Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry

Magda Claeys A F , Reinhilde Vermeylen A , Farhat Yasmeen A D , Yadian Gómez-González A , Xuguang Chi B E , Willy Maenhaut B , Tímea Mészáros C and Imre Salma C
+ Author Affiliations
- Author Affiliations

A Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium.

B Department of Analytical Chemistry, Ghent University, Proeftuinstraat 86, Gent, BE-9000 Belgium.

C Institute of Chemistry, Eötvös University, H-1518 Budapest, PO Box 32, Hungary.

D Present address: Chemistry Department, University of Engineering and Technology, G.T. Road, Lahore 54840, Pakistan.

E Present address: Biogeochemistry Department, Max Planck Institute for Chemistry, PO Box 3060, D-55020 Mainz, Germany.

F Corresponding author. Email: magda.claeys@ua.ac.be

Environmental Chemistry 9(3) 273-284 https://doi.org/10.1071/EN11163
Submitted: 18 December 2011  Accepted: 14 April 2012   Published: 20 June 2012

Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND

Environmental context. One of the most important classes of water-soluble organic compounds in continental fine and tropical biomass burning aerosol is humic-like substances (HULIS), which contain components with strong polar, acidic and chromophoric properties. We focus on the chemical characterisation of HULIS and provide evidence that nitro-aromatic catecholic compounds are among the major species of HULIS. This indicates that volatile aromatic hydrocarbons emitted during biomass burning are important gas-phase precursors for HULIS.

Abstract. Humic-like substances (HULIS) are ubiquitously present in the troposphere and make up a major fraction of continental fine-sized water-soluble organic compounds. They are regarded as material with strong polar, acidic and chromophoric properties; however, structural information at the individual component level is rather limited. In the present study, we have characterised HULIS from different locations using liquid chromatography coupled to photodiode array detection and negative ion electrospray ionisation mass spectrometry. Aerosol samples with particles less than 2.5 μm in diameter (PM2.5) were collected in Budapest and K-puszta, Hungary, during 2007 and 2008 spring and summer periods, and in Rondônia, Brazil, during a 2002 biomass burning experiment. Major components of the Budapest 2007 and Brazil 2002 HULIS corresponded to chromophoric substances, of which 4-nitrocatechol (molecular weight (MW) 155) was identified as the most abundant organic species and less abundant ones were attributed to mono- and dimethyl nitrocatechols (MWs 169 and 183). The mass concentrations of 4-nitrocatechol in the water-soluble organic carbon (WSOC) of the Budapest 2007 and day- and night-time Brazil 2002 HULIS were 0.46, 0.50 and 1.80 %. Abundant components of K-puszta 2008 HULIS were assigned to α-pinene secondary organic aerosol (SOA) tracers, i.e. 3-methyl-1,2,3-butanetricarboxylic acid and terpenylic acid; their mass concentrations in the HULIS WSOC were 0.75 and 0.40 %. Tere- and ortho-phthalic acids (MW 166) were major components of the Budapest and K-puszta HULIS, but only minor ones of the Brazil 2002 biomass burning HULIS, consistent with a source that is different from biomass burning and likely related to open waste burning of phthalate ester-containing material such as plastic.

Additional keywords: α-pinene, secondary organic aerosol, tracer, volatile organic compound.


References

[1]  S. Zappoli, A. Andracchio, S. Fuzzi, M. C. Facchini, A. Gelencsér, G. Kiss, Z. Krivácsy, A. Molnár, E. Mészáros, H. C. Hansson, K. Rosman, Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmos. Environ. 1999, 33, 2733.
Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFKntL0%3D&md5=59ae1c03b01464943f036e27afc84eafCAS |

[2]  V. Samburova, S. Szidat, C. Hueglin, R. Fisseha, U. Baltensperger, R. Zenobi, M. Kalberer, Seasonal variation of high-molecular-weight compounds in the water-soluble fraction of organic urban aerosols. J. Geophys. Res. 2005, 110, D23210.
Seasonal variation of high-molecular-weight compounds in the water-soluble fraction of organic urban aerosols.Crossref | GoogleScholarGoogle Scholar |

[3]  S. Decesari, M. C. Facchini, S. Fuzzi, E. Tagliavini, Characterisation of water-soluble organic compounds in atmospheric aerosol: a new approach. J. Geophys. Res. 2000, 105, 1481.
Characterisation of water-soluble organic compounds in atmospheric aerosol: a new approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlKgtrg%3D&md5=57b2502fbef023822e41d0d9c5d35812CAS |

