Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Strategies in the application of the Donnan membrane technique

Liping Weng A B , Flora Alonso Vega A and Willem H. Van Riemsdijk A
+ Author Affiliations
- Author Affiliations

A Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA, Wageningen, the Netherlands.

B Corresponding author. Email: liping.weng@wur.nl

Environmental Chemistry 8(5) 466-474 https://doi.org/10.1071/EN11021
Submitted: 26 February 2011  Accepted: 21 June 2011   Published: 13 September 2011

Environmental context. Free ion concentrations determine the effects of nutrients and pollutants on organisms in the environment. The Donnan membrane technique provides a measure of free ion concentrations. This paper presents clear guidelines on the application of the Donnan membrane technique for determining free ion concentrations in both synthetic and natural samples.

Abstract. The Donnan membrane technique (DMT) can be applied to measure free ion concentrations both in laboratory and in situ in the field. In designing DMT experiments, different strategies can be taken, depending on whether accumulation is needed. (1) When the free ion concentration is above the detection limit of the analytical technique (e.g. ICP-MS), no accumulation is needed and no ligand is added to the acceptor. Measurement can be based on the Donnan membrane equilibrium. (2) When an accumulation of less than 500 times is needed, an appropriate amount of ligand can be added to the acceptor and measurement can be based on the Donnan membrane equilibrium. (3) When an accumulation factor of larger than 500 times is needed, a relatively large amount of ligand is added to the acceptor and measurement can be based on the transport kinetics. In this paper, several issues in designing the DMT experiments are discussed: choice of DMT cell, measurement strategies and ligands and possible implication of slow dissociation of metal complexes in the sample solution (lability issue). The objective of this paper is to give better guidance in the application of DMT for measuring free ion concentrations in both synthetic and natural samples.


References

[1]  P. F. Bell, R. L. Chaney, J. S. Angle, Free metral activity and total metal concentration as indexes of micronutrient availability to barley (Hordeum vulgare (L) Klages) Plant Soil 1991, 130, 51.
Free metral activity and total metal concentration as indexes of micronutrient availability to barley (Hordeum vulgare (L) Klages)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsVaiurw%3D&md5=02d30a97da8e277c79cf0a990cb83806CAS |

[2]  P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 45–102 (Wiley: Chichester, UK).

[3]  D. R. Parker, J. F. Pedler, Reevaluating the free-ion activity model of trace metal availability to higher plants. Plant Soil 1997, 196, 223.
Reevaluating the free-ion activity model of trace metal availability to higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVOhsrk%3D&md5=6330e89e7f694d7a75ce6dcda3bc3488CAS |

[4]  S. Sauve, A. Dumestre, M. McBride, W. Hendershot, Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ. Toxicol. Chem. 1998, 17, 1481.
| 1:CAS:528:DyaK1cXltFyjt7g%3D&md5=6f993dfd69769f6e904716c1599514edCAS |

[5]  Y. Ge, P. Murray, W. H. Hendershot, Trace metal speciation and bioavailability in urban soils. Environ. Pollut. 2000, 107, 137.
Trace metal speciation and bioavailability in urban soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1Kgug%3D%3D&md5=49a5716218f3d887e96ed21bbfd96e7cCAS |

[6]  R. L. Hough, A. M. Tye, N. M. J. Crout, S. P. McGrath, H. Zhang, S. D. Young, Evaluating a ‘Free Ion Activity Model’ applied to metal uptake by Lolium perenne L. grown in contaminated soils. Plant Soil 2005, 270, 1.
Evaluating a ‘Free Ion Activity Model’ applied to metal uptake by Lolium perenne L. grown in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1ektLk%3D&md5=fa180beef51e13118800b9a58e408a41CAS |

[7]  J. Buffle, N. Parthasarathy, N.-K. Djane, L. Matthiasson, Permeation liquid membranes for field analysis and speciation of trace compounds in waters, in In Situ Monitoring of Aquatic Systems Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 407–493 (Wiley: Chichester, UK).

