic lead and zinc in Deûle River sediments Environ. Chem. 2007, 4, 114.
| Fractionation of anthropogenic lead and zinc in Deûle River sedimentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1entLw%3D&md5=1c9505844b678dbd7c73ce56d610e26cCAS |
[18] T. Sterckeman, F. Doua, N. Proix, H. Fourrier, E. Perdrix, Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France Water Air Soil Pollut. 2002, 135, 173.
| Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of FranceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Glsrs%3D&md5=75092a5fb870b129b9aeb232ea225b14CAS |
[19] T. Sterckeman, T. Douay, N. Proix, H. Fournier, Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France Environ. Pollut. 2000, 107, 377.
| Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of FranceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslOkurw%3D&md5=75def0f9ff6d8217ae3fcb5e9e7b13bdCAS |
[20] T. Sterckeman, F. Douay, D. Baize, H. Fourrier, N. Proix, C. Schvartz, Trace elements in soils developed in sedimentary materials from Northern France Geoderma 2006, 136, 912.
| Trace elements in soils developed in sedimentary materials from Northern FranceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlaktr3O&md5=88d73d6991e84c8a3c4b8912e65da96fCAS |
[21] L. Lesven, B. Lourino-Cabana, G. Billon, N. Proix, P. Recourt, B. Ouddane, J. C. Fischer, A. Boughriet, Water-quality diagnosis and metal distribution in a strongly polluted zone of Deûle River (Northern France) Water Air Soil Pollut. 2009, 198, 31.
| Water-quality diagnosis and metal distribution in a strongly polluted zone of Deûle River (Northern France)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ogtbc%3D&md5=af47d9f14cf47f3513f0330a6a87b5dbCAS |
[22] B. Lourino-Cabana, L. Lesven, G. Billon, N. Proix, P. Recourt, B. Ouddane, J. C. Fischer, A. Boughriet, Impacts of metal contamination in calcareous waters of Deûle River (France): water quality and thermodynamic studies on metallic mobility Water Air Soil Pollut. 2010, 206, 187.
| Impacts of metal contamination in calcareous waters of Deûle River (France): water quality and thermodynamic studies on metallic mobilityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVWjsg%3D%3D&md5=fc621717997be95fc2babdfcf9e3827fCAS |
[23] L. Denis, Dynamique des flux d’oxygène et de sels nutritifs à l’interface eau-sédiment sur la marge continentale du golfe du Lion (Méditerranée Nord-Occidentale) 1999, PhD thesis, Université Aix-Marseille, Marseille.
[24] P. O. J. Hall, S. Hulth, G. Hulthe, A. Landén, A. Tengberg, Benthic nutrient fluxes on a basin-wide scale in the Skagerrak (North-Eastern North Sea) J. Sea Res. 1996, 35, 123.
| Benthic nutrient fluxes on a basin-wide scale in the Skagerrak (North-Eastern North Sea)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xktlylt7c%3D&md5=3d6f849b52636b81c8d2b259c1646719CAS |
[25] J. P. Gustafsson, Visual MINTEQ ver. 3.0 2006 (Royal Institute of Technology: Stockholm, Sweden). Available at http://www.lwr.kth.se/English/OurSoftware/vminteq/ [Verified 23 October 2012.
[26] J. Clavier, G. Boucher, C. Garrigue, Benthic respiratory and photosynthetic quotients in a tropical lagoon C. R. Acad. Sci. III – Vie 1994, 317, 937.
[27] J. R. M. Chisholm, J. C. Collingwood, E. F. Gill, A novel in situ respirometer for investigating photosynthesis and calcification in crustose coralline algae J. Exp. Mar. Biol. Ecol. 1990, 141, 15.
| A novel in situ respirometer for investigating photosynthesis and calcification in crustose coralline algaeCrossref | GoogleScholarGoogle Scholar |
[28] T. G. Jacques, M. E. Q. Pilson, Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts Mar. Biol. 1980, 60, 167.
| Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbiontsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksVemuw%3D%3D&md5=02f2fb833443863792f69cf357292d01CAS |
[29] F. O. Andersen, E. Kristensen, The influence of macrofauna on estuarine benthic community metabolism: a microcosm study Mar. Biol. 1988, 99, 591.
