Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Dynamic features of speciation analysis by adsorptive stripping techniques

Raewyn M. Town A C and Herman P. van Leeuwen B
+ Author Affiliations
- Author Affiliations

A Institute for Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.

B Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.

C Corresponding author. Email: rmt@ifk.sdu.dk

Environmental Chemistry 7(3) 242-249 https://doi.org/10.1071/EN10027
Submitted: 17 March 2010  Accepted: 28 April 2010   Published: 22 June 2010

Environmental context. The environmental fate and bioavailability of metal ions in natural waters is determined by their thermodynamic stability and kinetic features, both of which are distributed. Competing ligand exchange – adsorptive stripping (CLE-AdS) is a technique that measures a certain portion of these complexes as determined by the stability of the selected competing ligand and the dynamic features of the sample complexes that remain following ligand exchange. Exploitation of CLE-AdS to determine a spectrum of sample complexes requires insight into its thermodynamic and kinetic windows.

Abstract. The kinetic features of the accumulation step of competing ligand exchange – adsorptive stripping (CLE-AdS) in metal speciation methodology are elaborated. During the adsorptive accumulation process, the flux of the surface active complex MLad towards the electrode may be modified by the coupled conversions of ML and M into MLad. An immediate consequence is that the accumulation flux of MLad can be greater than that corresponding to its mere bulk concentration: a labile ML contributes fully to the MLad accumulation, and a further flux enhancement can arise if ML is more mobile than MLad (DML > DMLad). Applying the conventional lability criterion, we present a framework for interpretation of CLE-AdS measurements in the presence of kinetic contributions from sample ML to the adsorptive accumulation of MLad. Measured accumulation fluxes for a kinetic case are well described by the presented theoretical framework. The dynamic analysis provides the basis for exploitation of CLE-AdS over a wider kinetic window than has been used to date. Consideration of the dynamics of sample species during the adsorptive accumulation step is fundamental for interpretation of metal speciation by CLE-AdS in complex natural systems that contain a distribution of complexes of different stability, lability, and mobility.

Additional keywords: chronopotentiometry, dynamic speciation, kinetic window, voltammetry.


References


[1]   H. P. van Leeuwen , R. M. Town , Adsorptive stripping chronopotentiometry. Part 1: fundamental features. J. Electroanal. Chem. 2007 , 610,  9.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   C. M. G. van den Berg , M. Nimmo , P. Daly , D. R. Turner , Effects of the detection window on the determination of organic copper speciation in estuarine waters. Anal. Chim. Acta 1990 , 232,  149.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   H. P. van Leeuwen , R. M. Town , J. Buffle , R. F. M. J. Cleven , W. Davison , J. Puy , W. H. van Riemsdijk , L. Sigg , Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005 , 39,  8545.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   M. Lucia , A. M. Campos , C. M. G. van den Berg , Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime. Anal. Chim. Acta 1994 , 284,  481.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   K. N. Buck , K. W. Bruland , Copper speciation in San Francisco Bay: a novel approach using multiple analytical windows. Mar. Chem. 2005 , 96,  185.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[6]   H. P. van Leeuwen , R. M. Town , Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange-adsorptive stripping voltammetry (CLE-AdSV). Environ. Sci. Technol. 2005 , 39,  7217.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   H. P. van Leeuwen , S. Jansen , Dynamic aspects of metal speciation by competitive ligand exchange-adsorptive stripping voltammetry (CLE-AdSV). J. Electroanal. Chem. 2005 , 579,  337.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   R. M. Town , H. P. van Leeuwen , Adsorptive stripping chronopotentiometry. Part 2: basic experimental features. J. Electroanal. Chem. 2007 , 610,  17.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   K. Štulík , C. Amatore , K. Holub , V. Mareček , W. Kutner , Microelectrodes. Definitions, characterization, and applications. Pure Appl. Chem. 2000 , 72,  1483.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   Levich V. G., Physicochemical Hydrodynamics 1962 (Prentice-Hall: Englewood Cliffs, NJ).

[11]   R. M. Town , Adsorptive stripping chronopotentiometry (AdSCP). Part 3: multi-metal systems. J. Electroanal. Chem. 2009 , 637,  72.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   Heyrovský J., Kůta J., Principles of Polarography 1966 (Academic Press: New York).

[13]   J. Koutecký , J. Koryta , The general theory of polarographic kinetic currents. Electrochim. Acta 1961 , 3,  318.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   M. Eigen , K. Tamm , Fast elementary steps in chemical reaction mechanisms. Pure Appl. Chem. 1963 , 6,  97.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   H. P. van Leeuwen , Revisited: the conception of lability of metal complexes. Electroanalysis 2001 , 13,  826.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   H. P. van Leeuwen , R. M. Town , J. Buffle , Impact of ligand protonation on Eigen-type metal complexation kinetics in aqueous systems. J. Phys. Chem. A 2007 , 111,  2115.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   Morel F. M. M., Hering J. G., Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York).

