Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Cyanobacteria produce arsenosugars

Shin-ichi Miyashita A C , Shoko Fujiwara A , Mikio Tsuzuki A B and Toshikazu Kaise A D
+ Author Affiliations
- Author Affiliations

A School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.

B Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.

C Corresponding author. Present address: Environmental Standards Section, Inorganic Analytical Chemistry Division, National Metrology Institute of Japan, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan. Email: shinichi-miyashita@aist.go.jp

D Deceased November 2009.

Environmental Chemistry 9(5) 474-484 https://doi.org/10.1071/EN12061
Submitted: 24 January 2012  Accepted: 18 September 2012   Published: 9 November 2012

Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND

Environmental context. Although arsenic is known to accumulate in both marine and freshwater ecosystems, the pathways by which arsenic is accumulated and transferred in freshwater systems are reasonably unknown. This study revealed that freshwater cyanobacteria have the ability to produce arsenosugars from inorganic arsenic compounds. The findings suggest that not only algae, but cyanobacteria, play an important role in the arsenic cycle of aquatic ecosystems.

Abstract. Metabolic processes of incorporated arsenate in axenic cultures of the freshwater cyanobacteria Synechocystis sp. PCC 6803 and Nostoc (Anabaena) sp. PCC 7120 were examined. Analyses of arsenic compounds in cyanobacterial extracts using a high-performance liquid chromatography–inductively coupled plasma mass spectrometry system showed that both strains have an ability to biotransform arsenate into oxo-arsenosugar-glycerol within 20 min through (1) reduction of incorporated arsenate to arsenite and (2) methylation of produced arsenite to dimethylarsinic acid by methylarsonic acid as a possible intermediate product. In addition, Synechocystis sp. PCC 6803 cells are able to biosynthesise oxo-arsenosugar-phosphate from incorporated arsenate. These findings suggest that arsenosugar formation as well as arsenic methylation in cyanobacteria possibly play a significant role in the global arsenic cycle.

Additional keywords: arsenic biotransformation, arsenic metabolism, inductively coupled plasma mass spectrometry, Nostoc (Anabaena) sp. PCC 7120, photosynthetic prokaryote, Synechocystis sp. PCC 6803.


References

[1]  B. P. Rosen, Biochemistry of arsenic detoxification. FEBS Lett. 2002, 529, 86.
Biochemistry of arsenic detoxification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1KksbY%3D&md5=2356933a012f956e4f960f1d11f75508CAS |

[2]  F. J. Zhao, S. P. McGrath, A. A. Meharg, Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61, 535.
Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsb0%3D&md5=ce0232b3fd327dc19b9ec5c1af8cc6cbCAS |

[3]  R. Mukhopadhyay, B. P. Rosen, L. T. Phung, S. Silver, Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 2002, 26, 311.
Microbial arsenic: from geocycles to genes and enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVamsrg%3D&md5=bb038f4146f21579dbdef6b34050166cCAS |

[4]  A. Raab, J. Feldmann, Microbial transformation of metals and metalloids. Sci. Prog. 2003, 86, 179.
Microbial transformation of metals and metalloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslamtro%3D&md5=3e1b56c114cf1139ad94ed5b6baf97a2CAS |

[5]  J. Messens, S. Silver, Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol. 2006, 362, 1.
Arsenate reduction: thiol cascade chemistry with convergent evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVSrtL8%3D&md5=a54ab5b101ecad2bd6fb2dba2d88fa6bCAS |

[6]  M. Avron, A. T. Jagendorf, Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts. J. Biol. Chem. 1959, 234, 967.
| 1:CAS:528:DyaG1MXnvVChtQ%3D%3D&md5=4d4f50fa5f1a2adba0722433f0377037CAS |

[7]  M. F. Hughes, Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1.
Arsenic toxicity and potential mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKqsLs%3D&md5=a2fb86034319c63f41a5ea361624794aCAS |

[8]  M. Shariatpanahi, A. C. Anderson, A. A. Abdelghani, Uptake and distribution of sodium arsenate by bacterial cells. Trace Subst. Environ. Health 1982, 16, 170.
| 1:CAS:528:DyaL3sXltlGju7g%3D&md5=b869499f0475f8d487e46223acc798c0CAS |

