Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Gel–water partitioning of soil humics in diffusive gradient in thin film (DGT) analysis of their metal complexes

Pascal L. R. van der Veeken A and Herman P. van Leeuwen A B
+ Author Affiliations
- Author Affiliations

A Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703HB Wageningen, the Netherlands.

B Corresponding author. Email: herman.vanleeuwen@wur.nl

Environmental Chemistry 9(1) 24-30 https://doi.org/10.1071/EN11101
Submitted: 26 July 2011  Accepted: 15 December 2011   Published: 14 February 2012

Environmental context. Metal species can have significant toxic effects in aquatic systems, and therefore their occurrence should be reliably monitored. Although many methods to measure metal species are available, they all have limitations and are sensitive to physicochemical complications. It is shown that, in techniques based on diffusive gradients in thin films, sorption of humic acids affects metal speciation inside the diffusive gel layer and the nature of the ensuing flux response.

Abstract. Metal complexes of humic and fulvic acids are ubiquitous in aqueous environmental media. In metal speciation analysis by DGT (diffusive gradient in thin film) with polyacrylamide hydrogels, soil humic acid species have been shown to significantly accumulate in the diffusive gel layer. As a result, the speciation of their metal complexes inside the gel is changed with respect to that in the sample medium. In low ionic strength samples, the effects of sorption of the charged humic species are compounded by Donnan partitioning. Here we lay out the basic features that govern the partition of humic species between gel and water, and discuss their effect on the properties of the DGT metal flux.

Additional keywords: cadmium, DET, free metal ion, humic acid, metal speciation.


References

[1]  H. P. van Leeuwen, R. Town, J. Buffle, R. F. M. J. Cleven, W. Davison, J. Puy, W. H. van Riemsdijk, L. Sigg, Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005, 39, 8545.
Dynamic speciation analysis and bioavailability of metals in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73M&md5=d6838365e93476d58445536f5461b88aCAS |

[2]  J. Buffle, M.-L. Tercier-Waeber, In situ voltammetry: concepts and practice for trace analysis and speciation, in In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 279–405 (Wiley: New York).

[3]  W. Davison, H. Zhang, In situ speciation measurements of trace metal components in natural waters using thin-film gels. Nature 1994, 367, 546.
In situ speciation measurements of trace metal components in natural waters using thin-film gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVemtrc%3D&md5=a46668663a8de3d4c887158bbe7ebbcfCAS |

[4]  W. Davison, G. Fones, M. Harper, P. Teasdale, H. Zhang, Dialysis, DET and DGT: In situ diffusional techniques for studying water, sediments and soils, in In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 495–569 (Wiley: New York).

[5]  G. R. Fones, W. Davison, O. Holby, B. B. Jorgensen, B. Thamdrup, High-resolution metal gradients measured by in situ DGT/DET deployment in Black Sea sediments using an autonomous benthic lander. Limnol. Oceanogr. 2001, 46, 982.
High-resolution metal gradients measured by in situ DGT/DET deployment in Black Sea sediments using an autonomous benthic lander.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFeks74%3D&md5=fa4f95b427e7c2dde5a52ac38f0cbdc5CAS |

[6]  J. Buffle, Complexation Reactions in Aquatic Systems; an Analytical Approach 1988 (Ellis Horwood: Chichester, UK).

[7]  R. R. Engebretson, R. von Wandruszka, Microorganization in dissolved humic acids. Environ. Sci. Technol. 1994, 28, 1934.
Microorganization in dissolved humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1egtbc%3D&md5=964c8ddc1c64735100d40d1d57cceb09CAS |

[8]  R. von Wandruszka, The micellar model of humic acid: Evidence from pyrene fluorescence measurements. Soil Sci. 1998, 163, 921.
The micellar model of humic acid: Evidence from pyrene fluorescence measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFSjsg%3D%3D&md5=872994692ced0c9ead963c5086205f2eCAS |

[9]  K. J. Wilkinson, J. Buffle, Critical evaluation of the physicochemical parameters and processes for modeling the biological uptake of trace metals in environmental (aquatic) systems, in Physicochemical Kinetics and Transport at Biointerfaces, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Eds H. P. van Leeuwen, W. Köster) 2004, pp. 445–533 (Wiley: New York).