[18]   H. P. van Leeuwen , Voltammetric titrations involving metal complexes: effect of kinetics and diffusion coefficients. Sci. Total Environ. 1987 , 60,  45.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   J. R. Lead , K. J. Wilkinson , E. Balnois , B. J. Cutak , C. K. Larive , S. Assemi , R. Beckett , Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation. Environ. Sci. Technol. 2000 , 34,  3508.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[20]   J. Puy , J. Cecília , J. Galceran , R. M. Town , H. P. van Leeuwen , Voltammetric lability of multiligand complexes: the case of ML2. J. Electroanal. Chem. 2004 , 571,  121.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   J. Salvador , J. L. Garcés , E. Companys , J. Cecília , J. Galceran , J. Puy , R. M. Town , Ligand mixture effects in metal complex lability. J. Phys. Chem. A 2007 , 111,  4304.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[22]   D. L. Campbell , T. Moeller , Rare earths. MLXXXI. Formation constants of tropolone chelates of the tripositive ions at 25°. J. Inorg. Nucl. Chem. 1969 , 31,  1077.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   J. Maslowska , L. Chruscinski , Potentiometric studies on complexes in chromium(III)-L-aspartic acid-DL-methionine or DL-ethionine systems. Polyhedron 1986 , 5,  1131.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   G. Anderegg , Pyridine derivatives as complex formers. I. Pyridinecarboxylic acids. Helv. Chim. Acta 1960 , 43,  414.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   T. Yoshino , H. Imada , S. Murakami , M. Kagawa , Acid equilibria of methylthymol blue and formation constants of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with methylthymol blue. Talanta 1974 , 21,  211.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   Y. Oka , I. Watanabe , M. Hirai , Determination of metals with tropolones. X. Tropolone chelates of manganese(II), cobalt(II), nickel(II), and zinc(II). Nippon Kagaku Kaishi 1968 , 89,  1220.
        |  CAS |  open url image1

[27]   M. Hirai , Y. Oka , Stability of tropolone chelates of the bi- and tervalent metal ions. Bull. Chem. Soc. Jpn. 1970 , 43,  778.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   M. M. Khalil , A. E. Attia , Potentiometric studies on the formation equilibria of binary and ternary complexes of some metal ions with dipicolinic acid and amino acids. J. Chem. Eng. Data 2000 , 45,  1108.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   A. A. A. Boraei , S. H. Ibrahim , A. H. Mohamed , Solution equilibria of binary and ternary systems involving transition metal ions, adenosine 5′-triphosphate, and amino acids. J. Chem. Eng. Data 1999 , 44,  907.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   H. L. Girdhar , S. Parveen , M. K. Puri , Stability constants of glutamic acid complexes with some metal ions. Indian J. Chem. 1976 , 14A,  1021.
        |  CAS |  open url image1

[31]   Z. M. Anwar , H. A. Azab , Ternary complexes in solution. Comparison of the coordination tendency of some biologically important zwitterionic buffers toward the binary complexes of some transition metal ions and some amino acids. J. Chem. Eng. Data 1999 , 44,  1151.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   IUPAC, Stability Constants Database 2001, CD-ROM, v. 5.83, Data 4.67 (Academic Software, UK).

[33]   H. Sato , Y. Yokoyama , K. Momoki , Purification of xylenol orange by ion-exchange chromatography, and chelate formation with lead(II) and zinc(II). Anal. Chim. Acta 1977 , 94,  217.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[34]   A. Albert , Quantitative studies of the avidity of naturally occurring substances for trace metals. 2. Amino-acids having three ionizing groups. Biochem. J. 1952 , 50,  690.
        |  CAS | PubMed |  open url image1

[35]   N. Tanaka , T. Nozoe , T. Takamura , S. Kitahara , Polarographic and coulometric studies of tropolone. Bull. Chem. Soc. Jpn. 1958 , 31,  827.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   R. Abdel-Hamid , H. M. El-Sagher , M. K. Rabia , Electrochemical studies on sulphonephthaleins. Part 3. Kinetics of electrochemical reduction of xylenol orange and square-wave adsorptive cathodic stripping voltammetry of its lanthanum complex. Can. J. Chem. 1997 , 75,  162.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   A. M. Dixon , C. K. Larive , Modified pulsed-field gradient NMR experiments for improved selectivity in the measurement of diffusion coefficients in complex mixtures: application to the analysis of the Suwannee River fulvic acid. Anal. Chem. 1997 , 69,  2122.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   M. O. von Stackelberg , M. Pilgram , V. Toome , Bestimmung von Diffusionskoeffizienten einiger Ionen in wäßriger Lösung in Gegenwart von Fremdelektrolyten. I. Z. Elektrochem. 1953 , 57,  342.
         open url image1