[9]  F. V. Vidal, V. M. V. Vidal, Arsenic metabolism in marine bacteria and yeast. Mar. Biol. 1980, 60, 1.
Arsenic metabolism in marine bacteria and yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXpsleitA%3D%3D&md5=4bb0d4b5eaf404528e8cba0bc3f4b3e6CAS |

[10]  X. X. Yin, J. Chen, J. Qin, G.-X. Sun, B. P. Rosen, Y.-G. Zhu, Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 2011, 156, 1631.
Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWksbY%3D&md5=477b3ffa776589c0f1f60f799fbbf380CAS |

[11]  K. Hanaoka, S. Tagawa, T. Kaise, The fate of organoarsenic compounds in marine ecosystems. Appl. Organomet. Chem. 1992, 6, 139.
The fate of organoarsenic compounds in marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1ajurY%3D&md5=96888ff243b4b9e2ea73185a3bf351fbCAS |

[12]  J. S. Edmonds, K. A. Francesconi, J. A. Hansen, Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna. Experientia 1982, 38, 643.
Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks12js7s%3D&md5=2f853e6c7f8640b333dfe3ab262ca56cCAS |

[13]  J. S. Edmonds, K. A. Francesconi, Organoarsenic compounds in the marine environment, in Organometallic Compounds in the Environment (Ed. P. J. Craig) 2003, pp. 195–222 (Wiley: Chichester, UK).

[14]  Y. Shibata, M. Morita, A novel trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii. Agric. Biol. Chem. 1988, 52, 1087.
A novel trimethylated arseno-sugar isolated from the brown alga Sargassum thunbergii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksFWksLg%3D&md5=e4f07f28d4b65d960cc2ce4603052d05CAS |

[15]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Arsenocholine from anaerobic decomposition of a trimethylarsonioriboside. Appl. Organomet. Chem. 1992, 6, 247.
Arsenocholine from anaerobic decomposition of a trimethylarsonioriboside.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksV2jt7w%3D&md5=0137623f24be090d44f19ee4bed6cba0CAS |

[16]  J. S. Edmonds, Y. Shibata, K. A. Francesconi, R. J. Rippingale, M. Morita, Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl. Organomet. Chem. 1997, 11, 281.
Arsenic transformations in short marine food chains studied by HPLC-ICP MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12qsr8%3D&md5=6630d5291e333edadb512c1bf5da976bCAS |

[17]  S. Foster, D. Thomson, W. Maher, Uptake and metabolism of arsenate by axenic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar. Chem. 2008, 108, 172.
Uptake and metabolism of arsenate by axenic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVyrtQ%3D%3D&md5=7af0582d1114fb1c57b8d2eff493eda8CAS |

[18]  S. Khokiattiwong, W. Gössler, S. N. Pedersen, R. Cox, K. A. Francesconi, Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater. Appl. Organomet. Chem. 2001, 15, 481.
Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOqs7g%3D&md5=ffcd7dee87c8593ed438ff3ab505b800CAS |

[19]  S. C. R. Granchinho, C. M. Franz, E. Polishchuk, W. R. Cullen, K. J. Reimer, Transformation of arsenic(V) by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri. Appl. Organomet. Chem. 2002, 16, 721.
Transformation of arsenic(V) by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslWmtrk%3D&md5=1fcbd7199562f43b269e45914ac1110bCAS |

[20]  D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007, 21, 396.
Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1yit7s%3D&md5=0493daa3e459512498fb87fc5539fabaCAS |

[21]  L. A. Murray, A. Raab, I. L. Marr, J. Feldmann, Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl. Organomet. Chem. 2003, 17, 669.
Biotransformation of arsenate to arsenosugars by Chlorella vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFOrtL4%3D&md5=00f756f5d5afad289c14fd149b72e26bCAS |

[22]  J. L. Levy, J. L. Stauber, M. S. Adams, W. A. Maher, J. K. Kirby, D. F. Jolley, Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ. Toxicol. Chem. 2005, 24, 2630.
Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqt7bP&md5=8a624afc288151934f2a0365b1030d2bCAS |

[23]  S. Miyashita, M. Shimoya, Y. Kamidate, T. Kuroiwa, O. Shikino, S. Fujiwara, K. A. Francesconi, T. Kaise, Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS. Chemosphere 2009, 75, 1065.
Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWltLk%3D&md5=4e386fe9ea1fd72695560d58ef440557CAS |

