A new method for determination of potassium in soils using diffusive gradients in thin films (DGT)
Susan Tandy A E , Simon Mundus A , Hao Zhang B , Enzo Lombi C , Jens Frydenvang A , Peter E. Holm D and Søren Husted AA Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg-C, Denmark.
B Lancaster Environment Centre (LEC), Lancaster University, Lancaster, LA1 4YQ, UK.
C Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Building X, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
D Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg-C, Denmark.
E Corresponding author. Present address: Soil Protection, ITES, ETH Zurich, Universitatstrasse 16, CH-8092 Zurich, Switzerland. Email: susan.tandy@env.ethz.ch
Environmental Chemistry 9(1) 14-23 https://doi.org/10.1071/EN11070
Submitted: 24 May 2011 Accepted: 1 October 2011 Published: 31 January 2012
Environmental context. Potassium is an essential plant nutrient and farmers need to be able to predict how much soil K is plant available in order to optimise fertiliser applications and crop production. Traditional methods such as chemical extraction are generally poor predictors. A DGT based methodology that could enhance the assessment of plant available K is developed, which will assist plant growers to determine the correct fertiliser application, thereby avoiding crop deficiencies and limiting the misuse of K as a precious natural resource.
Abstract. Potassium is an essential plant nutrient often limiting plant productivity. Ammonium acetate extraction is often used to predict the potassium status of soils. However, correlation between extracted K and plant uptake is often poor, especially over a range of different soil textures. Diffusive gradients in thin films (DGT), which determines the diffusive supply of elements, has been shown to accurately measure plant available elements in several cases. Up until now, however, the DGT devices available have not been suitable for measuring K. We set out to develop a DGT device suitable for the measurement of K in soil and test its ability to predict plant available K. The DGT device contained a binding layer based on Amberlite IRP-69 cation exchange resin. It proved suitable for the measurement of K under conditions similar to those usually found in soil if a 2-h deployment time was used and the labile K concentration was limited to 400 µM. Prediction of plant K concentrations with DGT were similar to those with ammonium acetate extractions over a range of typical agricultural soils with sandy and sandy loam textures. The results indicate that this new type of DGT has the potential to improve the accuracy of predictions of the K status of soils, although more tests using a wider range of plant species and soils are necessary.
Additional keywords: crops, fertiliser, K, nutrient deficiencies, potassium availability.
References
[1] V. Römheld, E. A. Kirkby, Research on potassium in agriculture: needs and prospects. Plant Soil 2010, 335, 155.| Research on potassium in agriculture: needs and prospects.Crossref | GoogleScholarGoogle Scholar |
[2] D. Reuter, J. Robinson, Plant Analysis: an Interpretation Manual 1997 (CSIRO Publishing: Melbourne).
[3] N. W. Menzies, M. J. Donn, P. M. Kopittke, Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121.
| Evaluation of extractants for estimation of the phytoavailable trace metals in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWhsr7E&md5=7abbec5fb9531d58223f8097e356d49dCAS |
[4] C. A. Black, Soil–Plant Relationships 1968 (Wiley: New York).
[5] V. A. Haby, M. P. Russelle, E. O. Skogley, Testing soils for potassium, calcium and magnesium, in Soil Testing and Plant Analysis, 3rd edn (Ed. R. L. Westerman) 1995, pp. 181–227 (Soil Science Society of America: Madison, WI.).
[6] J. L. Havlin, J. D. Beaton, S. L. Tisdale, W. L. Nelson, Soil Fertility and Fertilizers: an Introduction to Nutrient Management 2005 (Pearson Education Inc.: Upper Saddle River, NJ, USA.).