[4]  G. Kiss, B. Varga, I. Galambos, I. Ganszky, Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J. Geophys. Res. 2002, 107, 8339.
Characterization of water-soluble organic matter isolated from atmospheric fine aerosol.Crossref | GoogleScholarGoogle Scholar |

[5]  F. Romero, M. Oehme, Organosulfates – a new component of humic-like substances in atmospheric aerosols? J. Atmos. Chem. 2005, 52, 283.
Organosulfates – a new component of humic-like substances in atmospheric aerosols?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KntL7M&md5=a35fd0eeea4648fae6a7992da5dab652CAS |

[6]  T. Reemtsma, A. These, P. Venkatachari, X. Xia, P. Hopke, A. Springer, M. Linscheid, Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2006, 78, 8299.
Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Sjtb7I&md5=5a1eabc2bc82904c1740c9d3e7e20768CAS |

[7]  A. S. Wozniak, J. E. Bauer, R. L. Sleighter, R. M. Dickhut, P. G. Hatcher, Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmos. Chem. Phys. 2008, 8, 5099.
Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCntbbF&md5=b7c276c2bc6dfaf81e28aa390a128fd4CAS |

[8]  K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FTICR mass spectrometry. Atmos. Chem. Phys. 2009, 9, 2533.
Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FTICR mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtbc%3D&md5=b23507f2b8bca3c1b667f4d129b43782CAS |

[9]  E. A. Stone, C. J. Hedman, R. J. Sheesley, M. M. Shafer, J. J. Schauer, Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry. Atmos. Environ. 2009, 43, 4205.
Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Cltrg%3D&md5=03e8ffe409b2316ec0bccad092f7a39aCAS |

[10]  L. R. Mazzoleni, B. M. Ehrmann, X. H. Shen, A. G. Marshall, J.L. Collett, Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2010, 44, 3690.
Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=f2df57988217a3fa1940176ccaa4f8dfCAS |

[11]  J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
Evidence for organosulfates in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=3ba1496dcab5f18f744e84387c36ab24CAS |

[12]  Y. Iinuma, C. Müller, O. Böge, T. Gnauk, H. Herrmann, The formation of organic sulfate esters in limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions. Atmos. Environ. 2007, 41, 5571.
The formation of organic sulfate esters in limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ghs7Y%3D&md5=aa77a2a7637ca319239540a9d81d34b2CAS |

[13]  Y. Iinuma, C. Müller, T. Berndt, O. Böge, M. Claeys, H. Herrmann, Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 6678.
Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVCntLo%3D&md5=ee5b0887594bf9e8f467cab9f1b8db9bCAS |

[14]  J. D. Surratt, Y. Gómez-González, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
Organosulfate formation in biogenic secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=8ed1709bc00dac5ed4673e4b498bad19CAS |

[15]  Y. Gómez-González, J. D. Surratt, F. Cuyckens, R. Szmigielski, R. Vermeylen, M. Jaoui, M. Lewandowski, J. H. Offenberg, T. E. Kleindienst, E. O. Edney, F. Blockhuys, C. Van Alsenoy, W. Maenhaut, M. Claeys, Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–)electrospray ionization mass spectrometry. J. Mass Spectrom. 2008, 43, 371.
Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–)electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[16]  F. Yasmeen, R. Vermeylen, R. Szmigielski, Y. Iinuma, O. Böge, H. Herrmann, W. Maenhaut, M. Claeys, Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene. Atmos. Chem. Phys. 2010, 10, 9383.
Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ait7jM&md5=b1d18dbae61484d25a937b3e8c8def2eCAS |

[17]  F. Yasmeen, R. Szmigielski, R. Vermeylen, Y. Gómez-González, J. D. Surratt, A. W. H. Chan, J. H. Seinfeld, W. Maenhaut, M. Claeys, Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol. J. Mass Spectrom. 2011, 46, 425.
Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWmsbc%3D&md5=56ccfd37a3596772b619d7fbac668451CAS |

[18]  E. R. Graber, Y. Rudich, Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729.
Atmospheric HULIS: how humic-like are they? A comprehensive and critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jtLg%3D&md5=0074ab99e5455ae9389439b055531c2dCAS |