[8]  L. Tomaszewski, J. Buffle, J. Galceran, Theoretical and analytical characterization of a flow-through permeation liquid membrane with controlled flux for metal speciation measurements. Anal. Chem. 2003, 75, 893.
Theoretical and analytical characterization of a flow-through permeation liquid membrane with controlled flux for metal speciation measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlOjsw%3D%3D&md5=f3d0225be5a5097f6ffa2fae74106a6dCAS |

[9]  T. M. Florence, Electrochemical approaches to trace element speciation in waters, a review. Analyst (Lond.) 1986, 111, 489.
Electrochemical approaches to trace element speciation in waters, a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltVaisb8%3D&md5=2229e3786e4c62390e6696e166e00befCAS |

[10]  S. C. Apte, G. E. Batley, Trace metal speciation of labile chemical species in waters and sediments: non-electrochemical approaches, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 256–306 (Wiley: Chichester, UK).

[11]  L. Weng, E. J. M. Temminghoff, W. H. Van Riemsdijk, Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique. Eur. J. Soil Sci. 2001, 52, 629.
Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVKqsQ%3D%3D&md5=5731b3a90952aaeacaaced175be98fa7CAS |

[12]  A. M. Mota, M. M. Correia dos Santos, Trace metal speciation of labile chemical species in natural waters: electrochemical methods, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 205–258 (Wiley: Chichester, UK).

[13]  E. J. M. Temminghoff, A. C. C. Plette, R. Van Eck, W. H. Van Riemsdijk, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique. Anal. Chim. Acta 2000, 417, 149.
Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWlsb8%3D&md5=6e1a4f945d50d431a5aed1cf42c4bc9bCAS |

[14]  J. K. Lampert, Measurement of trace cation activities by Donnan membrane equilibrium and atomic adsorption analysis 1982, Ph.D Thesis, University of Wisconsin, Madison.

[15]  M. M. Minnich, M. B. McBride, Copper activity in soil solution: I. Measurement by ion-selective electrode and Donnan dialysis. Soil Sci. Soc. Am. J. 1987, 51, 568.
Copper activity in soil solution: I. Measurement by ion-selective electrode and Donnan dialysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFOrtbY%3D&md5=a4768517a114c9079fc92523eef3389bCAS |

[16]  A. Fitch, P. A. Helmke, Donnan equilibrium graphite-furnace atomic-absorption estimates of soil extract complexation capacities. Anal. Chem. 1989, 61, 1295.
Donnan equilibrium graphite-furnace atomic-absorption estimates of soil extract complexation capacities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFWmsrs%3D&md5=b1616d8b31673eb26640a1195569c7bbCAS |

[17]  A. K. Salam, P. A. Helmke, The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma 1998, 83, 281.
The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1yksrk%3D&md5=a92ce5980117b34bbaf0deaadad53494CAS |

[18]  L. P. Weng, W. H. Van Riemsdijk, E. J. M. Temminghoff, Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration. Anal. Chem. 2005, 77, 2852.
Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislWmur8%3D&md5=4435ecf0b550c95c4fd3ba1bf7af7b07CAS |

[19]  E. J. J. Kalis, L. P. Weng, F. Dousma, E. J. M. Temminghoff, W. H. Van Riemsdijk, Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique. Environ. Sci. Technol. 2006, 40, 955.
Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlars7rK&md5=34b646739eecb63e5febbd1e42ffae9dCAS |

[20]  E. J. J. Kalis, L. P. Weng, E. J. M. Temminghoff, W. H. Van Riemsdijk, Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique. Anal. Chem. 2007, 79, 1555.
Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktV2htA%3D%3D&md5=7dd38dfa121e8a9aee62e3155b125af9CAS |

[21]  L. A. Oste, E. J. M. Temminghoff, T. M. Lexmond, W. H. Van Riemsdijk, Measuring and modeling zinc and cadmium binding by humic acid. Anal. Chem. 2002, 74, 856.
Measuring and modeling zinc and cadmium binding by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVeksA%3D%3D&md5=bf8f72f189b5afdf8b4679fc0e4a6806CAS |