[10]  P. L. R. van der Veeken, P. Chakraborty, H. P. van Leeuwen, Accumulation of humic acid in DET/DGT gels. Environ. Sci. Technol. 2010, 44, 4253.
Accumulation of humic acid in DET/DGT gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWgsL8%3D&md5=c20cc011e02d1021351a648b754dce47CAS |

[11]  P. L. R. van der Veeken, J. P. Pinheiro, H. P. van Leeuwen, Metal speciation by DGT/DET in colloidal complex systems. Environ. Sci. Technol. 2008, 42, 8835.
Metal speciation by DGT/DET in colloidal complex systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSnu7zE&md5=10bda423c06978d7e223337d72083568CAS |

[12]  L. P. Yezek, H. P. van Leeuwen, An electrokinetic characterization of low charge density cross-linked polyacrylamide gels. J. Colloid Interface Sci. 2004, 278, 243.
An electrokinetic characterization of low charge density cross-linked polyacrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Cmsbc%3D&md5=062c208c0bd2b962b859c10f7cb4b362CAS |

[13]  O. A. Garmo, W. Davison, H. Zhang, Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques. Environ. Sci. Technol. 2008, 42, 5682.
Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Wjsrg%3D&md5=3ca4684e1ceaa31de19b47cbd6cfac98CAS |

[14]  N. Fatin-Rouge, A. Milon, J. Buffle, R. R. Goulet, A. Tessier, Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J. Phys. Chem. B 2003, 107, 12 126.
Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFWkt74%3D&md5=2340102e504aa955b17afcdeb94b3757CAS |

[15]  S. Noel, J. Buffle, N. Fatin-Rouge, J. Labille, Factors affecting the flux of macromolecular, labile, metal complexes at consuming interfaces, in water and inside agarose gel: SSCP study and environmental implications. J. Electroanal. Chem. 2006, 595, 125.
Factors affecting the flux of macromolecular, labile, metal complexes at consuming interfaces, in water and inside agarose gel: SSCP study and environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1ylsbw%3D&md5=ae7d227a76b3dac802fd3be49401b6f8CAS |

[16]  W. Davison, H. Zhang, G. W. Grime, Performance characteristics of gel probes used for measuring the chemistry of pore waters. Environ. Sci. Technol. 1994, 28, 1623.
Performance characteristics of gel probes used for measuring the chemistry of pore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltFOju7c%3D&md5=9d9f4d34dc5a0b93439a95a03166c0b1CAS |

[17]  L. P. Yezek, H. P. van Leeuwen, Donnan effects in the steady-state diffusion of metal ions through charged thin films. Langmuir 2005, 21, 10 342.
Donnan effects in the steady-state diffusion of metal ions through charged thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGqsrjJ&md5=67e4bf9f193db8a34eafc99a2909dc46CAS |

[18]  L. P. Yezek, P. L. R. van der Veeken, H. P. van Leeuwen, Donnan effects in metal speciation analysis by DET/DGT. Environ. Sci. Technol. 2008, 42, 9250.
Donnan effects in metal speciation analysis by DET/DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKlsrjN&md5=7b7decf27e3b2b01be07180e19b166b4CAS |

[19]  P. L. R. van der Veeken, H. P. van Leeuwen, DGT/DET gel partition features of humic acid/metal species. Environ. Sci. Technol. 2010, 44, 5523.
DGT/DET gel partition features of humic acid/metal species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGitbw%3D&md5=f6e35ebe8aa4792c4ba69159520c8c82CAS |

[20]  J. Heyrovský, J. Kůta, Principles of Polarography (Ed. R. Brdička) 1965, pp. 155–156 (Publishing House of the Czechoslovak Academy of Sciences: Prague).

[21]  H. P. van Leeuwen, Dynamic DGT speciation analysis of nanoparticulate metal complexes. Environ. Chem. 2011, 8, 525.
Dynamic DGT speciation analysis of nanoparticulate metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt73F&md5=74244b53ebf1888b15500aab2ad17fe1CAS |

[22]  H. P. van Leeuwen, J. Buffle, Chemodynamics of aquatic metal complexes: from small ligands to colloids. Environ. Sci. Technol. 2009, 43, 7175.
Chemodynamics of aquatic metal complexes: from small ligands to colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOjsbY%3D&md5=cd2cc7854600aeb3219a1ce39d495d28CAS |

[23]  J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. II 1995 (Academic Press: London).

[24]  A. H. Muhr, J. M. V. Blanshard, Diffusion in gels. Polymer 1982, 23, 1012.
Diffusion in gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XltFSmurg%3D&md5=9dd5f66adfd2ab4fdb03906ffa00c9aaCAS |

[25]  S. Scally, W. Davison, H. Zhang, Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta 2006, 558, 222.
Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFygtw%3D%3D&md5=0fb760c892c4443b28eebf4d1c1dea84CAS |

[26]  R. M. Town, H. P. van Leeuwen, Dynamic speciation analysis of heterogeneous metal complexes with natural ligands by stripping chronopotentiometry at scanned deposition potential (SSCP). Aust. J. Chem. 2004, 57, 983.
Dynamic speciation analysis of heterogeneous metal complexes with natural ligands by stripping chronopotentiometry at scanned deposition potential (SSCP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Sjs7w%3D&md5=7d1b49254dfcbe1df01e998b66b34441CAS |

[27]  E. J. J. Kalis, L. P. Weng, F. Dousma, E. J. M. Temminghoff, W. H. van Riemsdijk, Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique. Environ. Sci. Technol. 2006, 40, 955.
Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlars7rK&md5=cebb0b651ebb12a50f6d132239309993CAS |