[7] X. K. Li, J. W. Lu, L. S. Wu, F. Chen, S. S. Malhi, Potassium fixation and release characteristics in rhizosphere and nonrhizosphere soils for a rapeseed–rice cropping sequence. Comm. Soil Sci. Plan. 2010, 41, 865.
| Potassium fixation and release characteristics in rhizosphere and nonrhizosphere soils for a rapeseed–rice cropping sequence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Wqu7o%3D&md5=35386223eb92836a2099ed1162783907CAS |
[8] F. V. Schindler, H. J. Woodard, J. J. Doolittle, Plant available potassium assessment through chemical prediction methods. Comm. Soil Sci. Plan. 2002, 33, 1473.
| Plant available potassium assessment through chemical prediction methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKjtrw%3D&md5=6aa0e1545f7ea3078786c5f2b109a21cCAS |
[9] A. Wild, Potassium, sodium, calcium, magnesium, sulphur, silicon, in Russell’s Soil Conditions and Plant Growth (Ed. A. Wild) 1998, pp. 743–79 (Longman Scientific & Technical: Harlow, UK.).
[10] E. C. Doll, R. E. Lucas, Testing soils for potassium, calcium and magnesium, in Soil Testing and Plant Analysis, revised edn (Eds L. M. Walsh, J. D. Beaton) 1974, pp. 133–51 (Soil Science Society of America: Madison, WI).
[11] W. Grzebisz, J. J. Oertli, Evalutation of universal extractants for determining plant-available potassium in intensively cultivated soils. Comm. Soil Sci. Plan. 1993, 24, 1295.
| Evalutation of universal extractants for determining plant-available potassium in intensively cultivated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsF2itrw%3D&md5=cf3adf4c70b5f336348f559fdd902e76CAS |
[12] M. Askegaard, H. C. B. Hansen, J. K. Schjoerring, A cation exchange resin method for measuring long-term potassium release rates from soil. Plant Soil 2005, 271, 63.
| A cation exchange resin method for measuring long-term potassium release rates from soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Ojtrg%3D&md5=d1a13e4fb5749a4a0b750ac44cb54647CAS |
[13] A. R. Hosseinpur, M. Samavati, Evaluation of chemical extractants for the determination of available potassium. Comm. Soil Sci. Plan. 2008, 39, 1559.
| Evaluation of chemical extractants for the determination of available potassium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyhsro%3D&md5=8e6fe3f40ed5756ba8d168e1f064403aCAS |
[14] M. Kavoosi, M. Kalbasi, A. Aliakbar, Comparison of capsule resin data and kinetic parameters with some static soil tests to predict potassium uptake by rice. Comm. Soil Sci. Plan. 2003, 34, 2073.
| Comparison of capsule resin data and kinetic parameters with some static soil tests to predict potassium uptake by rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVKgs78%3D&md5=f7419257aa0c288143fb9247890d5ce8CAS |
[15] H. Y. Wang, H. X. Sun, J. M. Zhou, W. Cheng, C. W. Du, X. Q. Chen, Evaluating plant-available potassium in different soils using a modified sodium tetraphenylboron Method. Soil Sci. 2010, 175, 544.
| Evaluating plant-available potassium in different soils using a modified sodium tetraphenylboron Method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ju7rF&md5=cd87d0587d791658577a476ca29d64fdCAS |
[16] M. Zarrabi, M. Jalali, Evaluation of extractants and quantity-intensity relationship for estimation of available potassium in some calcareous soils of western Iran. Comm. Soil Sci. Plan. 2008, 39, 2663.
| Evaluation of extractants and quantity-intensity relationship for estimation of available potassium in some calcareous soils of western Iran.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1artLbL&md5=d0d07464ce9c2fc0d27b61a2a346b994CAS |
[17] P. Qian, J. J. Schoenau, K. J. Greer, Z. Liu, Assessing plant-available potassium in soil using cation exchange membrane burial. Can. J. Soil Sci. 1996, 76, 191.
| Assessing plant-available potassium in soil using cation exchange membrane burial.Crossref | GoogleScholarGoogle Scholar |
[18] M. Maftoun, M. A. Khodshenas, A. S. Gholami, Assessment of chemical extractants to predict available potassium for rice in calcareous soils. Agrochimica 2009, 53, 284.
| 1:CAS:528:DC%2BC3cXksVGns7o%3D&md5=29514cecc5542d87e4e62ab21c745274CAS |
[19] L. X. Liu, T. E. Bates, Evaluation of soil extractants for the prediction of plant-available potassium in Ontario soils. Can. J. Soil Sci. 1990, 70, 607.