[22]  L. P. Weng, W. H. Van Riemsdijk, E. J. M. Temminghoff, Effects of lability of metal complex on free ion measurement using DMT. Environ. Sci. Technol. 2010, 44, 2529.
Effects of lability of metal complex on free ion measurement using DMT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVGqtL0%3D&md5=24d94a494fa5b684dff431447b0cb95fCAS |

[23]  J. A. Cox, K. Slonawska, D. K. Gatchell, A. G. Hiebert, Metal speciation by Donnan dialysis. Anal. Chem. 1984, 56, 650.
Metal speciation by Donnan dialysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVyrtr0%3D&md5=d8a4ecc4af94d19fc637a646fcc890b4CAS |

[24]  L. Marang, P. Reiller, M. Pepe, M. F. Benedetti, Donnan membrane approach: From equilibrium to dynamic speciation. Environ. Sci. Technol. 2006, 40, 5496.
Donnan membrane approach: From equilibrium to dynamic speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFahtrs%3D&md5=9b6e12157e8d7870bb4fe4ceb43a6b20CAS |

[25]  L. P. Weng, E. J. M. Temminghoff, W. H. Van Riemsdijk, Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol. 2001, 35, 4436.
Contribution of individual sorbents to the control of heavy metal activity in sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGru74%3D&md5=2972e7194877820e16a72116f39a862cCAS |

[26]  L. P. Weng, E. J. M. Temminghoff, S. Lofts, E. Tipping, W. H. Van Riemsdijk, Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 2002, 36, 4804.
Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnsl2iu7w%3D&md5=1433b8dd7162134a657bc86587c080b9CAS |

[27]  E. Fest, E. J. M. Temminghoff, R. A. J. Comans, W. H. Van Riemsdijk, Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH. Geoderma 2008, 146, 66.
Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOjs74%3D&md5=902013777dfc9c051703c61e0d740d1dCAS |

[28]  E. J. J. Kalis, E. J. M. Temminghoff, R. M. Town, E. R. Unsworth, W. H. Van Riemsdijk, Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass. J. Environ. Qual. 2008, 37, 2221.
Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2hsL%2FP&md5=703b4267242b36ecf31967cff1f36dc1CAS |

[29]  G. F. Koopmans, W. D. C. Schenkeveld, J. Song, Y. M. Luo, J. Japenga, E. J. M. Temminghoff, Influence of EDDS on metal speciation in soil extracts: Measurement and mechanistic multicomponent modeling. Environ. Sci. Technol. 2008, 42, 1123.
Influence of EDDS on metal speciation in soil extracts: Measurement and mechanistic multicomponent modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFWlsA%3D%3D&md5=cad70686566832536cbe53c6e8313a77CAS |

[30]  Y. T. Li, T. Becquer, J. Dai, C. Quantin, M. F. Benedetti, Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils. Environ. Pollut. 2009, 157, 1249.
Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1eks7w%3D&md5=c4b6ec1860d15ba4c90bed0ffbf4faadCAS |

[31]  X. S. Luo, D. M. Zhou, Y. J. Wang, Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China. J. Environ. Sci. (China) 2006, 18, 927.
Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGntLbL&md5=1f201bf45dd6b9c446796b3dabdda2c0CAS |

[32]  L. Van Laer, E. Smolders, F. Degryse, C. Janssen, K. A. C. De Schamphelaere, Speciation of nickel in surface waters measured with the Donnan membrane technique. Anal. Chim. Acta 2006, 578, 195.
Speciation of nickel in surface waters measured with the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSitrjJ&md5=bfe012977a2249808b8484f721b11672CAS |

[33]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Martin, S. Noel, Y. Nur, N. Odzak, J. Puy, W. Van Riemsdijk, E. Temminghoff, M. L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. P. Weng, H. B. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=0e79db7e4260d6d64133ebab749fe880CAS |

[34]  B. Van der Stelt, E. J. M. Temminghoff, W. H. Van Riemsdijk, Measurement of ion speciation in animal slurries using the Donnan membrane technique. Anal. Chim. Acta 2005, 552, 135.
Measurement of ion speciation in animal slurries using the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCntLrO&md5=f77f04f0b1436b96c3d016e12188f02eCAS |