[24]  S. Miyashita, S. Fujiwara, M. Tsuzuki, T. Kaise, Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 2011, 75, 522.
Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2lsL8%3D&md5=930fa995d2b9fbfcb8d438b354f4f4bcCAS |

[25]  S. Maeda, K. Mawatari, A. Ohki, K. Naka, Arsenic metabolism in a freshwater food chain: blue-green alga (Nostoc sp.) → shrimp (Neocaridina denticulata) → carp (Cyprinus carpio). Appl. Organomet. Chem. 1993, 7, 467.
Arsenic metabolism in a freshwater food chain: blue-green alga (Nostoc sp.) → shrimp (Neocaridina denticulata) → carp (Cyprinus carpio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXht12qsbw%3D&md5=248367c3b71a7c86ac7702f65443f68dCAS |

[26]  V. W.-M. Lai, W. R. Cullen, C. F. Harrington, K. J. Reimer, The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin. Appl. Organomet. Chem. 1997, 11, 797.
The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFaqsrw%3D&md5=d162d75ed8fb62323890e4aca9e66ccbCAS |

[27]  B. A. Whitton, M. Potts, Introduction to the cyanobacteria, in The Ecology of Cyanobacteria: Their Diversity in Time and Space (Eds B. A. Whitton, M. Potts) 2000, pp. 1–11 (Kluwer Academic Publishers: Dordrecht, the Netherlands).

[28]  B. M. Gamble, P. A. Gallagher, J. A. Shoemaker, X. Wei, C. A. Schwegel, J. T. Creed, An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC–ICP-MS and IC-ESI-MS/MS. Analyst (Lond.) 2002, 127, 781.
An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC–ICP-MS and IC-ESI-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVegsb8%3D&md5=77ebdb1ba3f6459c63ff1de96747a301CAS |

[29]  D. P. McAdam, A. M. A. Perera, R. V. Stick, The synthesis of (R)-2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinyl-β-D-riboside, a naturally occurring arsenic-containing carbohydrate. Aust. J. Chem. 1987, 40, 1901.
The synthesis of (R)-2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinyl-β-D-riboside, a naturally occurring arsenic-containing carbohydrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlyjtbY%3D&md5=52a5885b7c22d0cfb5e76638e48a4738CAS |

[30]  A. D. Madsen, W. Gössler, S. N. Pedersen, K. A. Francesconi, Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J. Anal. At. Spectrom. 2000, 15, 657.
Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslWksLY%3D&md5=2fdb16ed253759d050a8ade19c0bf70aCAS |

[31]  J. G. K. Williams, Construction of specific mutants in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 1988, 167, 766.
Construction of specific mutants in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvVKqs7g%3D&md5=30e1cbbdacee7a899b65182ed035f911CAS |

[32]  T. Kaneko, Y. Nakamura, C. P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, M. Iriguchi, A. Ishikawa, K. Kawashima, T. Kimura, Y. Kishida, M. Kohara, M. Matsumoto, A. Matsuno, A. Muraki, N. Nakazaki, S. Shimpo, M. Sugimoto, M. Takazawa, M. Yamada, M. Yasuda, S. Tabata, Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 2001, 8, 205.
Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlCgu7k%3D&md5=1479bdc4b5b38129345014bbdb2456adCAS |

[33]  R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, R. Y. Stanier, Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1.
Generic assignments, strain histories and properties of pure cultures of cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

[34]  M. Akai, K. Onai, M. Kusano, M. Sato, H. Redestig, K. Toyooka, M. Morishita, H. Miyake, A. Hazama, V. Checchetto, I. Szabò, K. Matsuoka, K. Saito, M. Yasui, M. Ishiura, N. Uozumi, Plasma membrane aquaporin AqpZ is essential for glucose metabolism during photomixotrophic growth of Synechocystis sp. PCC 6803. J. Biol. Chem. 2011, 286, 25224.
Plasma membrane aquaporin AqpZ is essential for glucose metabolism during photomixotrophic growth of Synechocystis sp. PCC 6803.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFGmtLo%3D&md5=3e48d401942abe348b104f26cf505adaCAS |