| Evaluation of soil extractants for the prediction of plant-available potassium in Ontario soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ejs7Y%3D&md5=5bd8f41af988155c7884381c2ac904feCAS |
[20] M. D. Kauffman, D. R. Bouldin, Relationships of exchangeable and non-exchangeable potassium in soils adjacent to cation-exchange resins and plant roots. Soil Sci. 1967, 104, 145.
| Relationships of exchangeable and non-exchangeable potassium in soils adjacent to cation-exchange resins and plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXltVOksLk%3D&md5=1e8109fe00b74eef7b971427780daaf6CAS |
[21] E. O. McLean, M. E. Watson, Soil measurements plant-available potassium, in Potassium in Agriculture (Ed. R. D. Munson) 1985, pp. 277–308 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI).
[22] P. L. Carey, D. Curtin, C. L. Scott, An improved procedure for routine determination of reserve-K in pastoral soils. Plant Soil 2011, 341, 461.
| An improved procedure for routine determination of reserve-K in pastoral soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1WjtLY%3D&md5=b30d7b792c3acaf1705dfcae5a749ef9CAS |
[23] N. W. Menzies, B. Kusumo, P. W. Moody, Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique. Plant Soil 2005, 269, 1.
| Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Oisro%3D&md5=76da896fa8e37ca91d4b09b36ea0b678CAS |
[24] H. Zhang, F. J. Zhao, B. Sun, W. Davison, S. P. McGrath, A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Technol. 2001, 35, 2602.
| A new method to measure effective soil solution concentration predicts copper availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFGksbw%3D&md5=4d29bee392f627fe5634afc802a15979CAS |
[25] H. Zhang, W. Davison, Performance-characteristics of diffusion gradients in thin-films for the in-situ measurement of trace-metals in aqueous-solution. Anal. Chem. 1995, 67, 3391.
| Performance-characteristics of diffusion gradients in thin-films for the in-situ measurement of trace-metals in aqueous-solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=bb9658e99f6d0c6ad7950f14c6e2b63dCAS |
[26] H. Zhang, W. Davison, R. Gadi, T. Kobayashi, In situ measurement of dissolved phosphorus in natural waters using DGT. Anal. Chim. Acta 1998, 370, 29.
| In situ measurement of dissolved phosphorus in natural waters using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFeqs78%3D&md5=0c26e2c1924ad9f97e675df442fd6b65CAS |
[27] S. Tandy, S. Mundus, J. Yngvesson, T. C. de Bang, E. Lombi, J. K. Schjoerring, S. Husted, The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant Soil 2011, 346, 167.
| The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtValtb7P&md5=092daca84b2ced5eae5f4a0580dfba3bCAS |
[28] S. Mason, A. McNeill, M. J. McLaughlin, H. Zhang, Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil 2010, 337, 243.
| Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmtb3I&md5=13c4ab1084d16c49bbe75b172729b2f9CAS |
[29] A. L. Nolan, H. Zhang, M. J. McLaughlin, Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J. Environ. Qual. 2005, 34, 496.
| Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislOlt7k%3D&md5=9148e2c61f5eea3743989ddb2806c0eeCAS |
[30] F. Degryse, E. Smolders, H. Zhang, W. Davison, Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. Environ. Chem. 2009, 6, 198.
| Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CjurfI&md5=7704ef6e3371948ebe0c9679fe506943CAS |
[31] J. Song, F. J. Zhao, Y. M. Luo, S. P. McGrath, H. Zhang, Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ. Pollut. 2004, 128, 307.
| Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFaktQ%3D%3D&md5=798351d758352cb1586f7925cd932c03CAS |
[32] Chelex® 100 and Chelex 20 Chelating Ion Exchange Resin Instruction Manual (Bio-Rad Laboratories: Hercules, CA) Available at http://www.bio-rad.com/webmaster/pdfs/9184_Chelex.PDF [Verified 15 December 2011].
[33] J. S. Fritz, Analytical Solid-Phase Extraction 1999 (Wiley: New York).