[35]  J. Bartacek, F. G. Fermoso, A. M. Baldo-Urrutia, E. D. Van Hullebusch, P. N. L. Lens, Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. J. Ind. Microbiol. Biotechnol. 2008, 35, 1465.
Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1eqtLbE&md5=9f093cd9d020a757fe8a4d774838b198CAS |

[36]  F. G. Fermoso, G. Collins, J. Bartacek, V. O’Flaherty, P. Lens, Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors. Biodegradation 2008, 19, 725.
Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVCjurs%3D&md5=4969ff779f07b09a2dc22bfd514e7b17CAS |

[37]  F. A. Vega, L. P. Weng, E. J. M. Temminghoff, W. H. van Riemsdijk, Donnan membrane technique (DMT) for anion measurement. Anal. Chem. 2010, 82, 2932.
Donnan membrane technique (DMT) for anion measurement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyhuro%3D&md5=4c6798e78bcf24995fbb503bb203cbd9CAS |

[38]  L. P. Weng, F. A. Vega, S. Supriatin, W. Bussink, W. H. van Riemsdijk, Speciation of Se and DOC in soil solution and their relation to Se bioavailability. Environ. Sci. Technol. 2011, 45, 262.
Speciation of Se and DOC in soil solution and their relation to Se bioavailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaktb7E&md5=1ea0ffe0ba171f1b1ce8c2e02d2a26ccCAS |

[39]  D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A 1999, 151, 147.
Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2ns7g%3D&md5=4d6a0cecf96f67019e05ce465c99a2f8CAS |

[40]  C. J. Milne, D. G. Kinniburgh, E. Tipping, Generic NICA–Donnan model parameters for proton binding by humic substances. Environ. Sci. Technol. 2001, 35, 2049.
Generic NICA–Donnan model parameters for proton binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1GrsLY%3D&md5=9a18da168304de5a94994f7404d4472fCAS |

[41]  C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=7a79fef017f01ff26409f082104dfbfbCAS |

[42]  M. G. Keizer, W. H. Van Riemsdijk, ECOSAT: Equilibrium Calculation of Speciation and Transport 1994 (Agricultural University of Wageningen: Wageningen).

[43]  S. L. Andrianirinaharivelo, J. F. Pilichowski, M. Bolte, Nitrilotriacetic acid transformation photoinduced by complexation with iron(III) in aquaeous-solution. Trans. Met. Chem. 1993, 18, 37.
Nitrilotriacetic acid transformation photoinduced by complexation with iron(III) in aquaeous-solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsl2rsL0%3D&md5=1cb46c1a615a49bf93c7e35adadaaee4CAS |

[44]  S. Metsarinne, T. Tuhkanen, R. Aksela, Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere 2001, 45, 949.
| 1:CAS:528:DC%2BD3MXntVehtrY%3D&md5=de5d9031813dfc0ba50abf08ef9c6a9cCAS |

[45]  B. Nowack, Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol. 2002, 36, 4009.
Environmental chemistry of aminopolycarboxylate chelating agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Omt7o%3D&md5=17ed9579f1529f3e33c3a1d89ab1d67aCAS |

[46]  A. Svenson, L. Kaj, H. Bjorndal, Nitrilotriacetic acid transformation photoinduced by complexation with iron(III) in aqueous-solution. Chemosphere 1989, 18, 1805.
Nitrilotriacetic acid transformation photoinduced by complexation with iron(III) in aqueous-solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjsFWnsA%3D%3D&md5=005370750ec2741846c7a7e8ca692e60CAS |

[47]  H. P. van Leeuwen, R. M. Town, J. Buffle, R. Cleven, W. Davison, J. Puy, W. H. van Riemsdijk, L. Sigg, Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005, 39, 8545.
Dynamic speciation analysis and bioavailability of metals in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73M&md5=57823b7291b817fc12ad02e4d1285afbCAS |

[48]  K. W. Warnken, W. Davison, H. Zhang, J. Galceran, J. Puy, In situ measurements of metal complex exchange kinetics in freshwater. Environ. Sci. Technol. 2007, 41, 3179.
In situ measurements of metal complex exchange kinetics in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2mur0%3D&md5=74efd69bbb7b902c4175005efc63545dCAS |