[19]  G. Kiss, E. Tombácz, B. Varga, T. Alsberg, L. Persson, Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol. Atmos. Environ. 2003, 37, 3783.
Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsleku7g%3D&md5=00b3dcae9e51130edc55d6d76b8d0a9aCAS |

[20]  V. Samburova, R. Zenobi, M. Kalberer, Characterization of high molecular weight compounds in urban atmospheric particles. Atmos. Chem. Phys. 2005, 5, 2163.
Characterization of high molecular weight compounds in urban atmospheric particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgs7jI&md5=21fc80d598ac4bdf3dc0f8b48d82c86cCAS |

[21]  H. Mukai, Y. Ambe, Characterization of a humic acid-like brown substance in airborne particulate matter and tentative identification of its origin. Atmos. Environ. 1986, 20, 813.
Characterization of a humic acid-like brown substance in airborne particulate matter and tentative identification of its origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt12jsL8%3D&md5=4c095e04b7db99123f346511c8bfe4d1CAS |

[22]  O. L. Mayol-Bracero, P. Guyon, B. Graham, G. Roberts, M. O. Andreae, S. Decesari, M. C. Facchini, S. Fuzzi, P. Artaxo, Water-soluble organic compounds in biomass burning aerosols over Amazonia, 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res. 2002, 107, 8091.
Water-soluble organic compounds in biomass burning aerosols over Amazonia, 2. Apportionment of the chemical composition and importance of the polyacidic fraction.Crossref | GoogleScholarGoogle Scholar |

[23]  T. Feczko, H. Puxbaum, A. Kasper-Giebl, M. Handler, A. Limbeck, A. Gelencsér, C. Pio, S. Preunkert, M. Legrand, Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe. J. Geophys. Res. 2007, 112, D23S10.
Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe.Crossref | GoogleScholarGoogle Scholar |

[24]  I. Salma, R. Ocskay, G. G. Láng, Properties of atmospheric humic-like substances – water system. Atmos. Chem. Phys. 2008, 8, 2243.
Properties of atmospheric humic-like substances – water system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVSksb0%3D&md5=aacc79b5eefddae7bdfcd36780eb98ebCAS |

[25]  P. Lin, G. Engling, J. Z. Yu, Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmos. Chem. Phys. 2010, 10, 6487.
Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKlt7zI&md5=7b5455ac7f32a52e1be3d273c60b3967CAS |

[26]  I. Salma, R. Ocskay, X. Chi, W. Maenhaut, Sampling artefacts, concentrations and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment. Atmos. Environ. 2007, 41, 4106.
Sampling artefacts, concentrations and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyltLc%3D&md5=b7bc27eeffa868f03aa3ec6b6bae94f9CAS |

[27]  Y. Iinuma, O. Böge, R. Gräfe, H. Herrmann, Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ. Sci. Technol. 2010, 44, 8453.
Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlansLvE&md5=04971605dc40b1f8478963642e93d5d9CAS |

[28]  J. L. Kelly, D. V. Michelangeli, P. A. Makar, D. R. Hastie, M. Mozurkewich, J. Auld, Aerosol speciation and mass prediction from toluene oxidation under high NOx conditions. Atmos. Environ. 2010, 44, 361.
Aerosol speciation and mass prediction from toluene oxidation under high NOx conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVWrtQ%3D%3D&md5=915084177a9353c620f748c0c90441e2CAS |

[29]  H. E. Jeffries, Photochemical air pollution, in Composition, Chemistry and Climate of the Atmosphere (Ed. H. B. Singh) 1995, pp. 308–348 (Van Nostrand Reinhold: New York).

[30]  E. Borrás, L. A. Tortajada-Genaro, Secondary organic aerosol formation from the photo-oxidation of benzene. Atmos. Environ. 2012, 47, 154.
Secondary organic aerosol formation from the photo-oxidation of benzene.Crossref | GoogleScholarGoogle Scholar |

[31]  S. Decesari, S. Fuzzi, M. C. Facchini, M. Mircea, L. Emblico, F. Cavalli, W. Maenhaut, X. Chi, G. Schkolnik, A. Falkovich, Y. Rudich, M. Claeys, V. Pashynska, G. Vas, I. Kourtchev, R. Vermeylen, A. Hoffer, M. O. Andreae, E. Tagliavini, F. Moretti, P. Artaxo, Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmos. Chem. Phys. 2006, 6, 375.
Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Kqur0%3D&md5=41020614c4a0c28c73d9a545e1c0592eCAS |