[34] H. Zhang, W. Davison, B. Knight, S. P. McGrath, In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT. Environ. Sci. Technol. 1998, 32, 704.
| In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvF2ktQ%3D%3D&md5=4747fb28cde6d1bb07bb6d38eea77bfbCAS |
[35] S. Mason, R. Hamon, A. Nolan, H. Zhang, W. Davison, Performance of a mixed binding layer for measuring anions and cations in a single assay using the diffusive gradients in thin films technique. Anal. Chem. 2005, 77, 6339.
| Performance of a mixed binding layer for measuring anions and cations in a single assay using the diffusive gradients in thin films technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVGhu78%3D&md5=deb1b9eca708204f3089ddb8c6728208CAS |
[36] C. Manolescu, M. Grinberg, C. Field, S. Ma, S. Shen, H. Lee, Y. Wang, A. Granger, Q. Chen, J. McCaffrey, D. Norwood, N. Grinberg, Studies of the interactions of amino alcohols using high performance liquid chromatography with crown ether stationary phases. J. Liq. Chromatogr. R. T. 2008, 31, 2219.
| Studies of the interactions of amino alcohols using high performance liquid chromatography with crown ether stationary phases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFOjs74%3D&md5=e133593f0a22e1b32c5560be89885c9aCAS |
[37] A. J. Khan, M. Tsuji, M. Abe, Synthetic inorganic ion-exchange materials. LI. Synthesis, characterization, and thermal-decomposition of cubic ammonium molybdate. Bull. Chem. Soc. Jpn. 1989, 62, 3457.
| Synthetic inorganic ion-exchange materials. LI. Synthesis, characterization, and thermal-decomposition of cubic ammonium molybdate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFSmtL4%3D&md5=4591ac4f17d98a48817b4cd972b2d753CAS |
[38] N. K. Sorensen, A. Bulow-Olsen, Plantedirektoratets f’lles arbejdsmetoder for jordbundsanalyser 1994 (Plantedirektoratet: Lyngby, Denmark).
[39] H. E. Jensen, S. E. Jensen, Jordfysik og jordbrugsmeterologi. Det fysiske miljo forplantev’kst 2001 (Samfundslitteratur: Copenhagen, Denmark).
[40] R. F. Brennan, M. D. A. Bolland, Comparing soil and tissue testing of copper for early growth of wheat. Comm. Soil Sci. Plan. 2006, 37, 1451.
| Comparing soil and tissue testing of copper for early growth of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltF2jtrw%3D&md5=ffafc3896130382c97b0cc59dc437022CAS |
[41] C. A. Hebbern, P. Pedas, J. K. Schjoerring, L. Knudsen, S. Husted, Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.). Plant Soil 2005, 272, 233.
| Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1eku7g%3D&md5=6247eda3abe82ec544a7bc26ccbc4b08CAS |
[42] R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, D. Sen, J. D. Lamb, J. J. Christensen, R. M. Izatt, Thermodynamic and kinetic data for cation-macrocycle interaction. Chem. Rev. 1985, 85, 271.
| Thermodynamic and kinetic data for cation-macrocycle interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFCrur0%3D&md5=1ac6d46d19730a7dfbd6fbd0821bf7f2CAS |
[43] H. Rohm, Technical Data Sheet: AmberliteTM IRP69 pharmaceutical grade cation exchange resin (sodium polystyrene sulfonate USP) 2006. Available at http://www.dow.com/assets/attachments/business/process_chemicals/amberlite_and_duolite_pharmaceutical_grade_resins/amberlite_irp69/tds/amberlite_irp69.pdf [Verified 12 December 2011].
[44] O. K. Borggaard, S. Hansen, P. E. Holm, S. Husted, C. R. Jensen, C. Petersen, J. K. Schjørring, Jord, Vand og Planter 2010 (Academic Books: Copenhagen, Denmark).
[45] H. Zhang, DGT for Measurements in Waters, Soils and Sediments 2003 (DGT Research Ltd.: Lancaster, UK). Available at http://www.dgtresearch.com/WebProducts.aspx?CATID=TEC [Verified 17 December 2010].