| The influence of macrofauna on estuarine benthic community metabolism: a microcosm studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXot1Sgsw%3D%3D&md5=f2bf23d65ccb0360162fff63ed97a174CAS |
[30] L. Lesven, Y. Gao, G. Billon, M. Leermakers, B. Ouddane, J. C. Fischer, W. Baeyens, Early diagenetic processes aspects controlling the mobility of dissolved trace metals in three riverine sediment columns Sci. Total Environ. 2008, 407, 447.
| Early diagenetic processes aspects controlling the mobility of dissolved trace metals in three riverine sediment columnsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWiu7fE&md5=013f3dc5ddd4a5a406d4f360b820a02bCAS |
[31] R. A. Berner, Early Diagenesis: a Theoretical Approach 1980 (Princeton University Press: Princeton, NJ).
[32] W. J. Ullman, R. C. Aller, Diffusion coefficients in nearshore marine sediments Limnol. Oceanogr. 1982, 27, 552.
| Diffusion coefficients in nearshore marine sedimentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvFGrtLk%3D&md5=ef700f422a6f333b1483ccd6904c149eCAS |
[33] B. P. Boudreau, The diffusive tortuosity of fine-grained unlithified sediments Geochim. Cosmochim. Acta 1996, 60, 3139.
| The diffusive tortuosity of fine-grained unlithified sedimentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVSrtbo%3D&md5=47e9423c693a6db6ab0e5c1fba2fceb2CAS |
[34] G. E. Archie, The electrical resistivity log as an aid in determining some reservoir characteristics Trans. AIME 1942, 146, 54.
[35] N. Iversen, B. B. Jørgensen, Diffusion coefficients of sulfate and methane in marine sediments: influence of porosity Geochim. Cosmochim. Acta 1993, 57, 571.
| Diffusion coefficients of sulfate and methane in marine sediments: influence of porosityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsFWhtbo%3D&md5=fd740d58ed99d89d67e4bca9cca1c68eCAS |
[36] M. Maerki, B. Wehrli, C. Dinkel, B. Müller, The influence of tortuosity on molecular diffusion in freshwater sediments of high porosity Geochim. Cosmochim. Acta 2004, 68, 1519.
| The influence of tortuosity on molecular diffusion in freshwater sediments of high porosityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlWrtb8%3D&md5=ecf8b46ad86a3b637433c9b849710c84CAS |
[37] A. Lerman, Geochemical Processes: Water and Sediment Environment 1979 (Wiley: New York).
[38] H. L. Weissberg, Effective diffusion coefficient in porous media J. Appl. Phys. 1963, 34, 2636.
| Effective diffusion coefficient in porous mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksVGjtLY%3D&md5=5a363e3e020f8eaf19c615e51572eb44CAS |
[39] J. P. R. A. Sweerts, M. J. Baer-Gilissen, A. A. Cornelese, Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands) Limnol. Oceanogr. 1991, 36, 1124.
| Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFeitrw%3D&md5=d1030dd6210afbd48be5ae3065561113CAS |
[40] L. Yuan-Hui, S. Gregory, Diffusion of ions in sea water and in deep-sea sediments Geochim. Cosmochim. Acta 1974, 38, 703.
| Diffusion of ions in sea water and in deep-sea sedimentsCrossref | GoogleScholarGoogle Scholar |
[41] S. M. Henrichs, W. S. Reeburgh, Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy Geomicrobiol. J. 1987, 5, 191.
| Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXovFGrtQ%3D%3D&md5=048a1cf3240f1949686f6a2fc53e3d6dCAS |
[42] M. S. Caceci, A. Billon, Evidence for large organic scatterers (50–200-nm diameter) in humic acid samples Org. Geochem. 1990, 15, 335.
| Evidence for large organic scatterers (50–200-nm diameter) in humic acid samplesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFOmsg%3D%3D&md5=fe6c1769496e61bade1bb1d926474072CAS |
[43] B. T. Hargrave, G. A. Phillips, Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment Estuar. Coast. Shelf Sci. 1981, 12, 725.
