Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Determination of manganese and zinc in coastal waters by anodic stripping voltammetry with a vibrating gold microwire electrode

Kristoff Gibbon-Walsh A , Pascal Salaün A and Constant M. G. van den Berg A B
+ Author Affiliations
- Author Affiliations

A School of Environmental Sciences, Nicholson Building, University of Liverpool, Liverpool, L69 3GP, UK.

B Corresponding author. Email: vandenberg@liv.ac.uk

Environmental Chemistry 8(5) 475-484 https://doi.org/10.1071/EN11023
Submitted: 1 March 2011  Accepted: 27 May 2011   Published: 4 October 2011

Environmental context. Metals in the marine environment play a role in biological processes but can also be toxic. An electrochemical method with a simple microwire electrode is presented that facilitates detection of zinc and manganese in coastal waters. The method is very sensitive and will likely lead to the development of an in-situ monitoring apparatus.

Abstract. A vibrating, gold, microwire electrode (VGME) is used here to detect low nanomolar levels of dissolved Mn by anodic stripping chronopotentiometry (ASC) and sub-nanomolar levels of dissolved Zn by anodic stripping voltammetry (ASV) in seawater. Mn is detected using a deposition potential (Edep) of –1.35 V, and Zn using Edep = –0.9 V, at pH 8. The method is an example of under-potential deposition (UPD), with positive shifts of the metal oxidation potentials of 0.4–0.6 V compared to the mercury electrode. The limits of detection for Mn (1.4 nM) and for Zn (0.3 nM) in seawater with a 300-s plating time, are better than achieved using other non-mercury based electrodes and nearly as good as a mercury film electrode for Zn. The detection of sub-nanomolar Mn is subject to an unusual interference by arsenate, which lowers the sensitivity when the deposition time is extended beyond 300 s. The VGME has advantages related to robustness, stability and ease of use (no polishing, simple regeneration) facilitating on-site and in-situ use. Zn and Mn are readily measured in seawater of natural pH without the need for reagents, facilitating use of this method in a system for in-situ monitoring. The methods are applied here to coastal seawater (Liverpool Bay, Irish Sea) and can be used for freshwaters such as river water.

Additional keywords: anodic stripping chronopotentiometry, seawater.


References

[1]  K. W. Bruland, J. R. Donat, D. A. Hutchins, Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 1991, 36, 1555.
Interactive influences of bioactive trace metals on biological production in oceanic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xktleis7w%3D&md5=3d53aaa890c14b5e83be9e0084ad7591CAS |

[2]  G. P. Klinkhammer, M. L. Bender, The distribution of manganese in the Pacific Ocean. Earth Planet. Sci. Lett. 1980, 46, 361.
The distribution of manganese in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitFyms78%3D&md5=d27f6882a71ebaaa454ec3fb68a88597CAS |

[3]  C. M. G. van den Berg, A. G. A. Merks, E. K. Duursma, Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt estuary. Estuar. Coast. Shelf Sci. 1987, 24, 785.
Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXls1Wjs7w%3D&md5=892d0645b970003579c397ace8813996CAS |

[4]  F. L. L. Muller, D. R. Kester, Voltammetric determination of the complexation parameters of zinc in marine and estuarine waters. Mar. Chem. 1991, 33, 71.
Voltammetric determination of the complexation parameters of zinc in marine and estuarine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlClsrw%3D&md5=580442194d1027a990df923526c88077CAS |

[5]  M. J. Ellwood, C. M. G. Van den Berg, Zinc speciation in the Northeastern Atlantic Ocean. Mar. Chem. 2000, 68, 295.
Zinc speciation in the Northeastern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptF2kug%3D%3D&md5=61f43b8a838d8cd78c0128a7d8c84ca9CAS |

[6]  K. W. Bruland, Complexation of zinc by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 1989, 34, 269.
Complexation of zinc by natural organic ligands in the central North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvVeltrs%3D&md5=37666a2f1758a973908a9a54517bfa31CAS |

[7]  K. W. Bruland, G. A. Knauer, J. H. Martin, Zinc in northeast Pacific water. Nature 1978, 271, 741.
Zinc in northeast Pacific water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXks1Cqur0%3D&md5=e4c81c96550fab2283e4647dd8d06fc4CAS |

