Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Impact of various inorganic oxyanions on the removal rates of hexavalent chromium mediated by zero-valent iron

Mario Rivero-Huguet A and William D. Marshall A B
+ Author Affiliations
- Author Affiliations

A Department of Food Science and Agricultural Chemistry, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.

B Corresponding author. Email: william.marshall@mcgill.ca

Environmental Chemistry 7(3) 250-258 https://doi.org/10.1071/EN09094
Submitted: 21 July 2009  Accepted: 18 February 2010   Published: 22 June 2010

Environmental context. Oxyanions in soil extract can interfere with the zero valent iron induced reduction of chromium(VI) to chromium(III). At pH 6, the reaction rate was decreased (2 to 6-fold) by an equivalent of arsenate, phosphate or silicate but was increased by sulfate and remained unchanged by borate or nitrate. At pH 2, not only was the rate of reaction dramatically increased (∼900-fold) but interferences from the major components of soil solution (nitrate, silicate and sulfate) were minimised.

Abstract. The rate of zero-valent iron (ZVI) mediated reduction of CrVI was dependent on the condition of the ZVI surface, the pH of the medium and on the presence of inorganic oxyanions that can interfere with the process by competing for active sites on the ZVI surface. Whereas at pH 2, a single exponential decay provided an acceptable fit to the data, for pH 6 an appreciably better fit to the data was obtained with the sum of two exponential decays. The surface area normalised rate constant (kSA1) corresponding to the first decay was considered to model reactions at exposed active sites and kSA2, corresponding to the second decay, was considered to model decomposition kinetics through an intervening oxyhydroxide layer above the ZVI surface. The rate of CrVI reduction was decreased ∼900-fold when the pH was increased from 2 to 6 in the absence of competing ions. At pH 2, interferences from the major components of soil solution (nitrate, silicate and sulfate) were minimised.


Acknowledgements

The financial support of the Natural Science and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. The authors thank Prof. S. O. Prasher, Bioresource Engineering, McGill University for the use of the automated ion analyser.


References


[1]   M. D. Cohen , B. Kargacin , C. B. Klein , M. Costa , Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 1993 , 23,  255.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  [Verified 18 May 2010]

[11]   C. E. Noradoun , I. F. Cheng , EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system. Environ. Sci. Technol. 2005 , 39,  7158.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   I. Sanchez , F. Stūber , J. Font , A. Fortuny , A. Fabregat , C. Bengoa , Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure. Chemosphere 2007 , 68,  338.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   D. W. King , Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems. Environ. Sci. Technol. 1998 , 32,  2997.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   M. Pettine , S. Capri , Digestion treatments and risks of Cr(III)–Cr(VI) interconversions during Cr(VI) determination in soils and sediments – a review. Anal. Chim. Acta 2005 , 540,  231.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   C. H. Van Der Weijden , M. Reith , Chromium(III)–chromium(VI) interconversions in seawater. Mar. Chem. 1982 , 11,  565.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   T. H. Hsia , S. L. Lo , C. F. Lin , D. Y. Lee , Chemical and spectroscopic evidence for specific adsorption of chromate on hydrous iron-oxide. Chemosphere 1993 , 26,  1897.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[17]   S. Fendorf , M. J. Eick , P. Grossl , D. L. Sparks , Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 1997 , 31,  315.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   K. G. Stollenwerk , D. B. Grove , Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. J. Environ. Qual. 1985 , 14,  150.
        |  CAS | | Crossref |  open url image1

[19]   J. M. Zachara , C. C. Ainsworth , C. E. Cowan , C. T. Resch , Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 1989 , 53,  418.
         open url image1

[20]   H. M. Selim , M. C. Amacher , I. K. Iskandar , Modeling the transport of chromium (VI) in soil columns. Soil Sci. Soc. Am. J. 1989 , 53,  996.
        |  CAS |  open url image1

[21]   McBride M. B., Environmental Soil Chemistry 1994 (Oxford University Press: New York).

[22]   P. R. Grossl , M. Eick , D. L. Sparks , S. Goldberg , C. C. Ainsworth , Arsenate and chromate retention on goetite. 2. Kinetic evaluation using a pressure jump technique. Environ. Sci. Technol. 1997 , 31,  321.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   J. Torrent , U. Schwertmann , V. Barron , Fast and slow phosphate sorption by goethite-rich natural materials. Clays Clay Miner. 1992 , 40,  14.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   E. Smith , R. Naidu , A. M. Alston , Chemistry of inorganic arsenic in soils. II. Effect of phosphorus, sodium, and calcium on arsenic sorption. J. Environ. Qual. 2002 , 31,  557.
        |  CAS | | Crossref | PubMed |  open url image1