[28]  M. J. Avena, L. K. Koopal, W. H. van Riemsdijk, Proton binding to humic acids: electrostatic and intrinsic interactions. J. Colloid Interface Sci. 1999, 217, 37.
Proton binding to humic acids: electrostatic and intrinsic interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVaht7s%3D&md5=68ff7dca28c09c671195ee712a32d1f0CAS |

[29]  C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=6b8bf6fd9ce41782fb66668b1d5ab5ccCAS |

[30]  J. R. Lead, K. J. Wilkinson, E. Balnois, B. J. Cutak, C. K. Larive, S. Assemi, R. Beckett, Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation. Environ. Sci. Technol. 2000, 34, 3508.
Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1Wgurs%3D&md5=9cf27122a4c0b87b275e170c01ec5280CAS |

[31]  L. A. Oste, E. J. M. Temminghoff, T. M. Lexmond, W. H. van Riemsdijk, Measuring and modeling zinc and cadmium binding by humic acid. Anal. Chem. 2002, 74, 856.
Measuring and modeling zinc and cadmium binding by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVeksA%3D%3D&md5=1981a5b4daa7e51a85a229323079b449CAS |

[32]  J. D. Ritchie, E. M. Perdue, Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta 2003, 67, 85.
Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2ktLY%3D&md5=048bba938522b3e40fde35d2e5256a22CAS |

[33]  E. J. M. Temminghoff, S. E. A. T. M. van der Zee, F. A. M. de Haan, Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Technol. 1997, 31, 1109.
Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFGgtr8%3D&md5=50c63378fa00ed45147a37d105b8a244CAS |

[34]  M. F. Benedetti, W. H. Van Riemsdijk, L. K. Koopal, D. G. Kinniburgh, D. C. Gooddy, C. J. Milne, Metal ion binding by natural organic matter: from the model to the field. Geochim. Cosmochim. Acta 1996, 60, 2503.
Metal ion binding by natural organic matter: from the model to the field.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFaqtrc%3D&md5=1884214f30fba6959acb0f9d2861a5feCAS |

[35]  E. J. J. Kalis, L. P. Weng, F. Dousma, E. J. M. Temminghoff, W. H. Van Riemsdijk, Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique. Environ. Sci. Technol. 2006, 40, 955.
Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlars7rK&md5=cebb0b651ebb12a50f6d132239309993CAS |

[36]  M. G. Keizer, W. H. van Riemsdijk, ECOSAT: a computer program for the calculation of speciation and transport in soil-water systems, version 4.7 for Windows, User’s Manual 2002 (Wageningen University: Wageningen, the Netherlands).

[37]  L. P. Yezek, H. P. van Leeuwen, Donnan effects in the steady-state diffusion of metal ions through charged thin films. Langmuir 2005, 21, 10 342.
Donnan effects in the steady-state diffusion of metal ions through charged thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGqsrjJ&md5=67e4bf9f193db8a34eafc99a2909dc46CAS |

[38]  E. R. Unsworth, K. W. Warnken, H. Zhang, W. Davison, F. Black, J. Buffle, J. Cao, R. Cleven, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, H. P. van Leeuwen, M. Martin, S. Noel, Y. Nur, N. Odzak, J. Puy, W. van Riemsdijk, L. Sigg, E. Temminghoff, M. L. Tercier-Waeber, S. Toepperwien, R. M. Town, L. Weng, H. Xue, Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006, 40, 1942.
Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSku7o%3D&md5=f1372c913c38a7567823d9613a4bb5f1CAS |

[39]  E. R. Unsworth, H. Zhang, W. Davison, Use of diffusive gradients in thin films to measure cadmium speciation in solutions with synthetic and natural ligands: comparison with model predictions. Environ. Sci. Technol. 2005, 39, 624.
Use of diffusive gradients in thin films to measure cadmium speciation in solutions with synthetic and natural ligands: comparison with model predictions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKit7fL&md5=b165eaf86aeac4d40d3cdcc7c2154e79CAS |

[40]  M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, R. S. Swift, Structures of humic substances: the emergence of ‘forms’, in Humic Substances II: In Search of Structure (Eds M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, R. S. Swift) 1989, pp. 690–733 (Wiley: Chichester, UK).

[41]  E. J. M. Temminghoff, A. C. C. Plette, R. van Eck, W. H. van Riemsdijk, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique. Anal. Chim. Acta 2000, 417, 149.
Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWlsb8%3D&md5=6af7d7cb0ea07cd5c544684236358c8aCAS |

[42]  J. Galceran, E. Companys, J. Puy, J. Cecilia, J. L. Garcés, AGNES: a new electroanalytical technique for measuring free metal ion concentration. J. Electroanal. Chem. 2004, 566, 95.
AGNES: a new electroanalytical technique for measuring free metal ion concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislGhsro%3D&md5=a824a6ba36dd28ec0dd4ad3c57d1876bCAS |