[32]  P. A. Solomon, J. L. Moyers, R. A. Fletcher, High-volume dichotomous virtual impactor for the fractionation and collection of particles according to aerodynamic size. Aerosol Sci. Technol. 1983, 2, 455.
High-volume dichotomous virtual impactor for the fractionation and collection of particles according to aerodynamic size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXjvVymuw%3D%3D&md5=6b732060d09f6b0d4fb5ee441f157b00CAS |

[33]  B. Varga, G. Kiss, I. Ganszky, A. Gelencsér, Z. Krivácsy, Isolation of water-soluble organic matter from atmospheric aerosol. Talanta 2001, 55, 561.
Isolation of water-soluble organic matter from atmospheric aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFSiu7Y%3D&md5=1bd55dd89ac43a4b1d3df5f1fe6365dcCAS |

[34]  I. Salma, T. Mészáros, W. Maenhaut, E. Vass, Z. Majer, Chirality and the origin of atmospheric humic-like substances. Atmos. Chem. Phys. 2010, 10, 1315.
Chirality and the origin of atmospheric humic-like substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2rur0%3D&md5=1a9f61b262a49f2f4234961b1ca6b5d6CAS |

[35]  Z. Kitanovski, I. Grgić, F. Yasmeen, M. Claeys, A. Čusak, Development of a liquid chromatographic method based on UV/Vis and electrospray mass spectrometric detection for the identification of nitrocatechols and related tracers in biomass burning atmospheric organic aerosol. Rapid Commun. Mass Spectrom. 2012, 26, 793.
Development of a liquid chromatographic method based on UV/Vis and electrospray mass spectrometric detection for the identification of nitrocatechols and related tracers in biomass burning atmospheric organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVyitr8%3D&md5=fa04db5ae9ea59423cb41f3fa26fbb36CAS |

[36]  R. Szmigielski, J. D. Surratt, Y. Gómez-González, P. Van der Veken, I. Kourtchev, R. Vermeylen, F. Blockhuys, M. Jaoui, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, E. O. Edney, J. H. Seinfeld, W. Maenhaut, M. Claeys, 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L24811.
3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[37]  M. Claeys, Y. Iinuma, R. Szmigielski, J. D. Surratt, F. Blockhuys, C. Van Alsenoy, O. Böge, B. Sierau, Y. Gómez-González, R. Vermeylen, P. Van der Veken, M. Shahgholi, A. W. H. Chan, H. Herrmann, J. H. Seinfeld, W. Maenhaut, Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation and growth above forest. Environ. Sci. Technol. 2009, 43, 6976.
Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation and growth above forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSis7nK&md5=d924fad936ba357434e464138d5e8905CAS |

[38]  M. Claeys, I. Kourtchev, V. Pashynska, G. Vas, R. Vermeylen, W. Wang, J. Cafmeyer, X. Chi, P. Artaxo, M. O. Andreae, W. Maenhaut, Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions. Atmos. Chem. Phys. 2010, 10, 9319.
Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ait7vK&md5=a241fdee8f6bbe3fa6086f99c5b13d27CAS |

[39]  D. Hoffmann, Y. Iinuma, H. Herrmann, Development of a method for fast analysis of phenolic molecular markers in biomass burning particles using high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2007, 1143, 168.
Development of a method for fast analysis of phenolic molecular markers in biomass burning particles using high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1ChsL4%3D&md5=0474aa0fc7545ea8248dc5bdb7415355CAS |

[40]  Y. Y. Zhang, L. Müller, R. Winterhalter, G. K. Moortgat, T. Hoffmann, U. Pöschl, Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. Atmos. Chem. Phys. 2010, 10, 7859.
Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWls7nN&md5=98e7b8c58cf9949e4e19be9222480710CAS |

[41]  K. Kawamura, I. R. Kaplan, Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 1987, 21, 105.
Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXit1Giuw%3D%3D&md5=06d5c9eea66524c35d5a76fbd52e253cCAS |

[42]  W. F. Rogge, M. A. Mazurek, L. M. Hildeman, C. G. Cass, B. R. T. Simoneit, Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos. Environ. 1993, 27A, 1309.
| 1:CAS:528:DyaK3sXlvVOntrw%3D&md5=86c47fcba48953ee9b950ed949eef327CAS |