[8]  R. E. Laslett, Concentrations of dissolved and suspended particulate Cd, Cu, Mn, Ni, Pb and Zn in surface waters around the coasts of England and Wales and in adjacent seas. Estuar. Coast. Shelf Sci. 1995, 40, 67.
Concentrations of dissolved and suspended particulate Cd, Cu, Mn, Ni, Pb and Zn in surface waters around the coasts of England and Wales and in adjacent seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktleiu7Y%3D&md5=415f717a0cd7910ca3ec5bf47e2eeb5eCAS |

[9]  M. A. Saito, D. L. Schneider, Examination of precipitation chemistry and improvements in precision using the Mg(OH)2 preconcentration inductively coupled plasma mass spectrometry (ICP-MS) method for high-throughput analysis of open-ocean Fe and Mn in seawater. Anal. Chim. Acta 2006, 565, 222.
Examination of precipitation chemistry and improvements in precision using the Mg(OH)2 preconcentration inductively coupled plasma mass spectrometry (ICP-MS) method for high-throughput analysis of open-ocean Fe and Mn in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFyls7Y%3D&md5=1ef3a25561f28cd6c802721dc94399cbCAS |

[10]  G. P. Klinkhammer, Fiber optic spectrometers for in-situ measurements in the oceans: the ZAPS probe. Mar. Chem. 1994, 47, 13.
Fiber optic spectrometers for in-situ measurements in the oceans: the ZAPS probe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlOqtrc%3D&md5=a6bd2cc242add4dcc014a9da4dd72fbbCAS |

[11]  M. I. Abdullah, B. Reusch Berg, R. Klimek, The determination of zinc, cadmium, lead and copper in a single sea-water sample by differential pulse anodic stripping voltammetry. Anal. Chim. Acta 1976, 84, 307.
The determination of zinc, cadmium, lead and copper in a single sea-water sample by differential pulse anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkslWlsg%3D%3D&md5=11908d94e479220d3dd2874348aac209CAS |

[12]  L. Mart, H.-W. Nurnberg, D. Dyrssen, Low level determination of trace metals in Arctic sea water and snow by differential pulse anodic stripping voltammetry, in Trace Metals in Sea Water 1983 (Eds C. S. Wong, E. Boyle, K. W. Bruland, E. D. Goldberg) pp. 113–130 (Plenum Press: New York).

[13]  R. W. Jakuba, J. W. Moffett, M. A. Saito, Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Anal. Chim. Acta 2008, 614, 143.
Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvV2ksLk%3D&md5=847148b75de89c4808f0608fa32fea3fCAS |

[14]  C. M. G. van den Berg, Direct determination of sub-nanomolar levels of zinc in seawater by cathodic stripping voltammetry. Talanta 1984, 31, 1069.
Direct determination of sub-nanomolar levels of zinc in seawater by cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlOnsbk%3D&md5=d59117e9cea90d21048b5e6d8b541381CAS |

[15]  J. Wang, Stripping analysis at bismuth electrodes: a review. Electroanalysis 2005, 17, 1341.
Stripping analysis at bismuth electrodes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCqt7Y%3D&md5=4bfcac0eacbe923136ddaacba6ada873CAS |

[16]  C. Garnier, L. Lesven, G. Billon, A. Magnier, O. Mikkelsen, I. Pizeta, Voltammetric procedure for trace metal analysis in polluted natural waters using homemade bare gold-disk microelectrodes. Anal. Bioanal. Chem. 2006, 386, 313.
Voltammetric procedure for trace metal analysis in polluted natural waters using homemade bare gold-disk microelectrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVegs7c%3D&md5=c01f9a5673d677490d8a0e5648dc214bCAS |

[17]  L. Lesven, S. M. Skogvold, O. Mikkelsen, G. Billon, Determination of manganese in natural media by anodic stripping voltammetry using a rotating solid silver amalgam electrode. Electroanalysis 2009, 21, 274.
Determination of manganese in natural media by anodic stripping voltammetry using a rotating solid silver amalgam electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtl2msr8%3D&md5=abe03b24908d7ff20a9cbc4785171667CAS |

[18]  I. Pižeta, G. Billon, J. C. Fischer, M. Wartel, Solid microelectrodes for in situ voltammetric measurements. Electroanalysis 2003, 15, 1389.
Solid microelectrodes for in situ voltammetric measurements.Crossref | GoogleScholarGoogle Scholar |