[35]  G. MacKinney, Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941, 140, 315.
| 1:CAS:528:DyaH3MXkt1GgsQ%3D%3D&md5=1d91744059e5cbaa7d5361850a922a1eCAS |

[36]  I. Koch, J. Feldmann, L. Wang, P. Andrewes, K. J. Reimer, W. R. Cullen, Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci. Total Environ. 1999, 236, 101.
Arsenic in the Meager Creek hot springs environment, British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Wrurg%3D&md5=36ac34919dc80894919aac25510a5d01CAS |

[37]  Y. Shibata, M. Sekiguchi, A. Otsuki, M. Morita, Arsenic compounds in zoo- and phyto-plankton of marine origin. Appl. Organomet. Chem. 1996, 10, 713.
Arsenic compounds in zoo- and phyto-plankton of marine origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFynu7k%3D&md5=5495b218e90d3314149517d176d1427cCAS |

[38]  J. Qin, C. R. Lehr, C. Yuan, X. C. Le, T. R. McDermott, B. P. Rosen, Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc. Natl. Acad. Sci. USA 2009, 106, 5213.
Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVert7Y%3D&md5=396bc10200fce3d6e24b19091697346dCAS |

[39]  S. Maeda, Investigations in organoarsenic chemistry, in Arsenic and Old Mustard: Chemical Problems in the Destruction of Old Arsenical and ‘Mustard’ Munitions (Eds J. F. Bunnett, M. Mikolajczyk) 1998, pp. 135–148 (Kluwer Academic Publishers: Dordrecht, the Netherlands).

[40]  J. S. Edmonds, K. A. Francesconi, Transformations of arsenic in the marine environment. Experientia 1987, 43, 553.
Transformations of arsenic in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltFaqtrc%3D&md5=07a0368eec64d73f51881d58e52e74c8CAS |

[41]  R. V. Cooney, R. O. Mumma, A. A. Benson, Arsoniumphospholipid in algae. Proc. Natl. Acad. Sci. USA 1978, 75, 4262.
Arsoniumphospholipid in algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvFShtQ%3D%3D&md5=0f71fc9f2c9a87c3149032d0fc1f5a30CAS |

[42]  S. Maeda, S. Fujita, A. Ohki, I. Yoshifuku, S. Higashi, T. Takeshita, Arsenic accumulation by arsenic-tolerant freshwater blue-green alga (Phormidium sp.). Appl. Organomet. Chem. 1988, 2, 353.
Arsenic accumulation by arsenic-tolerant freshwater blue-green alga (Phormidium sp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlCn&md5=a479fda657cfa9060aa829b4954691a5CAS |

[43]  M. Morita, Y. Shibata, Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame). Chemosphere 1988, 17, 1147.
Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVOlt78%3D&md5=cd17541ee1fd9c0b7f3ecbad743a2e69CAS |

[44]  A. A. Benson, Radiochromatographic exploration. J. Am. Oil Chem. Soc. 1987, 64, 1309.
Radiochromatographic exploration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsFSnur8%3D&md5=00f8a1695e841954e927079f29db03b8CAS |

[45]  S. García-Salgado, G. Raber, R. Raml, C. Magnes, K. A. Francesconi, Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 2012, 9, 63.
Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae.Crossref | GoogleScholarGoogle Scholar |

[46]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Synthesis, NMR spectra and chromatographic properties of five trimethylarsonioribosides. Appl. Organomet. Chem. 1994, 8, 517.
Synthesis, NMR spectra and chromatographic properties of five trimethylarsonioribosides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlensLg%3D&md5=37f4eb0a974ce1b05862ec79389cbd00CAS |

[47]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, B. W. Skelton, A. H. White, Arsenic-containing ribosides from the brown alga Sargassum lacerifolium: X-ray molecular structure of 2-amino-3-[5′-deoxy-5′-(dimethylarsinoyl)ribosyloxy]-propane-1-sulphonic acid. J. Chem. Soc., Perkin Trans. 1 1991, 1991, 2707.
Arsenic-containing ribosides from the brown alga Sargassum lacerifolium: X-ray molecular structure of 2-amino-3-[5′-deoxy-5′-(dimethylarsinoyl)ribosyloxy]-propane-1-sulphonic acid.Crossref | GoogleScholarGoogle Scholar |