| Annual in situ carbon dioxide and oxygen flux across a subtidal marine sedimentCrossref | GoogleScholarGoogle Scholar |
[44] R. P. Mason, E. H. Kim, J. Cornwell, D. Heyes, An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment Mar. Chem. 2006, 102, 96.
| An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sedimentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWrt7vP&md5=f2c60e433c34e896a5a9445d11bc06c9CAS |
[45] W. Berelson, J. McManus, K. Coale, K. Johnson, D. Burdige, T. Kilgore, D. Colodner, F. Chavez, R. Kudela, J. Boucher, A time series of benthic flux measurements from Monterey Bay, CA Cont. Shelf Res. 2003, 23, 457.
| A time series of benthic flux measurements from Monterey Bay, CACrossref | GoogleScholarGoogle Scholar |
[46] E. Vasyukova, O. S. Pokrovsky, J. Viers, B. Dupré, New operational method of testing colloid complexation with metals in natural waters Appl. Geochem. 2012, 27, 1226.
| New operational method of testing colloid complexation with metals in natural watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1yisro%3D&md5=e212423ba01f6ca81a5394a991120fa1CAS |
[47] O. S. Pokrovsky, J. Schott, Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia) Chem. Geol. 2002, 190, 141.
| Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFaisLk%3D&md5=d75075b56bbc9acfc5cbc652919dbc5eCAS |
[48] B. Stolpe, M. Hassellov, Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions Limnol. Oceanogr. 2010, 55, 187.
| Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSgtLY%3D&md5=bb8c66839ad357e2b39463816e69aca2CAS |
[49] B. Stolpe, L. Guo, A. M. Shiller, M. Hassellov, Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation Mar. Chem. 2010, 118, 119.
| Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFeksbY%3D&md5=19193ba95031a31982039d1921d88e72CAS |
[50] DIRECTIVE 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union 2008, L 348, 84. Available at http://faolex.fao.org/docs/pdf/eur84568.pdf [verified 7 November 2012].
[51] J. L. Banks, D. J. Ross, M. J. Keough, B. D. Eyre, C. K. Macleod, Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40-day laboratory incubation experiment Sci. Total Environ. 2012, 420, 229.
| Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40-day laboratory incubation experimentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Ggt7s%3D&md5=7631bd84b4b4a5b07d5ca3765827e009CAS |
[52] P. Monterroso, P. Pato, M. E. Pereira, G. E. Millward, C. Vale, A. Duarte, Metal-contaminated sediments in a semi-closed basin: implications for recovery Estuar. Coast. Shelf Sci. 2007, 71, 148.
| Metal-contaminated sediments in a semi-closed basin: implications for recoveryCrossref | GoogleScholarGoogle Scholar |
[53] M. R. Ponce, Distribución de Zn, Cd, Pb y Cu en sedimentos marinos costeros 1996, PhD thesis, University of Cádiz, Cádiz.
[54] G. Ciceri, S. Maran, W. Martinotti, G. Queirazza, Geochemical cycling of heavy metals in a marine coastal area: benthic flux determination from pore water profiles and in situ measurements using benthic chambers Hydrobiologia 1992, 235–236, 501.
| Geochemical cycling of heavy metals in a marine coastal area: benthic flux determination from pore water profiles and in situ measurements using benthic chambersCrossref | GoogleScholarGoogle Scholar |
[55] V. Cheevaporn, G. S. Jacinto, M. L. San Diego-McGlone, Heavy metal fluxes in Bang Pakong River Estuary, Thailand: sedimentary v. diffusive fluxes Mar. Pollut. Bull. 1995, 31, 290.
| Heavy metal fluxes in Bang Pakong River Estuary, Thailand: sedimentary v. diffusive fluxesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislSqsA%3D%3D&md5=230fcbf1ebe4dc55d5883fa555627eb5CAS |
[56] W. Petersen, K. Wallmann, L. Pinglin, F. Schroeder, H. Knauth, Exchange of trace elements at the sediment-water interface during early diagenesis processes Mar. Freshwater Res. 1995, 46, 19.
| 1:CAS:528:DyaK2MXoslant7k%3D&md5=c68339e5459b1ff9f4199f841ea44991CAS |
[57] C. J. von der Heyden, M. G. New, Sediment chemistry: a history of mine contaminant remediation and an assessment of processes and pollution potential J. Geochem. Explor. 2004, 82, 35.