[19]  J. S. Roitz, K. W. Bruland, Determination of dissolved manganese(II) in coastal and estuarine waters by differential pulse cathodic stripping voltammetry. Anal. Chim. Acta 1997, 344, 175.
Determination of dissolved manganese(II) in coastal and estuarine waters by differential pulse cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFGmtLo%3D&md5=daed3d4fb6594d120fc178f2efe20aa2CAS |

[20]  C. M. Welch, C. E. Banks, S. Komorsky-Lovric, R. G. Compton, Electroanalysis of trace manganese via cathodic stripping voltammetry: Exploration of edge plane pyrolytic graphite electrodes for environmental analysis. Croat. Chem. Acta 2006, 79, 27.
| 1:CAS:528:DC%2BD28Xms1GhsLc%3D&md5=8fc4e3787be854d136433e161e4f7b3cCAS |

[21]  A. Goodwin, A. L. Lawrence, C. E. Banks, F. Wantz, D. Omanović, Š. Komorsky-Lovrić, R. G. Compton, On-site monitoring of trace levels of free manganese in sea water via sonoelectroanalysis using a boron-doped diamond electrode. Anal. Chim. Acta 2005, 533, 141.
On-site monitoring of trace levels of free manganese in sea water via sonoelectroanalysis using a boron-doped diamond electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Cjsr4%3D&md5=453f272333b88e713d37118ccb9a816aCAS |

[22]  G. W. Tindall, S. H. Cadle, S. Bruckens, Inhibition of reduction of oxygen at a platinum electrode by deposition of a monolayer of copper at underpotential. J. Am. Chem. Soc. 1969, 91, 2119.
Inhibition of reduction of oxygen at a platinum electrode by deposition of a monolayer of copper at underpotential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktFyitL4%3D&md5=a14c0b1754973e94e92d86616d6f77d2CAS |

[23]  G. Herzog, D. W. M. Arrigan, Determination of trace metals by underpotential deposition-stripping voltammetry at solid electrodes. TRAC – Trends Anal. Chem. 2005, 24, 208.
Determination of trace metals by underpotential deposition-stripping voltammetry at solid electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs12kur8%3D&md5=81194247c6df35d5132e99ce88e33391CAS |

[24]  P. Salaün, K. Gibbon-Walsh, C. M. G. van den Berg, Beyond the hydrogen wave: new frontier for the voltammetric detection of trace elements by stripping voltammetry. Anal. Chem. 2011, 83, 3848.
Beyond the hydrogen wave: new frontier for the voltammetric detection of trace elements by stripping voltammetry.Crossref | GoogleScholarGoogle Scholar |

[25]  P. Salaün, C. M. G. van den Berg, Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal. Chem. 2006, 78, 5052.
Voltammetric detection of mercury and copper in seawater using a gold microwire electrode.Crossref | GoogleScholarGoogle Scholar |

[26]  G. Billon, C. M. G. van den Berg, Gold and silver micro-wire electrodes for trace analysis of metals. Electroanalysis 2004, 16, 1583.
Gold and silver micro-wire electrodes for trace analysis of metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFCqur0%3D&md5=207bc931d4067d6bd4ee8657f46f0c68CAS |

[27]  P. Salaün, B. Planer-Friedrich, C. M. G. van den Berg, Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal. Chim. Acta 2007, 585, 312.
Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode.Crossref | GoogleScholarGoogle Scholar |

[28]  K. Gibbon-Walsh, P. Salaün, C. M. G. van den Berg, Arsenic speciation in natural waters by cathodic stripping voltammetry. Anal. Chim. Acta 2010, 662, 1.
Arsenic speciation in natural waters by cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWkt7s%3D&md5=4fe983fff1878287ca66788d15d9fc95CAS |

[29]  L. Nyholm, G. Wikmark, Microelectrodes for anodic stripping voltammetry prepared by heat sealing thin fibres or wires in a polypropylene matrix. Anal. Chim. Acta 1992, 257, 7.
Microelectrodes for anodic stripping voltammetry prepared by heat sealing thin fibres or wires in a polypropylene matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs1GhtLY%3D&md5=7a15080278fd283a0745d77098b9645bCAS |

[30]  U. Oesch, J. Janata, Electrochemical study of gold electrodes with anodic oxide films – I. Formation and reduction behaviour of anodic oxides on gold. Electrochim. Acta 1983, 28, 1237.
Electrochemical study of gold electrodes with anodic oxide films – I. Formation and reduction behaviour of anodic oxides on gold.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXislChsQ%3D%3D&md5=f3f3dcf468ed2fd828637d7b9850b4b0CAS |