[43]  B. R. T. Simoneit, P. M. Medeiros, B. M. Didyk, Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 2005, 39, 6961.
Combustion products of plastics as indicators for refuse burning in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFymsrw%3D&md5=843da12c481648c54fa85a2a680bd765CAS |

[44]  E. G. Stephanou, N. Stratigakis, Oxocarboxylic and α,ω-dicarboxylic acids – photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 1993, 27, 1403.
Oxocarboxylic and α,ω-dicarboxylic acids – photooxidation products of biogenic unsaturated fatty acids present in urban aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktFCgt7g%3D&md5=9ecfc42647365bfb9ff22c05b5a056b2CAS |

[45]  S. Gao, J. D. Surratt, E. M. Knipping, E. S. Edgerton, M. Shahgholi, J. H. Seinfeld, Characterization of polar organic components in fine aerosols in the southeastern United States: identity, origin, and evolution. J. Geophys. Res. 2006, 111, D14314.
Characterization of polar organic components in fine aerosols in the southeastern United States: identity, origin, and evolution.Crossref | GoogleScholarGoogle Scholar |

[46]  A. Kubátová, R. Vermeylen, M. Claeys, J. Cafmeyer, M. Maenhaut, G. Roberts, P. Artaxo, Carbonaceous aerosol characterization in the Amazon basin, Brasil: novel dicarboxylic acids and related compounds. Atmos. Environ. 2000, 34, 5037.
Carbonaceous aerosol characterization in the Amazon basin, Brasil: novel dicarboxylic acids and related compounds.Crossref | GoogleScholarGoogle Scholar |

[47]  A. Kubátová, R. Vermeylen, M. Claeys, J. Cafmeyer, W. Maenhaut, Organic compounds in urban aerosols from Gent, Belgium: characterization, sources, and seasonal differences. J. Geophys. Res. 2002, 107, 8343.
Organic compounds in urban aerosols from Gent, Belgium: characterization, sources, and seasonal differences.Crossref | GoogleScholarGoogle Scholar |

[48]  K. Kawamura, H. Kasukabe, L. A. Barrie, Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atmos. Environ. 1996, 30, 1709.
Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVKmtbw%3D&md5=6d44f120652d4cdcbb48a7c68d0157a4CAS |

[49]  Y. Gómez-González, W. Wang, R. Vermeylen, X. Chi, J. Neirynck, I. A. Janssens, W. Maenhaut, M. Claeys, Chemical characterization of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol. Atmos. Chem. Phys. 2012, 12, 125.
Chemical characterization of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[50]  M. Jaoui, E. Corse, T. E. Kleindienst, J. H. Offenberg, M. Lewandowski, E. O. Edney, Analysis of secondary organic aerosol from the photooxidation of d-limonene and their detection in ambient PM2.5 aerosol. Environ. Sci. Technol. 2006, 40, 3819.
Analysis of secondary organic aerosol from the photooxidation of d-limonene and their detection in ambient PM2.5 aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKku7o%3D&md5=f30c59165decded2166d42bcfa062125CAS |

[51]  M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M. O. Andreae, P. Artaxo, W. Maenhaut, Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173.
Formation of secondary organic aerosols through photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWgtb4%3D&md5=eef442b73dfc7608ee1529dcde8b7e37CAS |

[52]  N. L. Ng, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, J. H. Kroll, A. J. Kwan, D. C. McCabe, P. O. Wennberg, A. Sorooshian, S. M. Murphy, N. F. Dalleska, R. C. Flagan, J. H. Seinfeld, Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys. 2007, 7, 5159.
Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOnsrvL&md5=da8699ff1c75702b18eda2c0655cd695CAS |

[53]  L. Müller, M.-C. Reinnig, K. H. Naumann, H. Saathoff, T. F. Mentel, N. Donahue, T. Hoffmann, Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging. Atmos. Chem. Phys. 2012, 12, 1483.
Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging.Crossref | GoogleScholarGoogle Scholar |

[54]  B. R. T. Simoneit, J. J. Schauer, C. G. Nolte, D. R. Oros, V. O. Elias, M. Fraser, W. F. Rogge, G. R. Cass, Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173.
Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVagtw%3D%3D&md5=b0c46e6c032e9e385e6c431afac2b010CAS |