[25]   C. A. Waltham , M. J. Eick , Kinetics of arsenic adsorption on goethite in the presence of sorbed silicic acid. Soil Sci. Soc. Am. J. 2002 , 66,  818.
        |  CAS |  open url image1

[26]   W. Zhang , P. Singh , E. Paling , S. Delides , Arsenic removal from contaminated water by natural iron ores. Miner. Eng. 2004 , 17,  517.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   F. J. Hingston , A. M. Posner , J. P. Quirk , Competitive adsorption of negatively charged ligands on oxide surfaces. Discuss. Faraday Soc. 1971 , 52,  334.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   B. A. Manning , S. Goldberg , Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci. Soc. Am. J. 1996 , 60,  121.
        |  CAS |  open url image1

[29]   A. M. Moore , C. H. De Leon , T. M. Young , Rate and extent of aqueous perchlorate removal by iron surfaces. Environ. Sci. Technol. 2003 , 37,  3189.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   S.-Y. Oh , P. C. Chiu , B. C. Kim , D. K. Cha , Enhanced reduction of perchlorate by elemental iron at elevated temperatures. J. Hazard. Mater. 2006 , 129,  304.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   J. Cao , D. Elliot , W.-X. Zhang , Perchlorate reduction by nanoscale iron particles. J. Nanopart. Res. 2005 , 7,  499.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   S. Geelhoed , T. Hiemstra , W. H. Van Riemsdijk , Phosphate and sulfate adsorption on goethite: single anion and competitive adsorption. Geochim. Cosmochim. Acta 1997 , 61,  2389.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   J. Tadanier , M. J. Erik , Formulating the charge-distribution multisite surface complexation model using FITEQL. Soil Sci. Soc. Am. J. 2002 , 66,  1505.
        |  CAS |  open url image1

[34]   K. Vempati , R. H. Loeppert , D. C. Dunfer , D. L. Cocke , X-ray photoelectron spectroscopy as a tool to differentiate silicon-bonding state in amorphous iron oxides. Soil Sci. Soc. Am. J. 1990 , 54,  695.
         open url image1

[35]   B. Hansen , T. P. Wetche , K. Raulund-Rasmussen , O. K. Borggaard , Stability constants for silicate adsorbed to ferrihydrite. Clay Miner. 1994 , 29,  341.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   A. Doelsch , J. Masion , W. E. E. Rose , J. Y. Stone , P. M. Bottero , Bertsch , Chemistry and structure of colloids obtained by hydrolysis of Fe(III) in the presence of SiO4 ligands. Colloids Surf. A 2003 , 217,  121.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   Iler K., The Chemistry of Silica 1979 (Wiley: New York).

[38]   A. Cherry , A. U. Shaikh , D. E. Tallman , R. V. Nicholson , Arsenic species as an indicator of redox conditions in groundwater. J. Hydrol. 1979 , 43,  373.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   R. De Vitre , N. Belize , A. Tessier , Speciation and adsorption of arsenic on diagenetic iron hydroxides. Limnol. Oceanogr. 1991 , 36,  1480.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   Sparks L., Environmental Soil Chemistry 1995 (Academic Press: New York).

[41]   M. Rivero-Huguet , W. D. Marshall , Reduction of hexavalent chromium mediated by micro and nano-sized mixed metallic particles. J. Hazard. Mater. 2009 , 169,  1081.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[42]   M. Rivero-Huguet , W. D. Marshall , Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Chemosphere 2009 , 76,  1240.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[43]   APHA, Standard Methods for the Examination of Water and Wastewater, 21st edn 2006 (American Public Health Association: Washington, DC).

[44]   M. Rivero-Huguet , W. D. Marshall , Uncertainties when using dual-wavelength or single-wavelength spectrophotometry to monitor the course of hexavalent chromium reduction mediated by zero-valent iron. Accredit. Qual. Assur. 2008 , 13,  711.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   S. Ehsan , S. O. Prasher , W. D. Marshall , A washing procedure to mobilize mixed contaminants from soil. II. Heavy metals. J. Environ. Qual. 2006 , 35,  2084.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[46]   W. D. Rivero-Huguet , W. D. Marshall , Reduction of hexavalent chromium mediated by micron- and nano-scale zero-valent metallic particles. J. Environ. Monit. 2009 , 11,  1072.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[47]   B. A. Manning , M. L. Hunt , C. Amrhein , J. A. Yarmoff , Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 2002 , 36,  5455.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[48]   C. P. Huang , H. W. Wang , P. C. Chiu , Nitrate reduction by metallic iron. Water Res. 1998 , 32,  2257.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[49]   J. M. Rodríguez-Maroto , F. García-Herruzo , A. García-Rubio , C. Gómez-Lahoz , C. Vereda-Alonso , Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere 2009 , 74,  804.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[50]   Bohn H. L., McNeal B. L., O’Connor G. A., Soil Chemistry 2001 (Wiley: New York).