[31]  G. Herzog, D. W. M. Arrigan, Underpotential deposition and stripping of lead at disorganized monolayer-modified gold electrodes. Electroanalysis 2005, 17, 1816.
Underpotential deposition and stripping of lead at disorganized monolayer-modified gold electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wqt7zE&md5=a4d5af43169be16dad21ecda51852f3eCAS |

[32]  G. Gillain, G. Duyckaerts, A. Disteche, Direct and simultaneous determinations of Zn, Pb, Cd, Cu, Sb, Bi dissolved in sea water by differential pulse anodic stripping voltammetry with a hanging mercury drop electrode. Anal. Chim. Acta 1979, 106, 23.
Direct and simultaneous determinations of Zn, Pb, Cd, Cu, Sb, Bi dissolved in sea water by differential pulse anodic stripping voltammetry with a hanging mercury drop electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksVCgsrY%3D&md5=609430788521f293e4a1b3999bb5cfd4CAS |

[33]  R. J. O’Halloran, Anodic-stripping voltammetry of manganese in sea-water at a mercury film electrode. Anal. Chim. Acta 1982, 140, 51.
Anodic-stripping voltammetry of manganese in sea-water at a mercury film electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVOqsbk%3D&md5=2cd579aa902ae1f98949d8827076ad28CAS |

[34]  S. Taguchi, A. Aramata, Correlation of the underpotential deposition (UPD) of zinc ions on Pt(111), Pt(100), and Pt(110) with anion specific adsorption. J. Electroanal. Chem. 1998, 457, 73.
Correlation of the underpotential deposition (UPD) of zinc ions on Pt(111), Pt(100), and Pt(110) with anion specific adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVGgsLY%3D&md5=2a2d48f48ba54cf8a07dca515026594aCAS |

[35]  C. M. G. van den Berg, Determination of copper in seawater by cathodic stripping voltammetry of complexes with catechol. Anal. Chim. Acta 1984, 164, 195.
Determination of copper in seawater by cathodic stripping voltammetry of complexes with catechol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtVSms7c%3D&md5=4858de99e74da7e537426cece1aafd0cCAS |

[36]  P. W. Atkins, Shriver & Atkins’ Inorganic Chemistry 2010 (Oxford University Press: Oxford, UK).

[37]  A. E. Martell, R. M. Smith, Critical Stability Constants 1974 (Plenum Press: New York).

[38]  R. J. Yang, C. M. G. van den Berg, Metal complexation by humic substances in seawater. Environ. Sci. Technol. 2009, 43, 7192.
Metal complexation by humic substances in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFOisr8%3D&md5=a64d48d05b3e1a4d7c5f7c782badf9bfCAS |

[39]  B. Cosovic, V. Vojvodic, The application of ac polarography to the determination of surface-active substances in seawater. Limnol. Oceanogr. 1982, 27, 361.
The application of ac polarography to the determination of surface-active substances in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhs1yns74%3D&md5=e24c28e0b2e3cda9c0faa5a229285846CAS |

[40]  E. P. Achterberg, C. M. G. Van Den Berg, C. Colombo, High resolution monitoring of dissolved Cu and Co in coastal surface waters of the western North Sea. Cont. Shelf Res. 2003, 23, 611.
High resolution monitoring of dissolved Cu and Co in coastal surface waters of the western North Sea.Crossref | GoogleScholarGoogle Scholar |

[41]  D. J. Hydes, K. Kremling, Patchiness in dissolved metals (Al, Cd, Co, Cu, Mn, Ni) in North Sea surface waters – seasonal differences and influence of suspended sediment. Cont. Shelf Res. 1993, 13, 1083.
Patchiness in dissolved metals (Al, Cd, Co, Cu, Mn, Ni) in North Sea surface waters – seasonal differences and influence of suspended sediment.Crossref | GoogleScholarGoogle Scholar |

[42]  A. D. Tappin, D. J. Hydes, J. D. Burton, P. J. Statham, Concentrations, distributions and seasonal variability of dissolved Cd, Co, Cu, Mn, Ni, Pb and Zn in the English Channel. Cont. Shelf Res. 1993, 13, 941.
Concentrations, distributions and seasonal variability of dissolved Cd, Co, Cu, Mn, Ni, Pb and Zn in the English Channel.Crossref | GoogleScholarGoogle Scholar |