[46] S. Ding, D. Xu, Q. Sun, H. Yin, C. Zhang, Measurement of dissolved reactive phosphorus using the diffusive gradients in thin films technique with a high-capacity binding phase. Environ. Sci. Technol. 2010, 44, 8169.
| Measurement of dissolved reactive phosphorus using the diffusive gradients in thin films technique with a high-capacity binding phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1eisrrI&md5=bcbd89763817c880dbc6dee2568505e2CAS |
[47] F. Degryse, E. Smolders, I. Oliver, H. Zhang, Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils. Environ. Sci. Technol. 2003, 37, 3958.
| Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVyqtLc%3D&md5=9cc9185148b73faf0f63a5ad7ca57fa0CAS |
[48] D. Zeiss, M. Wagner, A. Bauer-Brandl, Characterisation of the ion exchange reaction between Propranolol-H+ or K+ with Amberlite™ IRP 69 resin by both, isothermal titration calorimetry and (flame) photometric equilibrium analysis. Open Drug Deliv. J. 2009, 3, 10.
| Characterisation of the ion exchange reaction between Propranolol-H+ or K+ with Amberlite™ IRP 69 resin by both, isothermal titration calorimetry and (flame) photometric equilibrium analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaqu7zL&md5=7735266f07a9f4bdb00cbbf3eb9185afCAS |
[49] O. A. Garmo, O. Royset, E. Steinnes, T. P. Flaten, Performance study of diffusive gradients in thin films for 55 elements. Anal. Chem. 2003, 75, 3573.
| Performance study of diffusive gradients in thin films for 55 elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Krs7o%3D&md5=378f30cd172b1d9cb63839d8681c2b19CAS |
[50] Y.-H. Li, S. Gregory, Diffusion of ions in sea water and in deep-sea sediments. Geochem. Cosmochim. Ac. 1974, 38, 703.
| Diffusion of ions in sea water and in deep-sea sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltVyqsrY%3D&md5=5f9ab2f8a734393351f2d4089ab2fad1CAS |
[51] K. W. Warnken, H. Zhang, W. Davison, Trace metal measurements in low ionic strength synthetic solutions by diffusive gradients in thin films. Anal. Chem. 2005, 77, 5440.
| Trace metal measurements in low ionic strength synthetic solutions by diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1Kntb4%3D&md5=5af5e2e974108f0e79d46fd6ecff929aCAS |
[52] J. Y. Cornu, L. Denaix, Prediction of zinc and cadmium phytoavailability within a contaminated agricultural site using DGT. Environ. Chem. 2006, 3, 61.
| Prediction of zinc and cadmium phytoavailability within a contaminated agricultural site using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVSlu7k%3D&md5=68bec438e88afb1ab8e3eb9cf287f172CAS |
[53] F. J. Zhao, C. P. Rooney, H. Zhang, S. P. McGrath, Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environ. Toxicol. Chem. 2006, 25, 733.
| Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVaju7c%3D&md5=af38e2cbf8b0d0207b60cf503257c2e7CAS |
[54] A. R. Almas, P. Lombnaes, T. A. Sogn, J. Mulder, Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere 2006, 62, 1647.
| Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVKjs7o%3D&md5=47ab173ab0b6fcb4e3140fc9507b149aCAS |
[55] S. Mason, R. Harnon, H. Zhang, J. Anderson, Investigating chemical constraints to the measurement of phosphorus in soils using diffusive gradients in thin films (DGT) and resin methods. Talanta 2008, 74, 779.
| Investigating chemical constraints to the measurement of phosphorus in soils using diffusive gradients in thin films (DGT) and resin methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtV2msA%3D%3D&md5=0a2269acd299eb40d7a44a4193c03f61CAS |
[56] J. J. Schoenau, W. Z. Huang, Anion-echange membrane, water and sodium-bicarbonate extractgions as soil tests for phosphorus. Comm. Soil Sci. Plan. 1991, 22, 465.
| Anion-echange membrane, water and sodium-bicarbonate extractgions as soil tests for phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWitrs%3D&md5=e8c39ec7d74756dd2ca7fb6c0f06454fCAS |