| Sediment chemistry: a history of mine contaminant remediation and an assessment of processes and pollution potentialCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGmurg%3D&md5=0bd8a63ecef8e4c15fcfc38cab3c31a4CAS |
[58] H. Elderfield, A. Hepworth, Diagenesis, metals and pollution in estuaries Mar. Pollut. Bull. 1975, 6, 85.
| Diagenesis, metals and pollution in estuariesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XpsFCnug%3D%3D&md5=08dede84d1b77e7f91aa22683afe22e3CAS |
[59] Y. Gao, Trace Metal Behavior in Sedimentary Environments 2009, PhD thesis, Vrije Universiteit Brussel, Brussels.
[60] I. Rivera-Duarte, A. R. Flegal, Porewater gradients and diffusive benthic fluxes of Co, Ni, Cu, Zn, and Cd in San Francisco Bay Croat. Chem. Acta 1997, 70, 389.
| 1:CAS:528:DyaK2sXivFegsrY%3D&md5=ab321838ce27cde6d8d5cf92e22bb848CAS |
[61] H. Zhang, W. Davison, S. Miller, W. Tych, In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT Geochim. Cosmochim. Acta 1995, 59, 4181.
| In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGTCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFCrtrc%3D&md5=642dcec2418e4745950838ff92a2bc5eCAS |
[62] A. Widerlund, Early diagenetic remobilization of copper in near-shore marine sediments: a quantitative pore-water model Mar. Chem. 1996, 54, 41.
| Early diagenetic remobilization of copper in near-shore marine sediments: a quantitative pore-water modelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFagsrc%3D&md5=d0991fc1cad055a9d978016636dc902fCAS |
[63] M. Caetano, M. J. Madureira, C. Vale, Exchange of Cu and Cd across the sediment-water interface in intertidal mud flats from Ria Formosa (Portugal) Hydrobiologia 2007, 587, 147.
| Exchange of Cu and Cd across the sediment-water interface in intertidal mud flats from Ria Formosa (Portugal)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslCgtrc%3D&md5=1d3f2db140f5a140b58625fb4337bd2eCAS |
[64] J. Santos-Echeandia, R. Prego, A. Cobelo-García, G. E. Millward, Porewater geochemistry in a Galician Ria (NW Iberian Peninsula): implications for benthic fluxes of dissolved trace elements (Co, Cu, Ni, Pb, V, Zn) Mar. Chem. 2009, 117, 77.
| Porewater geochemistry in a Galician Ria (NW Iberian Peninsula): implications for benthic fluxes of dissolved trace elements (Co, Cu, Ni, Pb, V, Zn)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyitb3F&md5=852dd1b610ff66f1ef403f938cf66f0fCAS |
[65] S. F. G. Westerlund, L. G. Anderson, P. O. J. Hall, Å. Iverfeldt, M. M. R. Van Der Loeff, B. Sundby, Benthic fluxes of cadmium, copper, nickel, zinc and lead in the coastal environment Geochim. Cosmochim. Acta 1986, 50, 1289.
| Benthic fluxes of cadmium, copper, nickel, zinc and lead in the coastal environmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVymtbw%3D&md5=b9bafaa2b9a0d09da3b5257a7dc2f908CAS |
[66] D. Point, M. Monperrus, E. Tessier, D. Amouroux, L. Chauvaud, G. Thouzeau, F. Jean, E. Amice, J. Grall, A. Leynaert, J. Clavier, O. F. X. Donard, Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France) Estuar. Coast. Shelf Sci. 2007, 72, 457.
| Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France)Crossref | GoogleScholarGoogle Scholar |
[67] G. C. Shank, S. A. Skrabal, R. F. Whitehead, R. J. Kieber, Fluxes of strong Cu-complexing ligands from sediments of an organic-rich estuary Estuar. Coast. Shelf Sci. 2004, 60, 349.
| Fluxes of strong Cu-complexing ligands from sediments of an organic-rich estuaryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFSks70%3D&md5=1b99e0c1f29ea3464e3932c736d28bafCAS |